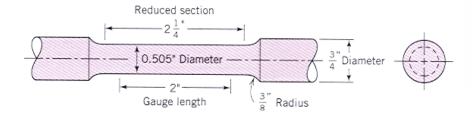
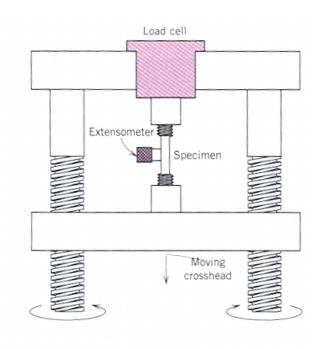
Chapter 6: Mechanical Properties II

Outline

- Elastic recovery during plastic deformation
- Compressive, shear, and torsional deformation
- Hardness
- Variability of material properties
- Design/safety factors

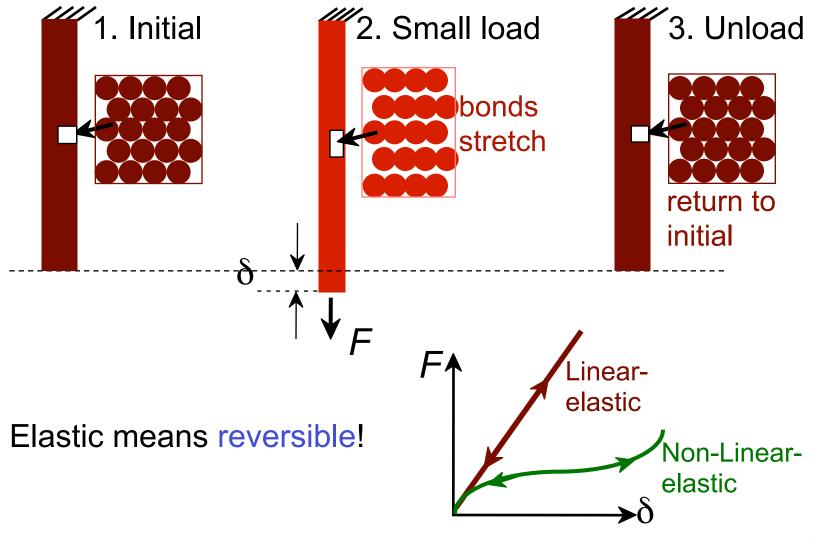
Concepts of stress and strain

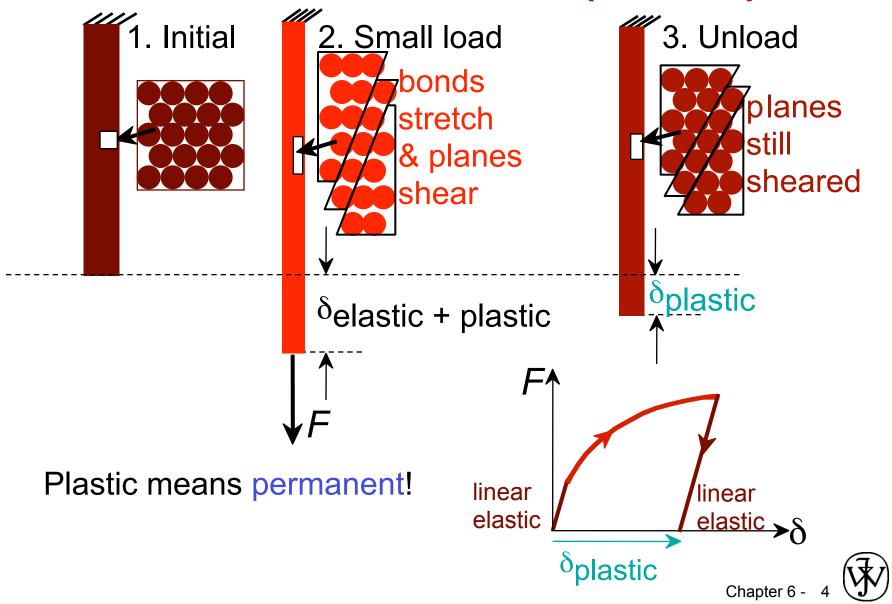

Tension tests


engineering stress

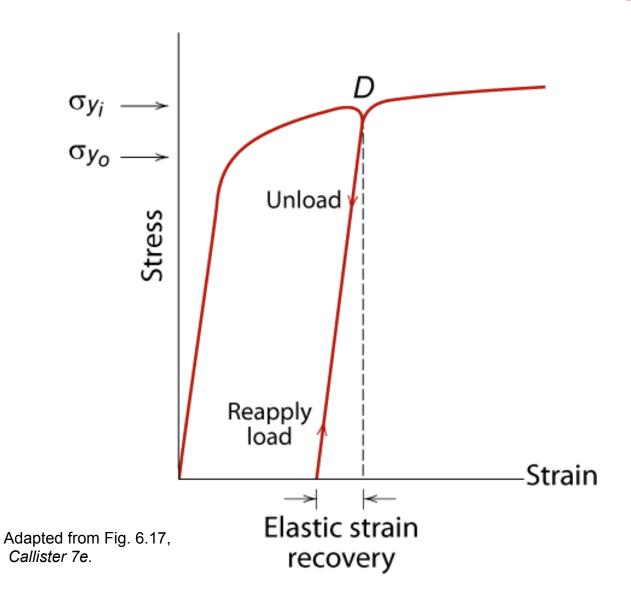
$$\sigma = \frac{F}{A_0}$$

- engineering strain


$$\varepsilon = \frac{l_i - l_0}{l_0} = \frac{\Delta l}{l_0}$$

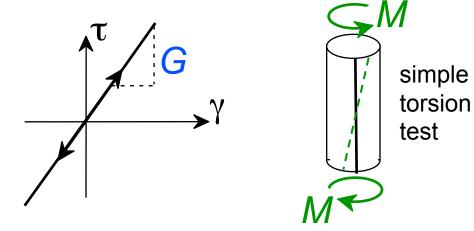


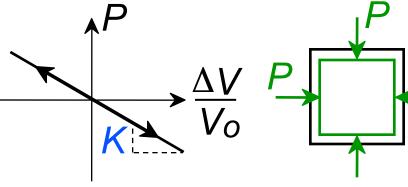
Compression tests


Elastic Deformation

Plastic Deformation (Metals)

Elastic Strain Recovery


Other Elastic Properties


 Elastic Shear modulus, G:

$$\tau = G \gamma$$

 Elastic Bulk modulus, K:

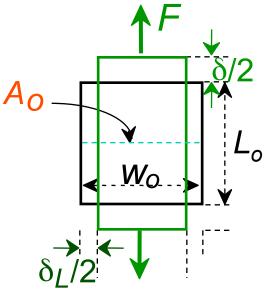
$$P = -K \frac{\Delta V}{V_O}$$

Special relations for isotropic materials:

$$G = \frac{E}{2(1+v)}$$

$$G = \frac{E}{2(1+v)} \qquad K = \frac{E}{3(1-2v)}$$

pressure


test: Init.

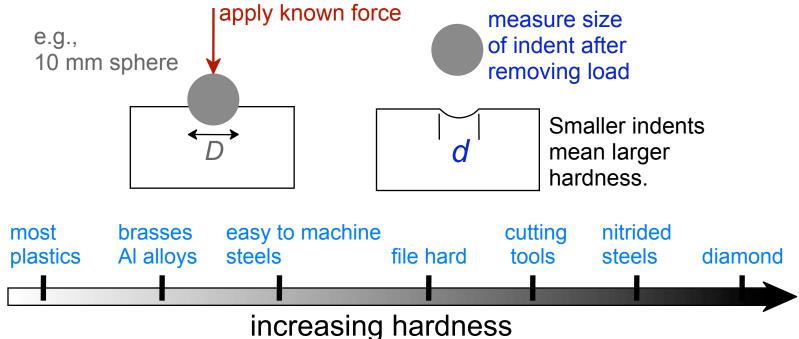
Useful Linear Elastic Relationships

Simple tension:

$$\delta = \frac{FL_o}{EA_o} \quad \delta_L = -v \frac{Fw_o}{EA_o}$$

Simple torsion:

$$\alpha = \frac{2ML_o}{\pi r_o^4 G}$$


M = moment $\alpha = \text{angle of twist}$ L_{o}

- Material, geometric, and loading parameters all contribute to deflection.
- Larger elastic moduli minimize elastic deflection.

Hardness

- Resistance to permanently indenting the surface.
- Large hardness means:
 - --resistance to plastic deformation or cracking in compression.
 - --better wear properties.

Hardness: Measurement

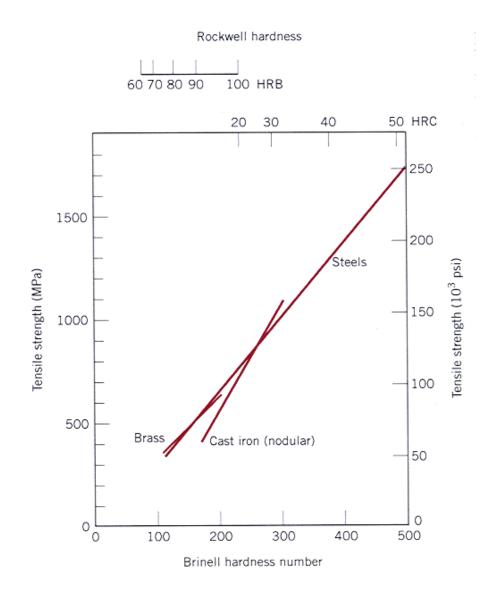
Rockwell

- No major sample damage
- Each scale runs to 130 but only useful in range 20-100.
- Minor load 10 kg
- Major load
 60 (A), 100 (B) & 150 (C) kg
 - A = diamond, B = 1/16 in. ball, C = diamond

HB = Brinell Hardness

- TS (psia) = 500 x HB
- $TS (MPa) = 3.45 \times HB$

Hardness: Measurement


Table 6.5 Hardness Testing Techniques

Test	Indenter	Shape of Indenta		Formula for	
		Side View	Top View	Load	Hardness Number ^a
Brinell	10-mm sphere of steel or tungsten carbide	→ D ← d ←	<u> </u>	P	$HB = \frac{2P}{\pi D[D - \sqrt{D^2 - d^2}]}$
Vickers microhardness	Diamond pyramid	136°-	d_1 d_1	P	$HV = 1.854P/d_1^2$
Knoop microhardness	Diamond pyramid	<i>Llb</i> = 7.11 <i>b/t</i> = 4.00	b	P	$HK = 14.2P/l^2$
Rockwell and Superficial Rockwell	$\begin{cases} \text{Diamond} \\ \text{cone} \\ \frac{1}{18}, \frac{1}{8}, \frac{1}{4}, \frac{1}{2} \text{ in.} \\ \text{diameter} \\ \text{steel spheres} \end{cases}$	120°		100 150 15 30	kg kg kg kg Superficial Rockwell kg

^a For the hardness formulas given, P (the applied load) is in kg, while D, d, d₁, and l are all in mm.
Source: Adapted from H. W. Hayden, W. G. Moffatt, and J. Wulff, The Structure and Properties of Materials, Vol. III, Mechanical Behavior. Copyright © 1965 by John Wiley & Sons, New York. Reprinted by permission of John Wiley & Sons, Inc.

Correlation between hardness and tensile strength

- Relations between hardness and tensile strength for steel, brass, and cast iron.
- For most steels:
 TS (MPa)=3.45xHB
 TS (psi)=500xHB

Example

 Estimate the Brinell and Rockwell hardnesses for brass and carbon steel

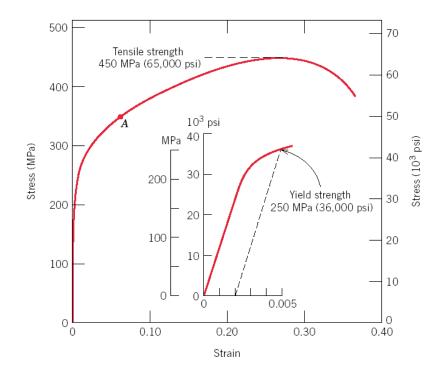


FIGURE 6.12 The stress–strain behavior for the brass specimen

Variability in Material Properties

- Elastic modulus is material property
- Critical properties depend largely on sample flaws (defects, etc.). Large sample to sample variability.
- Statistics
 - Mean

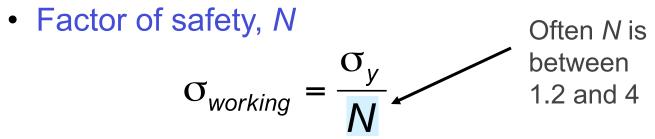
$$\overline{X} = \frac{\sum_{n=1}^{\infty} X_n}{n}$$

Standard Deviation

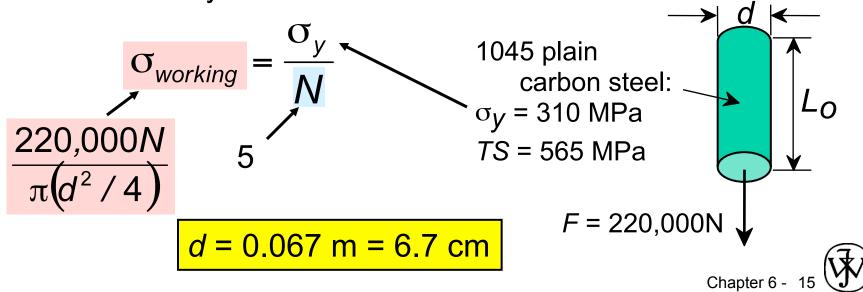
$$s = \left[\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}\right]^{\frac{1}{2}}$$

where *n* is the number of data points

Example


Determine the average and standard deviation of tensile strength

Sample Number	Tensile Strength (MPa)	525					525	
1	520							
2	512							
3	515					×		$\overline{TS} + s$
4	522							7 15 7 8
$\overline{TS} = \frac{\sum_{i=1}^{4} (TS)_i}{4}$		Tensile strength (MPa)	×				Tensile strength (MPa)	
$7S = \frac{4}{4}$ $= \frac{520 + 512 + 4}{4}$ $= 517 \text{ MPa}$	<u>515 + 522</u>	Tensile stre			×		Tensile stre	$ ightharpoonup ext{ iny } ext{ iny } ext{ iny }$
$\left[\frac{\{(TS)_i - \overline{TS}\}^2}{4 - 1}\right]^{1/2}$		10		X			510	$\overline{TS} - s$
$20 - 517)^2 + (512 - 5)^2$	$\frac{517)^2 + (515 - 517)^2 + (52)^2}{4 - 1}$	$\left[\frac{(22-517)^2}{(22-517)^2}\right]^{1/2}$	Sar	mple num (a)		·		(b)
MPa	ř							


Chapter 6 -

Design or Safety Factors

Design uncertainties mean we do not push the limit.

• Example: Calculate a diameter, *d*, to ensure that yield does not occur in the 1045 carbon steel rod below. Use a factor of safety of 5.

Summary

- Stress and strain: These are size-independent measures of load and displacement, respectively.
- Elastic behavior: This reversible behavior often shows a linear relation between stress and strain. To minimize deformation, select a material with a large elastic modulus (*E* or *G*).
- Plastic behavior: This permanent deformation behavior occurs when the tensile (or compressive) uniaxial stress reaches σ_{v} .
- Toughness: The energy needed to break a unit volume of material.
- Ductility: The plastic strain at failure.
- Hardness: Resistance to permanently indenting the surface.
- Safety: Design uncertainties mean we do not push the limit