Chapter 8: Mechanical Failure

Topics...

• How do loading rate, loading history, and temperature affect the failure stress?

Ship-cyclic loading from waves.
Failure

• Classification:
 Fracture behavior:
 - Very Ductile
 - Moderately Ductile
 - Brittle

• Ductile fracture is usually desirable!
 %AR or %EL
 - Large
 - Moderate
 - Small

Adapted from Fig. 8.1, Callister 7e.

Ductile: warning before fracture
Brittle: No warning

Chapter 8 - 2
Fatigue

- **Fatigue** = failure under cyclic stress.

- Stress varies with time.
 -- key parameters are S, σ_m, and frequency

- Key points: Fatigue...
 -- can cause part failure, even though $\sigma_{max} < \sigma_c$.
 -- causes ~ 90% of mechanical engineering failures.
Fatigue Design Parameters

- **Fatigue limit,** S_{fat}:
 --no fatigue if $S < S_{fat}$

- Sometimes, the fatigue limit is zero!

Adapted from Fig. 8.19(a), *Callister 7e.*

Adapted from Fig. 8.19(b), *Callister 7e.*
Fatigue Mechanism

• Crack grows *incrementally*

\[
\frac{da}{dN} = (\Delta K)^m \\
\sim (\Delta \sigma)^{a}
\]

Typ. 1 to 6

Increase in crack length per loading cycle

• Failed rotating shaft
 --crack grew even though \(K_{max} < K_c \)
 --crack grows faster as
 • \(\Delta \sigma \) increases
 • crack gets longer
 • loading freq. increases.

Adapted from Fig. 8.21, *Callister 7e.*
(Fig. 8.21 is from D.J. Wulpi, *Understanding How Components Fail*, American Society for Metals, Materials Park, OH, 1985.)
Improving Fatigue Life

1. Impose a compressive surface stress (to suppress surface cracks from growing)
 - Method 1: shot peening
 - Put surface into compression
 - Method 2: carburizing
 - C-rich gas

2. Remove stress concentrators.
 - Adapted from Fig. 8.24, Callister 7e.
 - Adapted from Fig. 8.25, Callister 7e.

\[S = \text{stress amplitude} \]
\[N = \text{Cycles to failure} \]
\[\sigma_m = \text{stress amplitude} \]

- Increasing \(\sigma_m \)
- Near zero or compressive \(\sigma_m \)
- Moderate tensile \(\sigma_m \)
- Larger tensile \(\sigma_m \)
Factors that affect fatigue life

- Mean stress
- Surface effects
 - Design factors
 - Surface treatments
 - Case hardening
Environmental effects

- Thermal fatigue: induced at elevated temperatures by fluctuating thermal stresses.

\[\sigma = \alpha_i E\Delta T \]

- Corrosion fatigue: failure occurs by the simultaneous action of a cyclic stress and chemical attack
Creep

Sample deformation at a constant stress (σ) vs. time

Primary Creep: slope (creep rate) decreases with time.

Secondary Creep: steady-state i.e., constant slope.

Tertiary Creep: slope (creep rate) increases with time, i.e. acceleration of rate.

Adapted from Fig. 8.28, Callister 7e.
Creep

- Occurs at elevated temperature, $T > 0.4 \ T_m$

Adapted from Figs. 8.29, Callister 7e.
Secondary Creep

• Strain rate is constant at a given T, σ
 -- strain hardening is balanced by recovery

\[
\dot{\varepsilon}_s = K_2 \sigma^n \exp\left(-\frac{Q_c}{RT}\right)
\]

- strain rate
- material const.
- applied stress
- stress exponent (material parameter)
- activation energy for creep (material parameter)

• Strain rate increases for higher T, σ

Adapted from Fig. 8.31, Callister 7e.
(Fig. 8.31 is from Metals Handbook: Properties and Selection: Stainless Steels, Tool Materials, and Special Purpose Metals, Vol. 3, 9th ed., D. Benjamin (Senior Ed.), American Society for Metals, 1980, p. 131.)
Creep Failure

- **Failure:** along grain boundaries.

- **Time to rupture,** \(t_r \)

 \[
 T(20 + \log t_r) = L
 \]

- **Estimate rupture time**

 S-590 Iron, \(T = 800^\circ C, \sigma = 20 \text{ ksi} \)

 \[
 T(20 + \log t_r) = L
 \]

 \[24 \times 10^3 \text{ K-log hr} \]

 \[1073 \text{ K} \]

 Ans: \(t_r = 233 \text{ hr} \)

 Adapted from Fig. 8.32, *Callister 7e*. (Fig. 8.32 is from F.R. Larson and J. Miller, *Trans. ASME, 74*, 765 (1952).)

From V.J. Colangelo and F.A. Heiser, *Analysis of Metallurgical Failures* (2nd ed.), Fig. 4.32, p. 87, John Wiley and Sons, Inc., 1987. (Orig. source: Pergamon Press, Inc.)
SUMMARY

• Engineering materials don't reach theoretical strength.
• Flaws produce stress concentrations that cause premature failure.
• Sharp corners produce large stress concentrations and premature failure.
• Failure type depends on T and stress:
 - for noncyclic σ and $T < 0.4T_m$, failure stress decreases with:
 - increased maximum flaw size,
 - decreased T,
 - increased rate of loading.
 - for cyclic σ:
 - cycles to fail decreases as $\Delta \sigma$ increases.
 - for higher T ($T > 0.4T_m$):
 - time to fail decreases as σ or T increases.