Lecture 2

Tuesday, April 01, 2008 7:32 PM

Review of Last Lecture:

- o Chemistry + Thermomechanical Processing --> Microstructure --> Properties --> End Use
- o Reviewed atomic structure
- Reviewed the behavior of matter as it cools from ionized plasma to the solid state

Energies of atom in molecule or solid:

Quantum Mechanics -- quantized energy levels Vibrational Energy Angular Momentum Rotational Energy

How big is an atom?

	Mass (kg)	Diameter (m)	
Proton	1.67 x 10 ⁻²⁷	1.00 x 10 ⁻¹⁵	
Electron	9.11 x 10 ⁻³¹	1.00 x 10 ⁻¹⁸	Actually Unknown
Proton/Electron Ratio	1833		
Hydrogen	1.00794	1.00 x 10 ⁻¹⁰	

Diameter of baseball = 3 inches

If the proton in the Hydrogen atom was the size of a baseball:

→ Atom = 300,000 inches = 25,000 feet = 4.735 miles

,	Atomic Number	Atomic Weight (amu)	Atomic Radius (nm)	Melting Point (°C)	
Hydrogen	1	1.008		-259	
Carbon	6	12.011	0.071	3367	sublimes
Oxygen	8	16.00		-218.4	
Aluminum	13	26.98	0.143	660.4	
Iron	26	55.85	0.124	1538	
Tungsten	74	183.84	0.137	3410	
Lead	82	207.2	0.175	327	

What is an amu? -- 1/12 the weight of carbon 12.

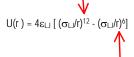
55.85 amu/atom = 55.85 g/mol

1 mol is 6.023×10^{23}

Review of electron orbitals;

25 2p 35 3p 3d 45 4p 4d 4f 55 5p 5d 5f

- s spherical shells -- 1 state -- each state holds 2 electrons -- 2 electrons possible
- p two spheres -- 3 states -- each holds 2 electrons -- 6 electrons possible
- d lobes 5 states -- eac hholds 2 electrons 10 electrons possible
- f complex 7 states each holds 2 electrons 14 electrons possible


Valence electrons occupy outermost shell

Everything wants to be a noble gas with a full p orbital shell....

Bonding Forces and Energies

Interaction of two atoms with each other is described by the Leonard Jones Potential Function:

Repulsion -- + 12th power term increases as atomic or molecular distance r increases

Minimum occurs at $-\epsilon_{\text{LJ}}$

Attraction: negative 6th power term produces a decrease in potential energy as r decreases

- o Start with two atoms (or molecules) that are "comfortable" distance from each other
- o To separate them -- have to overcome the mutual attraction to each other (F_A) -- bonding energy
- o To push them together -- have to overcome the mutual repulsion of electronic charges (F_R)
- o Settle into a potential energy well

Leonard Jones Values are Tabulated:

Gas	Molecular Diameter (pm)	ε⊔, J x10 ⁻²¹
He	255	0.14
O ₂	358	1.59
CH ₄	380	1.96

Picometer = 1×10^{-12} m