Chapter 18 Electrical properties

- Electrical conduction of semiconductor
- Factors influence carrier mobility
- Semiconductor devices
- Electrical conduction of ionic crystals and polymers

Temperature dependence of electric conductivity

- Carrier concentration vs T for intrinsic semiconductor
Temperature dependence of electric conductivity

- Carrier concentration vs T for extrinsic semiconductor
 - for $T < 100K$: “freeze-out” thermal energy insufficient to excite electrons.
 - for $150K < T < 450K$: “extrinsic”
 - for $T >> 450K$: “intrinsic”

Factors that affect carrier mobility

- Influence of dopant content
Factors that affect carrier mobility

- Influence of temperature

Hole mobilities for silicon with acceptor concentrations

Semiconductor devices

- Advantages of SC devices
 - small size
 - low power consumption
 - no warm up time

- A rectifier(diode): an electronic device that allows the current to flow in one direction
Semiconductor devices

- Allows flow of electrons in one direction only
 No applied potential: no net current flow
- Forward bias: positive terminal is connected to the positive side
 Carrier flow through p-type and n-type regions; holes and electrons recombine at p-n junction; current flows.
- Reverse bias: negative terminal is connected to the positive side
 Carrier flow away from p-n junction; carrier conc. greatly reduced at junction; little current flow.

Semiconductor devices (cont.)

- Current-voltage characteristics of a p-n junction for forward and reverse bias

The current-voltage characteristics of a p-n junction for forward and reverse biases
To convert alternating current to direct current
(a) input voltage
(b) output current after a rectifier

Voltage versus time for the input to a p-n rectifying junction

p-n-p junction transistor

Forward-biasing voltage

Input voltage

Load

Output voltage

Reverse-biasing voltage

Emitter

Collector

Base

Input voltage

Output voltage

Time

Time
Semiconductor devices (cont.)

- **p-n-p junction transistor**
 - Schematic cross-sectional view of MOSFET transistor

 ![Schematic of p-n-p junction transistor](image1.png)

- **Metal-oxide-semiconductor field-effect transistor (MOSFET)**
 - Schematic cross-sectional view of MOSFET transistor

 ![Schematic of MOSFET transistor](image2.png)
Integrated circuit

- The limits with individual transistor
- Integrated circuit
 - 1958-59
 - Jack Kilby at Texas Instruments
 - Moore’s law: the number of transistors per unit area has been doubling every 1.5 years
 - Gordon Moore: one of the early integrated circuit pioneers and founders of Intel Corporation
 - The Nobel Prize in Physics 2000 was awarded to Jack Kilby for the invention of the integrated circuit.

Electrical conduction in other materials

- Electrical conduction in ionic ceramics
- Electrical conduction in polymers

<table>
<thead>
<tr>
<th>Material</th>
<th>Electrical Conductivity [S·m⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphite</td>
<td>3×10^5 to 2×10^7</td>
</tr>
<tr>
<td>Ceramics</td>
<td></td>
</tr>
<tr>
<td>Concrete (dry)</td>
<td>10^{-13}</td>
</tr>
<tr>
<td>Soda-lime glass</td>
<td>10^{-14} to 10^{-12}</td>
</tr>
<tr>
<td>Potash</td>
<td>10^{-11} to 10^{-10}</td>
</tr>
<tr>
<td>Beryllium glass</td>
<td>$<10^{-10}$</td>
</tr>
<tr>
<td>Aluminum-oxide</td>
<td>$<10^{-10}$</td>
</tr>
<tr>
<td>Fused silica</td>
<td>$<10^{-10}$</td>
</tr>
<tr>
<td>Polymers</td>
<td></td>
</tr>
<tr>
<td>Polyethylene</td>
<td></td>
</tr>
<tr>
<td>Poly(methyl methacrylate)</td>
<td></td>
</tr>
<tr>
<td>Styrene</td>
<td></td>
</tr>
<tr>
<td>Polystyrene</td>
<td></td>
</tr>
<tr>
<td>Poly(vinylene)</td>
<td></td>
</tr>
<tr>
<td>Poly(methylmethacrylate)</td>
<td></td>
</tr>
<tr>
<td>Poly(styrene)</td>
<td></td>
</tr>
</tbody>
</table>

Electrical conduction in conducting polymers
Summary

- Electrical **conductivity** and **resistivity** are:
 -- material parameters.
 -- geometry independent.
- Electrical **resistance** is:
 -- a geometry and material dependent parameter.
- Conductors, semiconductors, and insulators...
 -- differ in accessibility of energy states for conductance electrons.
- For metals, conductivity is increased by
 -- reducing deformation
 -- reducing imperfections
 -- decreasing temperature.
- For pure semiconductors, conductivity is increased by
 -- increasing temperature
 -- doping (e.g., adding B to Si (p-type) or P to Si (n-type)).