Materials Science & Engineering

- Development and advancement of societies are tied to production and use of materials
 - From naturally occurring → processed → alteration of existing ones
 - Material selection: from a limited set → wide range for use from simple to complex designs
- Discovery of relationship between *structural* elements and properties is recent (60 yrs)
- All stepwise modern technological development driven by advent of suitable materials with the right combination of properties
 - Automobiles, aircraft, electronics
- Matls Science = study of relationships between structure and properties
- Matls Engineering = designing structure that will produce the desired properties

Structure - Properties

- Structure = arrangement of constituent elements of material
 - Sub-atomic electronic structure,
 - Atomic crystal structure
 - Microscopic observable under microscope
 - Macroscopic observable under unaided eyes
- *Properties* = response to various stimuli
 - Mechanical response to mechanical stress
 - Electrical response to electrical field (current)
 - Thermal response to heat
 - Chemical response to corrosion or other chemical degradation
 - Magnetic response to magnetic field
 - Optical response to light or electromagnetic radiation

Material Classification

- Metals
 - Elemental, Non-localized electrons, good electrical and thermal conductivity, lustrous, strong but deformable
- Ceramics
 - Compounds (oxides, nitrides, carbides) and elemental, heat resistant, hard but also brittle, poor electrical conductors
- Polymers
 - Organic, large molecules, low densities and flexible: plastics, rubbers
- Composites
 - Combining more than one material class, concrete, fiberglass, carbon fiber reinforced plastics, honeycomb
- Semi-conductors
 - Electrical properties intermediate between metals and ceramics; may be precisely controlled through doping with other elements
- Bio-materials
 - Materials selected for compatibility with human body
- Smart materials
 - May sense changes in the environment and respond to them: shape memory, piezoelectric, magnetorestrictive, electro/magneto-rheological

CHAPTER 2: BONDING AND PROPERTIES

ISSUES TO ADDRESS...

- What promotes bonding?
- What types of bonds are there?
- What properties are inferred from bonding?

Atomic Models

- Quantum mechanic model
 - BOHR Atomic model: electrons revolve around the nucleus in discrete orbitals (i.e. *trajectory of the electron is well defined*)
 - Established that *Energy is quantized*: Only specific amount of energies, described by *quantum numbers*, can be absorbed or lost so only specific trajectories are allowed (i.e upon absorbing or loosing energy, trajectory does not immediately change to account for change in energy.
- Wave-Mechanic Model
 - Electron does not move along a specific trajectory BUT
 - (1) Probability of electron being found at given location around the nucleus (A cloud of possible locations around nucleus.)
 - (2) *Energy is quantized* into *shells* and *sub-shells* size, shape, spatial orientation described by quantum numbers

BOHR ATOM

Nucleus: Z = # protons

= 1 for hydrogen to 94 for plutoniumN = # neutrons

Atomic mass $A \approx Z + N$

Quantum numbers

- *Principal* quantum n=1, 2, 3, 4, 5 etc. or K, L, M, N, O shell refers to *size*
- Second (*azimuthal*) quantum number: l = 0, 1, 2, 3...n-1 or corresponding to s, p, d, f ... **sub-shell** (orbital) refers to shape (# of electrons in each shell)
- Third (*magnetic*) quantum number: number of electrons states in each subshell (orbital), m = integers from -1 to +1
- Number of possible energy levels determined by Principal azimuthal and magnetic quantum numbers
- Fourth (*spin*) quantum number: 2 possible values $-\frac{1}{2}$ and $+\frac{1}{2}$
- Pauli exclusion principle No more than two electrons with opposing spins may be present in each orbitals
- **Electron states** = value of energies electrons are allowed to possess.

ELECTRON ENERGY STATES

Electrons...

- have discrete energy states
- tend to occupy lowest available energy state.

Electronic structure of Sodium = $1s^22s^22p^63s^1$; Germanium $1s^22s^22p^63s^23p^63d^{10}4s^24p^2$

STABLE ELECTRON CONFIGURATIONS

Stable electron configurations...

- have complete s and p subshells
- tend to be unreactive.

Ζ	Element	Configuration	
2	He	1s ²	Adapted from Table 2.2
10	Ne	1s ² 2s ² 2p ⁶	Callister 6e.
18	Ar	_{1s} 2 _{2s} 2 _{2p} 6 _{3s} 2 _{3p} 6	
36	Kr	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹	0 _{4s} 2 _{4p} 6

SURVEY OF ELEMENTS

• Most elements: Electron configuration not stable.

<u>Element</u>	<u>Atomic #</u>	Electron configuration	
Hydrogen	1	1s ¹	
Helium	2	1s ² (stable)	
Lithium	3	1s ² 2s ¹	
Beryllium	4	1s ² 2s ²	
Boron	5	1s ² 2s ² 2p ¹	Adapted from Table 2.2,
Carbon	6	1s ² 2s ² 2p ²	Callister 6e.
Neon	10	1s ² 2s ² 2p ⁶ (stable)	
Sodium	11	1s ² 2s ² 2p ⁶ 3s ¹	
Magnesium	12	1s ² 2s ² 2p ⁶ 3s ²	
Aluminum	13	1s ² 2s ² 2p ⁶ 3s ² 3p ¹	
Argon	18	<u>1s²2s²2p⁶3s²3p⁶</u> (<u>stable)</u>
Krypton	36	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 46	⁶ (stable)

• Why? Valence (outer) shell usually not filled completely.

THE PERIODIC TABLE

• Columns: Similar Valence Structure

Adapted from Fig. 2.6, *Callister 6e.*

Electropositive elements: Readily give up electrons to become + ions. Electronegative elements: Readily acquire electrons to become - ions.

ELECTRONEGATIVITY

- Ranges from 0.7 to 4.0,
- Large values: tendency to acquire electrons.

Smaller electronegativity

Larger electronegativity

Adapted from Fig. 2.7, *Callister 6e.* (Fig. 2.7 is adapted from Linus Pauling, *The Nature of the Chemical Bond*, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by Cornell University.

Chapter 1-27

IONIC BONDING

- Occurs between + and ions.
- Requires electron transfer.
- Large difference in electronegativity required.
- Example: NaCl

EXAMPLES: IONIC BONDING

• Predominant bonding in Ceramics

Give up electrons

Acquire electrons

Adapted from Fig. 2.7, *Callister 6e.* (Fig. 2.7 is adapted from Linus Pauling, *The Nature of the Chemical Bond*, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by Cornell University.

Chapter 1-29

COVALENT BONDING

- Requires shared electrons
- Example: CH4
 - C: has 4 valence e, needs 4 more
 - H: has 1 valence e, needs 1 more
 - Electronegativities are comparable.

Adapted from Fig. 2.10, Callister 6e.

EXAMPLES: COVALENT BONDING

Ho Ho																		
C(diamond)										F2								
н 2.1	ILA		SiC											44	VIA	VIA	-	Cl_2
Li 1.0	Be 1.5]										5 8 2.0	C 2.5	7 N 30	0 2.0	F 4.0	Ne	
Na 0.9	Mg 1.2	HIB	ſ₩B	٧B	VI B-	VIIB	_	_ <u>v</u> į		IB	IIB	Al 15	Si 1.8	15 P 2.1	16 \$ 2.5	CI 3.0	Ar -	
K 0.8	Ca 1.0	21 Sc 1.3	Ti 1.5	23 V L.6	Cr 1.6	25 Min 1.5	Fe 1.8	27 C5 18	Ni 1.8	29 Cu 1.9	Zn 1.8	Ga 1.6	Ge 1.8	As 2.0	34 Se 2.4	Br 2.8	Kr -	
Rb 0.8	Sr 1.0	90 Υ 1.2	40 2r 1.4	41 N5 1.6	42 Mo 1.8	43 Te 1.9	44 Ru 2.2	45 Rh 22	46 Pd 2.2	47 Ag 1.9	48 Cd 1.7	4 In 1.7	Sn 1.8	55 19	52 Te 2.1	І 2.5	Xe -	
Cs 0.7	Ba 0.9	57-71 La-Lu 1.1-1.2	72 Hf 1.3	73 Ta 1.5	74 W 1.7	75 Re 1.0	76 05 2.2	77 Ir 2.2	78 Pt 2.2	70 Au 2.4	80 Hg 1.9	81 11 1.8	\ Pb / 1.8	83 Bi 1.0	84 Po 2.0	At 2.2	Rn -	
Fr 0.7	Ra 0.9	89-102 Ac-No 11-17	Adapted from Fig. 2.7, <i>Callister 6e.</i> (Fig. 2.7 is adapted from Linus Pauling. <i>The Nature of the Chemical Bond.</i> 3rd edition. Copyright 1939 and															
1940, 3rd edition. Copyright 1960 by Cornell University.																		

- Molecules with nonmetals
- Molecules with metals and nonmetals
- Elemental solids (RHS of Periodic Table)
- Compound solids (about column IVA)

Chapter 1-2-11

METALLIC BONDING

• Arises from a sea of donated valence electrons (1, 2, or 3 from each atom).

Adapted from Fig. 2.11, Callister 6e.

• Primary bond for metals and their alloys

Polarization

Atom

Polarized atom

SECONDARY BONDING

Arises from interaction between dipoles

-ex: polymer

idary bonding

SUMMARY: BONDING

Туре	Bond Energy	Comments
Ionic	Large!	Nondirectional (ceramics)
Covalent	Variable large-Diamond small-Bismuth	Directional semiconductors, ceramics polymer chains)
Metallic	Variable large-Tungsten small-Mercury	Nondirectional (metals)
Secondary	smallest	Directional inter-chain (polymer) inter-molecular

PROPERTIES FROM BONDING: T_M

• Bond length, r

• Bond energy, Eo

• Melting Temperature, Tm

T_m is larger if E_0 is larger.

PROPERTIES FROM BONDING: E

• Elastic modulus, E cross sectional

PROPERTIES FROM BONDING: α

• Coefficient of thermal expansion, α

coeff. thermal expansion
$$\frac{\Delta L}{L_0} = \alpha (T_2 - T_1)$$

• α ~ symmetry at ro Energy r_o r_o larger α small er α

 α is larger if E₀ is smaller.

SUMMARY: PRIMARY BONDS

Ceramics

(Ionic & covalent bonding):

Large bond energy large Tm large E small α

Metals

(Metallic bonding):

Variable bond energy moderate T_m moderate E moderate α

Polymers (Covalent & Secondary):

Directional Properties Secondary bonding dominates small T small E large α

ANNOUNCEMENTS

Reading:

Core Problems:

Self-help Problems: