CHAPTER 5:
DIFFUSION IN SOLIDS

ISSUES TO ADDRESS...

 How does diffusion occur?
e Why is it an important part of processing?

* How can the rate of diffusion be predicted for
some simple cases?

* How does diffusion depend on structure
and temperature?
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DIFFUSION DEMO

of the tube.

Glass tube filled with water.
At time t = 0, add some drops of ink to one end
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Measure the diffusion distance, x, over some time.
Compare the results with theory.

AX (mm)

time (s)
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DIFFUSION: THE PHENOMENA (1)

e |Interdiffusion: In an alloy, atoms tend to migrate
from regions of large concentration.

Initially After some time
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DIFFUSION: THE PHENOMENA (2)

e Self-diffusion: In an elemental solid, atoms
also migrate.

Label some atoms After some time
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DIFFUSION MECHANISMS

Substitutional Diffusion:

o applies to substitutional impurities
e atoms exchange with vacancies
* rate depends on:
--number of vacancies
--activation energy to exchange.

increasing elapsed time
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DIFFUSION SIMULATION

e Simulation of
interdiffusion
across an interface:

e Rate of substitutional

diffusion depends on:
--vacancy concentration
--frequency of jumping.

(Courtesy P.M. Anderson)
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INTERSTITIAL SIMULATION

* Applies to interstitial
impurities.

 More rapid than
vacancy diffusion.

e Simulation:

--shows the jumping of a
smaller atom (gray) from
one interstitial site to
another in a BCC
structure. The
interstitial sites
considered here are
at midpoints along the (Courtesy P.M. Anderson)

unit cell edges.
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PROCESSING USING DIFFUSION (1)

e Case Hardening:

- Fig. 5.0,
--!lefuse carbqn atoms Colioter e
into the host iron atoms (Fig. 5.0 is

courtesy of
at the surface. gmgﬁ
--Example of interstitial Midland-

Ross.)

diffusion is a case
hardened gear.

* Result: The "Case" is
--hard to deform: C atoms
"lock" planes from shearing.
--hard to crack: C atoms put
the surface in compression.
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PROCESSING USING DIFFUSION (2)

* Doping Silicon with P for n-type semiconductors:
* Process:

1. Deposit P rich
layers on surface.

PR RN

silicon

S IR EE vy
: % 4 Fig. 18.0,
S+ 8. % A Callister 6e.

2. Heat it. l

3. Result: Doped
semiconductor
regions.
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' Qlightv ‘re‘gi‘oin’s’: ‘Al atoms
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MODELING DIFFUSION: FLUX

e Flux:

1dM kg |atoms
=————=|——|or
A dt

m?s m2s
—>
* Directional Quantity x-direction
y
Ay
—H b Jy ~—Unitarea A
J2 S x thrpugh
Z which
e Flux can be measured for: atoms
--vacancies move.
--host (A) atoms

--impurity (B) atoms
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CONCENTRATION PROFILES & FLUX

 Concentration Profile, C(x): [kg/m3]

A Ni flux A
(_

Concentration Adapted
of Ni [kgim3]  form

Callister 6e.

—

Position, x
 Fick's First Law:
Diffusion coefficient [mzls]

flux in x-dir. /
[kg/mz-s]\)J =-D dC concentration
X adx gradient [kg/m4]

 The steeper the concentration profile,
the greater the flux!
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STEADY STATE DIFFUSION

e Steady State: the concentration profile doesn't
change with time.

Steady State: J

@
8 —Jx(right) [Jx(left) = Ix(right
Ol—»x

in the box doesn’t change w/time.

, , dC
* Apply Fick's First Law: Jx = —Da

¢ " J ) f —J )r thell ( ) ( )
x)left X ight ’ [l:: CI::

* Result: the slope, dC/dx, must be constant
(i.e., slope doesn't vary with position)!
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EX: STEADY STATE DIFFUSION

e Steel plate at

'{‘:'"
700C with o e ““9— (ﬂ
geometry O S
shown: Carbon : \I\ci(fbtvady State =
rich ®g L estraightline! i iieq
gas e : : : Carbon fsrzm Fig.
® | | o d ef‘ C . e nt Callister 6e.
® | I gas
0 xl1 XIZ D=3x10"11m2/s
* Q: How much %@ %»,,)
carbon transfers
from the rich to J-pC2 " Ci_54.100°HK9
the deficient side? Xo — X4 m?2s
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NON STEADY STATE DIFFUSION

e Concentration profile, {O g’é) :
C(x), changes J(left) — el Tolo N J(right)
w/ time. OO0
Q0 0.0 \Concentration,
C. in the box
e To conserve matter:  Fick's First Law:
J(right) - J(left) . _dC --0%% o
dx dt dx
\ dJ dC dJ dZC (if D does
O F - — F-D not vary
dx dt dx dx2 Withx)
\equate——//
e Governing Eqn.:
g cq d_C _DdZC

dt dx 2 Chapter 5- 14




EX: NON STEADY STATE DIFFUSION

* Copper diffuses into a bar of aluminum.

pre-existing conc., Co of copper atoms
4 C(x,1)
Cs'
{513 s
to t1 Callister 6e.
CA
° >

position, x >
* General solution: _ X
C(x,t) - C, =]_erf( )
C;-Co 2+/Dt

"error function”
Values calibrated in Table 5.1, Callister 6e.
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PROCESSING QUESTION

* Copper diffuses into a bar of aluminum.

* 10 hours at 600C gives desired C(x).

* How many hours would it take to get the same C(x)
if we processed at 500C?

Key point 1: C(x,t500c) = C(x,t600C).
Key point 2: Both cases have the same Co and Cs.

e Result: Dt should be held constant.

el _ —erf( x)—» (Dt)500°C =(Dt)600°C
Cs~ Co 20t
5.3x10"19m?/s_ 10hrs
% Note: values
* Answer: t500 - D = 110hr of D are
4. 8x1 0-14m2/5/" 500 provided here.
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DIFFUSION DEMO: ANALYSIS

 The experiment: we recorded combinations of
t and x that kept C constant.

to |
O — |
t2 Ij:ﬁ | |
ts :ﬁ; - |
Xo X4 Xo X3
Clxi>ti) =Co _ 4 _ g X
Cs-Co 2+/Dt;

e Diffusion depth given by:
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DATA FROM DIFFUSION DEMO
In[x(mm)]
4:
3.5
3
2.5
25— Linear regression fit to data: O
1.53—In[x(mm)] = 0.58 In[t(min)] + 2.2
13—R? = 0.999
0.5
0 e
0 05 1 156 2 25 3
In[t(min)]

e Experimental result: x ~ t0-98
e Theory predicts x ~ t0.50
 Reasonable agreement!
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DIFFUSION AND TEMPERATURE

e Diffusivity increases with T.
pre-exponential [mzls] (see Table 5.2, Callister 6¢e)

/ activation energy
[ Q%Y [/mol),[eVimol]
diffusivity D= D exp k_ A) (see Table 5.2, Callister 6e)
RT

. x tant [8.31J/mol-K
. Experimental Data; 92 constant( mol-K]

10-8T!
D (m?2/s)’

D has exp. dependenceon T
Recall: Vacancy does also!

Dinterstitial >> Dsubstitutional
Cinoa-Fe Cuin Cu
Cin Y-Fe Al in Al

Feiny-Fe
Znin Cu

10-141

-20 . -
10 05 1.0 1.5 2.0 1000K/T

Adapted from Fig. 5.7, Callister 6e. (Date for Fig. 5.7 taken from
E.A. Brandes and G.B. Brook (Ed.) Smithells Metals Reference Chapter 5- 19

Book, 7th ed., Butterworth-Heinemann, Oxford, 1992.)




SUMMARY:

STRUCTURE & DIFFUSION
Diffusion FASTER for... Diffusion SLOWER for...

e open crystal structures  close-packed structures

* lower melting T materials * higher melting T materials

 materials w/secondary  materials w/covalent
bonding bonding

 smaller diffusing atoms  larger diffusing atoms

 cations e anions

* lower density materials * higher density materials
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ANNOUNCEMENTS
Reading:

Core Problems:

Self-help Problems:
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