CHAPTER 2: BONDING AND PROPERTIES

ISSUES TO ADDRESS...

- What promotes bonding?
- What types of bonds are there?
- What properties are inferred from bonding?

Fundamental concepts Nucleus

Proton and electron, charged
 1.60 x10⁻¹⁹ C

Mass of protons and neutrons

• 1.67 x 10⁻²⁷ kg

- Atomic number: the number of protons

– Atomic mass =protons+neutrons

- Isotope
- Atomic mass unit(amu): 1amu=1/12 C
- One mole = 6.023x10²³atoms(Avogadro's)

BOHR ATOM

Nucleus: Z = # protons

= 1 for hydrogen to 94 for plutonium

N = # neutrons

Atomic mass $A \approx Z + N$

ELECTRON ENERGY STATES

- Electrons... have discrete energy states
 - tend to occupy lowest available energy state.

n	1	m _l Or	bital # of orbitals
	1	0 0	1s
	2	0 0	2s
		1 1	$2p_1$
		0	$2p_0$
		- [$1 \qquad 2p_{-1}$
	3	0 0	3s
		1 1	$3p_1$
		0	$3p_0$
		2 2	$3d_2$
		1	$3d_1^2$
		0	
		- [
		-2	$3d_{-2}$

Relative energies of the electrons for various shells and subshells

5p 5s 4p 4s 3p 3s		·		4d 3d
2p 2s	□ □ s	p	d	

1s					
2s	2p				
3s	3p	3d			
4s	4p	4d	4f		
5s	5p	5d	5f	5g	
6s	6р	6d	6f	6g	

Chapter 2-

STABLE ELECTRON CONFIGURATIONS

Stable electron configurations...

- have complete s and p subshells
- tend to be unreactive.

Z	Element	Config	uration
---	---------	--------	---------

2	He	1s ²	Adapted from Table 2.2,
10	Ne	1s ² 2s ² 2p ⁶	Callister 6e.
18	Ar	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶	
36	Kr	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3	d10 _{4s} 2 _{4p} 6

SURVEY OF ELEMENTS

• Most elements: Electron configuration not stable.

<u>Element</u>	Atomic #	Electron configuration
Hydrogen	1	1s ¹
Helium	2	1s ² (stable)
Lithium	3	1s ² 2s ¹
Beryllium	4	1s ² 2s ²
Boron	5	1s ² 2s ² 2p ¹ Adapted from Table 2.2,
Carbon	6	1s ² 2s ² 2p ² Callister 6e.
		•••
Neon	10	1s ² 2s ² 2p ⁶ (stable)
Sodium	11	1s ² 2s ² 2p ⁶ 3s ¹
Magnesium	12	1s ² 2s ² 2p ⁶ 3s ²
Aluminum	13	1s ² 2s ² 2p ⁶ 3s ² 3p ¹
		•••
Argon	18	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ (stable)
		•••
Krypton	36	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4 ⁶ (stable)

• Why? Valence (outer) shell usually not filled completely.

THE PERIODIC TABLE

Electropositive elements: Readily give up electrons to become + ions. Electronegative elements: Readily acquire electrons to become - ions.

ELECTRONEGATIVITY

- Ranges from 0.7 to 4.0,
- Large values: tendency to acquire electrons.

Larger electronegativity

Adapted from Fig. 2.7, *Callister 6e.* (Fig. 2.7 is adapted from Linus Pauling, *The Nature of the Chemical Bond*, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by Cornell University.

Group	Ia	IIa	IIIa	IVa	Va	VIa	VIIa	0
Elements	Na	Mg	Al	Si	Р	S	Cl	Ar
Atomic #	11	12	13	14	15	16	17	18
Outer shell e-	$3s^1$	$3s^2$	$3s^23p^1$	3s ² 3p ²	$3s^23p^3$	3s ² 3p ⁴	3s ² 3p ⁵	3s ² 3p ⁶
Crystal structure	bcc	hcp	fcc	diamond		complex		fcc
Electrical resistivity at RT (10 ⁻⁴ ohmm)	5.2	4.45 metal	2.65	2.5x10 ⁵ semicon	1x10 ¹⁷ insulator	2x10 ²³ insulator	 gas	 gas
Bond strength (in eV)	1.13	1.53	3.34	4.62	?	2.86	?	0.08
Melting point °C	98	650	660	1400	44	120	-100	-189
Boiling point °C	890	1100	2500	2400	280	440	-35	-186

IONIC BONDING

- Occurs between + and ions.
- Requires electron transfer.
- Large difference in electronegativity required.
- Example: NaCl

EXAMPLES: IONIC BONDING

Predominant bonding in Ceramics

Give up electrons

Acquire electrons

Adapted from Fig. 2.7, *Callister 6e.* (Fig. 2.7 is adapted from Linus Pauling, *The Nature of the Chemical Bond*, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by Cornell University.

COVALENT BONDING

Requires shared electrons

• Example: CH4

C: has 4 valence e, needs 4 more

H: has 1 valence e, needs 1 more

Electronegativities are comparable.

EXAMPLES: COVALENT BONDING

- Molecules with nonmetals
- Molecules with metals and nonmetals
- Elemental solids (RHS of Periodic Table)
- Compound solids (about column IVA)

METALLIC BONDING

 Arises from a sea of donated valence electrons (1, 2, or 3 from each atom).

Adapted from Fig. 2.11, Callister 6e.

Primary bond for metals and their alloys

SECONDARY BONDING

Arises from interaction between dipoles

Fluctuating dipoles

Permanent dipoles-molecule induced

SUMMARY: BONDING

Type Bond Energy Comments

Ionic Large! Nondirectional (ceramics)

Variable Directional
Covalent large-Diamond semiconductors, ceramics
small-Bismuth polymer chains)

Variable
Metallic large-Tungsten Nondirectional (metals)
small-Mercury

Directional
Secondary smallest inter-chain (polymer)
inter-molecular

Force between atoms

Bonding forces and energies

- $-F_n=F_A+F_R$
- E₀ -- bonding energy
- large bonding E, high melting point
- stiffness -- shapeof f-r curve
- thermal expansion--E-r curve

HW assignment change:

Please do 2.14 instead of 2.13

PROPERTIES FROM BONDING: T_M

Bond length, r

Bond energy, E₀

Melting Temperature, Tm

T_m is larger if E₀ is larger.

PROPERTIES FROM BONDING: E

• E ~ curvature at r_o Energy

PROPERTIES FROM BONDING:

Coefficient of thermal expansion,

coeff. thermal expansion

$$\frac{\square L}{L_0} = \square (T_2 - T_1)$$

• □ ~ symmetry at r₀

☐ is larger if E₀ is smaller.

SUMMARY: PRIMARY BONDS

Ceramics

Large bond energy

(lonic & covalent bonding):

large T_m

small [

Metals

(Metallic bonding):

Variable bond energy

moderate T_m

moderate E moderate □

Polymers

(Covalent & Secondary):

Directional Properties

Secondary bonding dominates

small T

small E

large [