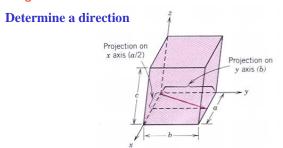

Chapter 3: Crystallographic directions and planes

Outline

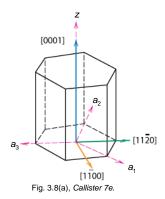
- □ Crystallographic directions
- Crystallographic planes
- ☐ Linear and planar atomic densities
- ☐ Close-packed crystal structures


Crystallographic directions

- Direction: a line between two points and a vector
- General rules for defining a crystallographic direction
 - pass through the origin of a coordinate system
 - determine length of the vector projection in the unit cell dimensions a, b, and c
 - remove the units [u_a v_b w_c]---[uvw]
 e.g [2a 3b 5c]--[2 3 5]
 - uvw are multiplied and divided by a common factor to reduce them to smallest integer values

Crystallographic directions (continue)

- denote the direction by [uvw]
- family direction <u v w>, defined by transformation
- material properties along any direction in a family are the same, e.g. [100],[010],[001] in simple cubic are same.
- for uniform crystal materials, all parallel directions have the same properties
- negative index: a bar over the index


Determine the indices of line directions The state of the indices of line directions in the indices of lin

Examples

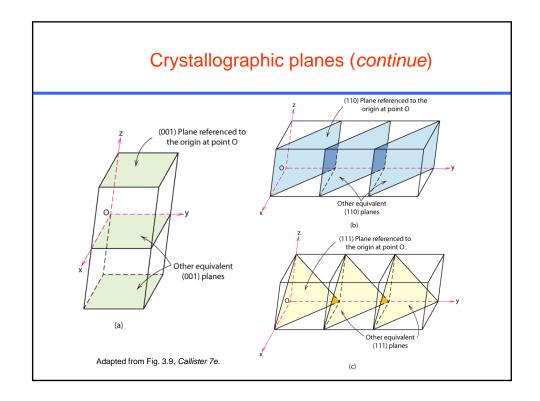
Sketch the following directions : [110], $[\overline{1}\ \overline{2}\ 1]$, $[\overline{1}\ 0\ 2]$

Hexagonal crystal

- ☐ 4-index, or Miller-Bravais, coordinate system
- ☐ Conversion from 3-index to 4-index system

$$[u'v'w'] \rightarrow [uvtw]$$

$$u = \frac{1}{3}(2u'-v')$$


$$v = \frac{1}{3}(2v'-u')$$

$$t = -(u+v)$$

$$w = w'$$

Crystallographic planes

- □ Orientation representation (hkl)--Miller indices
- Parallel planes have same miller indices
- Determine (hkl)
 - · A plane can not pass the chosen origin
 - A plane must intersect or parallel any axis
 - If the above is not met, translation of the plane or origin is needed
 - Get the intercepts a, b, c. (infinite if the plane is parallel to an axis)
 - · take the reciprocal
 - · smallest integer rule
- ☐ (hkl) // (hkt) in opposite side of the origin
- ☐ For cubic only, plane orientations and directions with same
- indices are perpendicular to one another

Crystallographic planes (continue)

С

 ∞

1/∞

0

0

С

 ∞

1/∞ 0

0

b

1

1/1

1

b

 ∞

1/∞

0

0

1

1/1

1

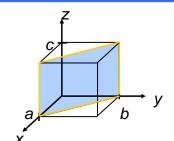
1

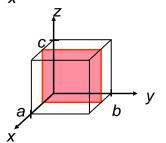
а

1/2

1/1/2

2

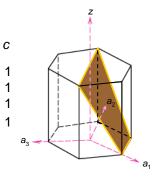

2


Example

- Intercepts
- . Reciprocals
- 3. Reduction
- or readouon
- 4. Miller Indices (110)

Example

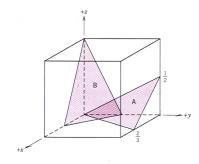
- 1. Intercepts
- 2. Reciprocals
- 3. Reduction
- 4. Miller Indices (100)



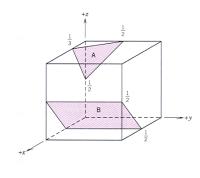
Crystallographic planes (continue)

In hexagonal unit cells the same idea is used

Example


- a_1
- a_2 a_3
- Intercepts
 Reciprocals
- 1 ∞ -1 1 1/∞ -1
- n Dededer
- 1 0 -1
- 3. Reduction 1 0 -1
- 4. Miller-Bravais Indices (1011)

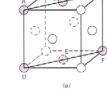
Adapted from Fig. 3.8(a), Callister 7e.

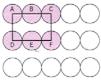

Crystallographic planes (continue)

□ Determine Miller indices of planes

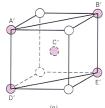
Crystallographic planes (continue)

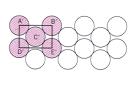
☐ Determine Miller indices of planes


Crystallographic planes (continue)

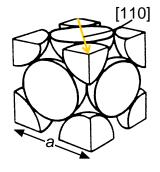

□ Construct planes by Miller indices of planes (0 1 1) and (1 1 2)

Atomic arrangements


☐ The atomic arrangement for a crystallographic plane depends on the crystal structure


FCC: (a) reduced sphere (b) atomic packing of an FCC (110) plane

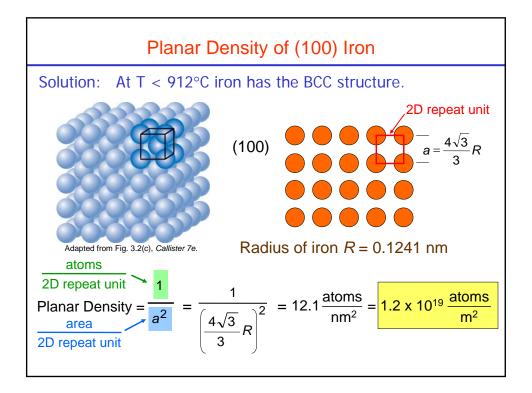
BCC: (a) reduced sphere (b) atomic packing of an BCC (110) plane

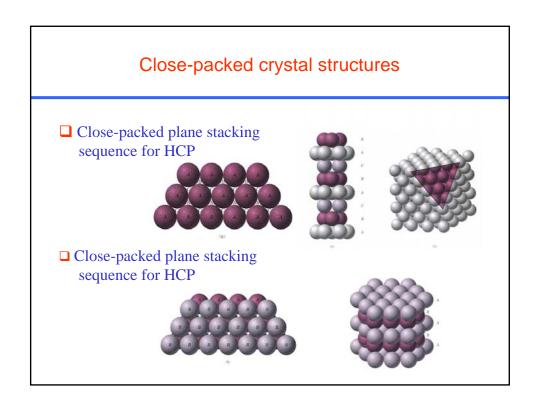

Atomic arrangements

- A family of planes contains all the planes that are crystallographically equivalent.
- In cubic system, planes with same indices, irrespective of order and sign, are equivalent
 - (111), (111), (111) ... belong to {111} family
 - (100), (100), (010), and (001) belong to {100} family
 - (123), (123), (312) in cubic crystals belong to {123} family
- ☐ In tetragonal, (001) (001) are not as same family as (100), (100)

Linear and planar atomic density

- ☐ Linear Density of Atoms = LD = #atoms
 Unit length of direction vector
- Atomic planar density: number of atoms centered on a plane/area of plane


Linear density (example)



Linear density of Al in [110] direction

$$a = 0.405 \text{ nm}$$

atoms
$$LD = \frac{2}{\sqrt{2}a} = \frac{3.5 \text{ nm}^{-1}}{2}$$
length

