IMPERFECTIONS IN SOLIDS

Single crystals

- Periodic and repeated arrangement of atoms is perfect or extends throughout the entirety of the specimen
- Translation: integer multiple of lattice constants → identical position in another unit cell
- Can be produced naturally and artificially(eg. Si: Czochralski)

Types of Imperfections

- Vacancy atoms
- Interstitial atoms
- Substitutional atoms
- Dislocations

Grain Boundaries

Point defects

Line defects

Area defects

Point Defects

• Vacancies:

-vacant atomic sites in a structure.

• Self-Interstitials:

-"extra" atoms positioned between atomic sites.

Equilibrium Concentration: Point Defects

• Equilibrium concentration varies with temperature!

Point Defects in Alloys

Two outcomes if impurity (B) added to host (A):

• Solid solution of B in A (i.e., random dist. of point defects)

OR

Substitutional solid soln. (e.g., Cu in Ni)

Interstitial solid soln. (e.g., C in Fe)

Conditions for substitutional solid solution (S.S.)

- W. Hume Rothery rule
 - $-1. \Delta r$ (atomic radius) < 15%
 - 2. Proximity in periodic table
 - i.e., similar electronegativities
 - 3. Same crystal structure for pure metals
 - 4. Valency
 - All else being equal, a metal will have a greater tendency to dissolve a metal of higher valency than one of lower valency

• Specification of composition

- weight percent
$$C_1 = \frac{m_1}{m_1 + m_2} \times 100$$

 m_1 = mass of component 1

- atom percent
$$C'_{1} = \frac{n_{m1}}{n_{m1} + n_{m2}} \times 100$$

 n_{m1} = number of moles of component 1

Linear Defects

Linear Defects (Dislocations)

 Are one-dimensional defects around which atoms are misaligned

Burgers vector, b: measure of lattice distortion

Screw Dislocation

spiral planar ramp resulting from shear deformation ${\bf b} \parallel$ to dislocation line

Edge, Screw, and Mixed Dislocations

Chapter 4 - 12

Grain Boundaries and Polycrystalline Materials

Grain Boundaries

- regions between crystals
- transition from lattice of one region to that of the other
- slightly disordered
- low density in grain boundaries
 - high mobility
 - high diffusivity
 - high chemical reactivity

Angle of misalignment

Adapted from Fig. 4.7, Callister 7e.

Polycrystalline Materials

Optical Micrograph of Polycrystalline lead ingot

Microscopic Examination

- Crystallites (grains) and grain boundaries.
 Vary considerably in size. Can be quite large
 - ex: Large single crystal of quartz or diamond or Si
 - ex: Aluminum light post or garbage can see the individual grains
- Crystallites (grains) can be quite small (mm or less) – necessary to observe with a microscope.

Optical Microscopy

- Can resolve features as small as $\sim \lambda/2$ (eg. ~ 250 nm).
- Polishing removes surface features (e.g., scratches)
- Etching changes reflectance, depending on crystal orientation.

Micrograph of brass (a Cu-Zn alloy) Chapter 4 -16

Microscopy

Optical resolution ca. ~10⁻⁷ m ~ 250 nm

For higher resolution need shorter wavelength

- X-Rays? Difficult to focus (Synchrotron).
- Electrons (SEM, TEM)
 - wavelengths ca. 3 pm (0.003 nm)
 - (Magnification 1,000,000X)
 - Atomic resolution possible
 - Electron beam focused by magnetic lenses.

Atomic Force Microscope

(a type of Scanning Probe Microscope)

