CHAPTER 18: Electrical properties

ISSUES TO ADDRESS...

- How are electrical conductance and resistance characterized?
- What are the physical phenomena that distinguish conductors, semiconductors, and insulators?
- For metals, how is conductivity affected by imperfections, T, and deformation?
- For semiconductors, how is conductivity affected by impurities (doping) and T?

View of an integrated circuit

Scanning electron microscope images of an IC:

- A dot map showing location of Si (a semiconductor):
 - --Si shows up as light regions.

- A dot map showing location of Al (a conductor):
 - --Al shows up as light regions.

Fig. (d) from Fig. 18.25, *Callister 6e*. (Fig. 18.25 is courtesy Nick Gonzales, National Semiconductor Corp., West Jordan, UT.)

Fig. (a), (b), (c) from Fig. 18.0, *Callister 6e*.

Electrical conduction

Resistivity, ρ and Conductivity, σ:
 --geometry-independent forms of Ohm's Law

E: electric field
$$\Delta V = \frac{1}{A} \rho$$
 resistivity (Ohm-m) intensity J: current density

• Resistance:
$$R = \frac{\rho L}{A} = \frac{L}{A\sigma}$$

conductivity

Conductivity: comparison

Room T values (Ohm-m)

METALS conductors

Silver 6.8 x 10⁷

Copper 6.0×10^7

Iron 1.0×10^{7}

CERAMICS

Soda-lime glass

Concrete

Aluminum oxide

10-9

<10 -13

SEMICONDUCTORS

Silicon 4×10^{-4}

Germanium 2×10^{0}

GaAs 10⁻⁶

POLYMERS

Polystyrene

Polyethylene

<10 -14

10 -15-10-17

insulators

semiconductors

Selected values from Tables 18.1, 18.2, and 18.3, Callister 6e.

Ex: Conductivity problem

• Question 18.2, p. 649, Callister 6e:

What is the minimum diameter (D) of the wire so that $\Delta V < 1.5V$?

$$\frac{100m}{R = \frac{L}{A\sigma}} = \frac{\Delta V}{1.5V}$$

$$\frac{\pi D^2}{4}$$

$$6.07 \times 10^7 \text{ (Ohm-m)}^{-1}$$

Solve to get D > 1.88 mm

Electron mobility

Under acceleration from external electric field

- Average distance traveled by electrons = mean free path,
- d. The drift velocity, $v_{\rm e}$ is the average speed of the electrons.

$$V_{\rm d} = d/t$$

The *mobility* is defined as

$$\mu_e = v_d/E$$
 (expressed in m²/V.s)

Conductivity expression

In general, for an electronic carrier

$$\sigma = n e \mu_e$$

- n, the number of carriers per unit volume, or density of carriers (#carriers/m³).
- e, the electron charge, (1.6x10⁻¹⁹ Coulombs)
- μ_e , the electron mobility, (m²/V.s)

Energy Band model

Inter-atomic spacing

Energy band structures

Conduction & electron transport

- Metals:
- Thermal energy puts
 many electrons into
 a higher energy state.
- Energy States:
- -- the cases below for metals show that nearby energy states are accessible by thermal fluctuations.

Fermi energy = energy corresponding to top most filled state at 0K

Energy states: insulators and semiconductors

Insulators:

--Higher energy states not accessible due to gap.

Energy Conduction band **GAP** filled valence band filled band

Semiconductors:

--Higher energy states separated by a smaller gap.

Metals: resistivity vs T, impurities

- Imperfections increase resistivity
 - -- grain boundaries
 - --dislocations
 - --impurity atoms
 - --vacancies

These act to scatter electrons so that they take a less direct path.

Adapted from Fig. 18.8, *Callister 6e.* (Fig. 18.8 adapted from J.O. Linde, *Ann. Physik* **5**, p. 219 (1932); and C.A. Wert and R.M. Thomson, *Physics of Solids*, 2nd ed., McGraw-Hill Book Company, New York, 1970.)

- Resistivity increases with:
 - --temperature
 - --wt% impurity
 - --%CW

$$\rho = \rho_{thermal}$$
+ $\rho_{thermal}$
+ ρ_{def}

Ex: Estimating conductivity

Question:

--Estimate the electrical conductivity of a Cu-Ni alloy that has a yield strength of 125MPa.

Adapted from Fig. 7.14(b), *Callister 6e*.

$$\rho = 30 \times 10^{-8} \text{ Ohm} - \text{m}$$

Adapted from Fig. 18.9, *Callister 6e*.

$$\sigma = \frac{1}{\rho} = 3.3 \text{x} 10^6 \text{ (Ohm } -\text{m)}^{-1}$$

Energies

Electrical energy

Voltage gradient or electric field 1.25x10⁶ volts/cm ~ 2.5 eV

Thermal energy

Average thermal energy = kT At RT (~300 K) = 0.86 x 300 = 0.026 eV At 2000 C, kT = measily 0.2 eV

1millions Volts!

Light energy

Visible light photon energy quanta whooping 1.7 to 3.1 eV!

Shining light of a given wavelength on a crystal transfer more electrons across the gap than through thermal excitation or electric field!!!.

Obviously Light carries lots of energy!!!!

Conduction in terms of electron and hole migration

Concept of electrons and holes:

Electrical Conductivity given by:

 # holes/m³

Callister 6e.

mobility

Adapted from Fig. 18.10,

electrons/m electron mobility

Intrinsic vs extrinsic conduction

• Intrinsic:

```
# electrons = # holes (n = p)
--case for pure Si
```

- Extrinsic:
 - --n ≠ p
 - --occurs when impurities are added with a different # valence electrons than the host (e.g., Si atoms)
- N-type Extrinsic: (n >> p)
 - P-type Extrinsic: (p >> n)

Examples of elemental and compound semiconductors

1940, 3rd edition. Copyright 1960 by Cornell University.

GaP - Group III-V

Pure semiconductors: conductivity vs T

- Data for Pure Silicon:
 - --σ increases with T
 - --opposite to metals

electrical conductivity, o

Adapted from Fig. 19.15, *Callister 5e.* (Fig. 19.15 adapted from G.L. Pearson and J. Bardeen, *Phys. Rev.* **75**, p. 865, 1949.)

doped semicon: conductivity vs T

- Data for Doped Silicon:
 - --σ increases doping
 - --reason: imperfection sites lower the activation energy to produce mobile electrons.

Adapted from Fig. 19.15, *Callister 5e.* (Fig. 19.15 adapted from G.L. Pearson and J. Bardeen, *Phys. Rev.* **75**, p. 865, 1949.)

- Comparison: intrinsic vs extrinsic conduction...
 - --extrinsic doping level: 10²¹/m³ of a n-type donor impurity (such as P).
 - --for T < 100K: "freeze-out" thermal energy insufficient to excite electrons.
 - --for 150K < T < 450K: "extrinsic"
 - --for T >> 450K: "intrinsic"

P-N rectifying junction

- Allows flow of electrons in one direction only (e.g., useful to convert alternating current to direct current.
- Processing: diffuse P into one side of a B-doped crystal.
- Results:
- --No applied potential: no net current flow.
- Forward bias: carrier flow through p-type and n-type regions; holes and electrons recombine at p-n junction; current flows.
- --Reverse bias: carrier flow away from p-n junction; carrier conc. greatly reduced at junction; little current flow.

Extrinsic – Intrinsic temperature behavior

Silicon solar cell, $E_g = 1.1 \text{ eV}$

Transistors

Bipolar junction transistor

SUMMARY

- Electrical conductivity and resistivity are:
 - --material parameters.
 - --geometry independent.
- Electrical resistance is:
 - --a geometry and material dependent parameter.
- Conductors, semiconductors, and insulators...
 - --different in whether there are accessible energy states for conductance electrons.
- For metals, conductivity is increased by
 - --reducing deformation
 - --reducing imperfections
 - --decreasing temperature.
- For pure semiconductors, conductivity is increased by
 - --increasing temperature
 - --doping (e.g., adding B to Si (p-type) or P to Si (n-type).

ANNOUNCEMENTS

Reading: Chapter 18 1-13

Core Problems: Chapter 18: 7, 12, 29,

Self-help Problems: Design Example 18.1