Lecture 11

Sunday, April 27, 2008 9:02 PM

Ref: 1. G. Dieter, Mechanical Metallurgy, 3rd Edition, McGraw-Hill, 1986.

2. Reed-Hill, Abbaschian, Physical Metallurgy Principles, 3rd Edition, PWS Publishing Company, 1994.

Course Notes:

o Exams:

- The exams will be passed back in you lab sections
- The answers have been posted on the website
- For Exam 1:

Average:	62.4
Max:	91.5
Min:	
Median:	65.5
Mode:	

- I know that this was a hard exam. I know that this was a long exam.
- We are going to provide a 7 point shift to your scores -- that is you can add 7 points to whatever score you originally got -- and that will be your grade for this exam
- If you have any questions -- see Peter or me

o Course Schedule changes

- We were behind on lectures and then we lost last Friday, so:
- I have rescheduled the remaining lectures
- I'm giving you guys a homework holiday this week -- no homework due on Friday
 - > However, if you look ahead...the homework that was due this Friday was BIG
 - > I'd work ahead if I were you
- In addition there are now only 8 homeworks assigned

Review:

- o Last Wednesday we stated that there were only 3 possible material responses to an applied stress:
 - Elastic deformation
 - Plastic deformation
 - Fracture

- o We then started talking about elasticity and elastic theory
- o We talked about what elasticity was -- on the atomic level
- o We talked about how elasticity changes with temperature
- o We talked the definition of stress and the definition of strain
- o We talked about Hooke's law
- o We began to talk about Poisson's Ratio...

True Stress- True Strain Derivation Shown on the Board:

True Strain Pennation
$$e = \frac{\Delta L}{L_0} = \frac{L - L_0}{L_0} = \frac{L}{L_0} - 1$$

$$e + l = \frac{L}{L_0}$$

$$\mathcal{E} = \int_{L_0}^{L} \frac{dL}{L} = \ln \frac{L}{L_0}$$

$$\mathcal{E} = \int_{L_0}^{L} \frac{dL}{L} = \ln \left(e + 1 \right)$$

$$\int_{L_0}^{L_0} \int_{L_0}^{L_0} \frac{dL}{L_0} = \ln \left(e + 1 \right)$$

$$\int_{L_0}^{L_0} \int_{L_0}^{L_0} \frac{dL}{L_0} = \ln \left(e + 1 \right)$$

$$\int_{L_0}^{L_0} \int_{L_0}^{L_0} \frac{dL}{L_0} = \ln \left(e + 1 \right)$$

$$\int_{L_0}^{L_0} \int_{L_0}^{L_0} \frac{dL}{L_0} = \ln \left(e + 1 \right)$$

$$\int_{L_0}^{L_0} \int_{L_0}^{L_0} \frac{dL}{L_0} = \ln \left(e + 1 \right)$$

$$\int_{L_0}^{L_0} \int_{L_0}^{L_0} \frac{dL}{L_0} = \ln \left(e + 1 \right)$$

$$\int_{L_0}^{L_0} \int_{L_0}^{L_0} \frac{dL}{L_0} = \ln \left(e + 1 \right)$$

$$\int_{L_0}^{L_0} \int_{L_0}^{L_0} \frac{dL}{L_0} = \ln \left(e + 1 \right)$$

$$\int_{L_0}^{L_0} \int_{L_0}^{L_0} \frac{dL}{L_0} = \ln \left(e + 1 \right)$$

$$\int_{L_0}^{L_0} \int_{L_0}^{L_0} \frac{dL}{L_0} = \ln \left(e + 1 \right)$$

$$\int_{L_0}^{L_0} \int_{L_0}^{L_0} \frac{dL}{L_0} = \ln \left(e + 1 \right)$$

$$\int_{L_0}^{L_0} \int_{L_0}^{L_0} \frac{dL}{L_0} = \ln \left(e + 1 \right)$$

$$\int_{L_0}^{L_0} \int_{L_0}^{L_0} \frac{dL}{L_0} = \ln \left(e + 1 \right)$$

$$\int_{L_0}^{L_0} \int_{L_0}^{L_0} \frac{dL}{L_0} = \ln \left(e + 1 \right)$$

$$\int_{L_0}^{L_0} \int_{L_0}^{L_0} \frac{dL}{L_0} = \ln \left(e + 1 \right)$$

$$\int_{L_0}^{L_0} \int_{L_0}^{L_0} \frac{dL}{L_0} = \ln \left(e + 1 \right)$$

$$\int_{L_0}^{L_0} \int_{L_0}^{L_0} \frac{dL}{L_0} = \ln \left(e + 1 \right)$$

$$\int_{L_0}^{L_0} \int_{L_0}^{L_0} \frac{dL}{L_0} = \ln \left(e + 1 \right)$$

$$\int_{L_0}^{L_0} \int_{L_0}^{L_0} \frac{dL}{L_0} = \ln \left(e + 1 \right)$$

$$\int_{L_0}^{L_0} \int_{L_0}^{L_0} \frac{dL}{L_0} = \ln \left(e + 1 \right)$$

$$\int_{L_0}^{L_0} \int_{L_0}^{L_0} \frac{dL}{L_0} = \ln \left(e + 1 \right)$$

$$\int_{L_0}^{L_0} \int_{L_0}^{L_0} \frac{dL}{L_0} = \ln \left(e + 1 \right)$$

$$\int_{L_0}^{L_0} \int_{L_0}^{L_0} \frac{dL}{L_0} = \ln \left(e + 1 \right)$$

$$\int_{L_0}^{L_0} \int_{L_0}^{L_0} \frac{dL}{L_0} = \ln \left(e + 1 \right)$$

$$\int_{L_0}^{L_0} \int_{L_0}^{L_0} \frac{dL}{L_0} = \ln \left(e + 1 \right)$$

$$\int_{L_0}^{L_0} \int_{L_0}^{L_0} \frac{dL}{L_0} = \ln \left(e + 1 \right)$$

$$\int_{L_0}^{L_0} \int_{L_0}^{L_0} \frac{dL}{L_0} = \ln \left(e + 1 \right)$$

$$\int_{L_0}^{L_0} \int_{L_0}^{L_0} \frac{dL}{L_0} = \ln \left(e + 1 \right)$$

$$\int_{L_0}^{L_0} \int_{L_0}^{L_0} \frac{dL}{L_0} = \ln \left(e + 1 \right)$$

$$\int_{L_0}^{L_0} \int_{L_0}^{L_0} \frac{dL}{L_0} = \ln \left(e + 1 \right)$$

$$\int_{L_0}^{L_0} \int_{L_0}^{L_0} \frac{dL}{L_0} = \ln \left(e + 1 \right)$$

$$\int_{L_0}^{L_0} \int_{L_0}^{L_0} \frac{dL}{L_0} = \ln \left(e + 1 \right)$$

$$\int_{L_0}^{L_0} \int_{L_0}^{L_0} \frac{dL}{L_$$

Rest of Lecture is available in PowerPoint Presentation Paired with Lecture 11