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ISSUES TO ADDRESS...
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• Mechanical Properties:

What special provisions/tests are made for ceramic
materials?

CHAPTER 12:  mechanical  properties of 
ceramics
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• Coordination # increases with
Issue:  How many anions can you

arrange around a cation?
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Adapted from Table 12.2, 
Callister 6e.

Adapted from Fig. 12.2, Callister 
6e.

Adapted from Fig. 12.3, Callister 
6e.

Adapted from Fig. 12.4, 
Callister 6e.

COORDINATION # AND IONIC RADII
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• Room T behavior is usually elastic, with brittle failure.
• 3-Point Bend Testing often used.

--tensile tests are difficult for brittle materials
-- cannot machine or grip specimens, 0.1% fracture strain, 
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Adapted from Fig. 12.29, 
Callister 6e.

Measuring elastic modulus
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• 3-point bend test to measure room T strength.
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• Flexural strength:
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• Typ. values:
Material      σfs (MPa)      E(GPa)
Si nitride
Si carbide
Al oxide
glass (soda)

700-1000
550-860
275-550

69

300
430
390
69

Adapted from Fig. 12.29, 
Callister 6e.

Data from Table 12.5, Callister 6e.

Measuring strength
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• Condition for crack propagation:

• Values of K for some standard loads & geometries:
σ

2a2a

σ

aa

  K = σ πa  K = 1.1σ πa

K ≥ Kc
Stress Intensity Factor:
--Depends on load &

geometry.

Fracture Toughness:
--Depends on the material,

temperature, environment, &
rate of loading.

 

units of K :
MPa m
or ksi in

Adapted from Fig. 8.8, 
Callister 6e.

Geometry, load, & material
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Graphite/ 
Ceramics/ 
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Metals/ 
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Fracture toughness of ceramics

Fracture strength of ceramics 
lower than predicted because of 
the presence of small and 
omnipresent flaws which are 
stress raisers (pores, 
microcracks, etc.)

2π aσ > KIC
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Fracture of ceramic materials

Considerable scatter exists in 
value of fracture strength σft.  It
depends on probability of 
existence of a crack with 
favorable orientation 
(unstable)

Compressive strength  σfc (more 
complex) is higher because no stress 
concentration exists. Also caused by 
flaws; but by linking of cracks parallel to 
stress axis – depends on average crack 
size, aave

crita
KY Ic

ft π
σ =

avea
KZ Ic

fc π
σ =

The larger the 
specimen, the 
weaker it is
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Silicate glasses

Sodium-silicate glass

Basic SiO4
- tetrahedron4

Cristoballite, (crystalline SiO2)

Non-bridging oxygen
atoms

NaO, CaO are network 
modifiers

Na+

Glass - an inorganic 
product of fusion that 
has cooled to a rigid 
condition without 
crystallization
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• Specific volume (1/ρ) vs Temperature (T): 

Glass 
(amorphous solid)

T

Specific volume

Liquid 
(disordered)Supercooled 

Liquid

Crystalline 
(i.e., ordered) solid

TmTg

• Glasses: 
--do not crystallize
--spec. vol. varies smoothly with T
--Glass transition temp, Tg

• Crystalline materials: 
--crystallize at melting temp, Tm
--have abrupt change in spec.

vol. at Tm

• Viscosity: 
--relates shear stress &

velocity gradient:
--has units of (Pa-s)
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glass dv

dy

Adapted from Fig. 13.5, Callister, 6e.

Glass properties
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Glass transition temperature, Tg

Glass

Supercooled liquid

Crystalline solid

Crystallization

Liquid

Temperature
Tm

S
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ci
fic
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e

Tg

Tg, temperature below 
which disordered 
structure of liquid is 
“frozen” in place giving 
rise to a supercooled
liquid

Tg is a measure of the 
rigidity of the glass 
network
• Network modifiers
decrease Tg
• Network formers
increase Tg
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• Viscosity decreases with T
• Impurities lower Tdeform
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Glass viscosity vs T and impurities
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• Clay is inexpensive
• Adding water to clay

--allows material to shear easily
along weak van der Waals bonds

--enables extrusion
--enables slip casting

• Structure of
Kaolinite Clay:

weak van 
der Waals 
bonding

charge 
neutral

charge 
neutral

Si 4+

Al 3+
-OH

O2-

Shear

Shear

Adapted from Fig. 12.14, Callister 6e.
(Fig. 12.14 is adapted from W.E. Hauth, 
"Crystal Chemistry of Ceramics", American 
Ceramic Society Bulletin, Vol. 30 (4), 1951, 
p. 140.) 

Features of a slip
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Glass-Ceramics

Melting and forming

Nucleation

Growth

Te
m

pe
ra

tu
re

 

Time
- Quartz, feldspar, dolomite, mixed with nucleating agents 
(TiO2, ZrO2) 
- Formed using glass forming techniques
- Ceraming – heated to temp high enough to form nuclei of 
crystals 1mm in size - Devitrification
- T raised for Growth

•LiO2-SiO2 system (30% 
LiO2 typical)
• Enhanced toughness
• Reduced thermal 
expansion coefficient
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Improving the strength of ceramics and 
Glasses

Grain size reduction of ceramics
Cracks may be stopped by grain boundaries

Make crack path tortuous with whiskers and fibers in ceramics
Induce phase transformation (zirconia-containing ceramics)

Phase transformation with volume change introduces compressive 
stresses ahead of advancing crack

Close surface defects of ceramics and glasses
• Use in compression
• Implant large atoms in the surface
• Tempering of glass or sandwich glass (Corelle)

- +
stress

Crystallization of glasses
presence of small crystals limit the size of flaws

• Flame polishing to remelt the surface and heals cracks
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Toughened ceramics
Original metastable
zirconia particle 
(tetragonal structure)

Compressive stress field 
around crack tip

Crack

Martensite trasnformation
in zirconia particle 
(monoclinic structure)

Example of Partially Stabilized (PSZ) ceramics
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• Room T mechanical response is elastic, but fracture
brittle, with negligible ductility

• Great susceptibility to flaws. Some may be toughened in 
many ways, including by grain size reduction, martensitic
transformation

• Glass have non-crystalline structure, and are very 
susceptible to cracking. However, they may be 
toughened with appropriate thermal treatments 

SUMMARY
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Reading:

Core Problems:

Self-help Problems:

0

ANNOUNCEMENTS
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