Lecture 10

Tuesday, April 22, 2008 9:02 PM

Ref: G. Dieter, Mechanical Metallurgy, 3rd Edition, McGraw-Hill, 1986.

Course Notes:

- 1. Well, being new to UW I just learned about the Engineering College Open House on Friday
- 2. I know you are all going to be sad to hear this, but we are going to cancel class Friday in observance of the department tradition.
- 3. Your third Homework is still due.
- 4. We are just 1/3 of the way through the course.

Stress and Strain:

- o OK up until now we have talked about atoms and how those atoms are arranged into crystalline solids
- We went through specific crystal structures
- o Defects in crystals
- How we diffuse atoms from one location to another to change local composition
- We've been talking about really small things in particular detail
- Now we are going to change direction entirely
- We are going to approach the problem from the opposite side
- o Instead of focusing on the trees, let's look at the forest

Let's play a thought experiment

- $\circ\quad$ Lets say I take a round metal bar and I weld it to the wall here
- o I then start applying force to it
- Well you might say what kind of force Bryan?
 - Am I pushing on it? Applying compression?
 - Am I pulling on it? Applying tension?
 - Am I bending it? Applying bending force?
 - Am I twisting it? Applying torsion
- o I say ...it doesn't really matter for the thought experiment....but lets say I'm pulling on it (applying a tensile force)
- o So, let's say that I have unlimited strength and I can pull with any force level I want
- So I start pulling on the bar, slowly increasing the force that I pull with
- O What will happen?
- Well...initially, not much -- I'm going to have to be stronger than the bar (and the weld)
- O What happens when I start to pull really hard?
- O What is really happening to the bar?
 - We know that the bar is composed of atoms.
 - That those atoms are bonded to one another.
 - We know that crystals are organized into some crystalline lattice
 - In fact we know there are many crystalline lattices which form polyhedral crystals.
 - We know that the bar has many crystals.
 - When we pull on the bar we will get a response from the crystals and we will get a response from the atoms themselves
- o I will argue that only 3 things can happen:
 - 1. The bar can elastically deform -- it can change shape to accommodate the force that I was applying
 - What is happening? -- we are stretching the atomic bonds
 - If it is a truly elastic response, when I remove the applied force it will return to its original shape
 - 2. It can plastically deform -- the bar permanently deform and change its shape
 - What is happening then? -- the crystals are slipping and changing their shape
 - They are stretching

- We are not creating bar...are we? We know that energy and matter cannot be created and destroyed -merely converted from one form to another
- So therefore we are moving atoms from one position within the crystals to another
- 3. The bar can crack and break (fracture)
 - The crystals can sever and break into two sections
 - We can create new surfaces and release the applied energy by doing so
- OK. So what factors were important in our bar experiment?
 - What would happen if the bar was made out of aluminum
 - What about titanium?
 - What about rubber?
 - What about ice cream?
- So clearly we have different responses for different materials
- OK. So what if the bar were 1 mm in diameter?
 - What if the bar was 10 feet in diameter?
 - What if the bar was square?
- o So clearly the shape and size of the bar is important.
- OK. So what if I pulled faster?
 - What if I pulled really slowly?
 - What if I jerked on the bar?
 - What if the bar was pulled and released and then pulled again?
 - What if the bar was in an explosion?
 - Would it react the same?
- o So, clearly the rate and type of force application is important too.
- What if it was really hot in here -- like approaching the melting temperature of the bar?
 - What if it was really cold in here?
 - What if the room was filled with water?
 - Would we get a different response?
- Maybe... environmental factors may play a role in our bar's response.
- o So we perform a whole series of tests on our bar and we have this bar diagnosed.
 - We KNOW how this bar will respond to a variety of force applications and environments.
- Then somebody comes in the room and says can you make me another bar?
 - Well....I don't know. I mean I know how this bar works. But will another one be the same?
- What if he brings in another bar and asks if his bar is better?
- $\circ\quad \text{How are we going to compare bars?}$
- What if his bar is made of something else?
- What if we need 10,000 bars for to make a building?
- o Clearly, if we want to make many bars that behave the same.
 - We are going to have to get some common terminology to describe behavior
 - We are going to have to be able to separate material behavior from geometrical behavior
 - We are going to need to diagnose on a very fine level what's going on.
 - We are going to have to develop some reproducible tests that show similar behavior for a specific type of material
 - So that we can compare bars and say whether one is good and another bad

What we are dealing with is **Mechanical Metallurgy**. It is the area of metallurgy that deals primarily with the response of metals to forces or applied loads.