CHAPTER 8: MECHANICAL FAILURE ISSUES TO ADDRESS...

- How do flaws in a material initiate failure?
- How is fracture resistance quantified; how do different material classes compare?
- How do we estimate the stress to fracture?
- How do loading rate, loading history, and temperature affect the failure stress?

Ship-cyclic loading from waves.

Adapted from Fig. 8.0, *Callister 6e.* (Fig. 8.0 is by Neil Boenzi, *The New York Times.*)

Computer chip-cyclic thermal loading.

Adapted from Fig. 18.11W(b), *Callister 6e.* (Fig. 18.11W(b) is courtesy of National Semiconductor Corporation.)

Hip implant-cyclic loading from walking.

Adapted from Fig. 17.19(b), *Callister 6e.*

DUCTILE VS BRITTLE FAILURE

EX: FAILURE OF A PIPE

• Ductile failure: --one piece --large deformation

• Brittle failure: --many pieces --small deformation

Figures from V.J. Colangelo and F.A. Heiser, *Analysis of Metallurgical Failures* (2nd ed.), Fig. 4.1(a) and (b), p. 66 John Wiley and Sons, Inc., 1987. Used with permission.

MODERATELY DUCTILE FAILURE

Wiley and Sons, Inc., 1987. (Orig. source: P. Thornton, J. Mater. Sci., Vol. 6, 1971, pp. 347-56.)

sites.

Chapter 8-

permission.

BRITTLE FRACTURE SURFACES

• Intergranular (between grains) 304 S. Steel

(metal)

Reprinted w/permission from "Metals Handbook", 9th ed, Fig. 633, p. 650. Copyright 1985, ASM International, Materials Park, OH. (Micrograph by J.R. Keiser and A.R. Olsen, Oak Ridge National Lab.)

Polypropylene (polymer)

Reprinted w/ permission from R.W. Hertzberg, "Deformation and Fracture Mechanics of Engineering Materials", (4th ed.) Fig. 7.35(d), p. 303, John Wiley and Sons, Inc., 1996.

(Orig. source: K. Friedrick, Fracture 1977, Vol. 3, ICF4, Waterloo, CA, 1977, p. 1119.)

• Intragranular (within grains) 316 S. Steel

(metal)

Reprinted w/ permission from "Metals Handbook", 9th ed, Fig. 650, p. 357. Copyright 1985, ASM International, Materials Park, OH. (Micrograph by D.R. Diercks. **Argonne National Lab.)**

Al Oxide (ceramic)

Reprinted w/ permission from "Failure Analysis of Brittle Materials", p. 78. Copyright 1990, The **American Ceramic** Society, Westerville, OH. (Micrograph by R.M. Gruver and H. Kirchner.)

IDEAL VS REAL MATERIALS

• Stress-strain behavior (Room T):

- DaVinci (500 yrs ago!) observed...
 --the longer the wire, the smaller the load to fail it.
- Reasons:
 - --flaws cause premature failure.
 - --Larger samples are more flawed!

Chapter 8

FLAWS ARE STRESS CONCENTRATORS!

- Elliptical hole in a plate: a plate: $\uparrow \sigma_0 \uparrow$ $\uparrow \sigma_{o} \uparrow$ $\uparrow \sigma_{o} \uparrow$ $\uparrow \sigma_{o} \uparrow$ $\uparrow \sigma_{o} \uparrow \circ$ $\uparrow \sigma_{o} (2\sqrt{\frac{a}{\rho_t}}+1)$
- Stress conc. factor: $K_t = \sigma_{max} / \sigma_o$
- Large K_t promotes failure:

$$\begin{array}{c} \mathsf{NOT}^{\uparrow} \uparrow \\ \mathsf{SO} & \bigcirc \\ \mathsf{BAD} \downarrow \downarrow \end{pmatrix} \mathsf{K}_{\mathsf{t}}=\mathsf{3} \qquad \begin{array}{c} \uparrow \uparrow \\ \mathsf{BAD!} \hookrightarrow \mathsf{K}_{\mathsf{t}}>\mathsf{3} \\ \downarrow \downarrow \end{pmatrix}$$

ENGINEERING FRACTURE DESIGN

• Avoid sharp corners!

WHEN DOES A CRACK PROPAGATE?

ρt at a crack
 tip is very
 small!

- Result: crack tip stress is very large.
- Crack propagates when: the tip stress is large enough to make:

 $K \geq K_c$

GEOMETRY, LOAD, & MATERIAL

Condition for crack propagation:

• Values of K for some standard loads & geometries:

DESIGN AGAINST CRACK GROWTH

- Crack growth condition: $K \ge K_c$
- Largest, most stressed cracks grow first!

Yσ√л

--Result 1: Max flaw size dictates design stress.

--Result 2: Design stress dictates max. flaw size.

DESIGN EX: AIRCRAFT WING

- Material has $K_c = 26 \text{ MPa-m}^{0.5}$
- Two designs to consider...
 - Design A --largest flaw is 9 mm --failure stress = 112 MPa
- Use... $\sigma_c = \frac{K_c}{Y\sqrt{\pi a_{max}}}$

Design B

- --use same material
- --largest flaw is 4 mm
- --failure stress = ?
- Key point: Y and K_c are the same in both designs.
 --Result:

• Reducing flaw size pays off!

$$4 \text{ mm}$$

 4 mm
 8 Max
 $B \text{ Answer: } (\sigma_c)_B = 168 \text{ MPa}$
 6 Chapter 8-13

LOADING RATE

- Increased loading rate...
 --increases σ_y and TS
 --decreases %EL
- Why? An increased rate gives less time for disl. to move past obstacles.
- Impact loading:

 -severe testing case
 -more brittle
 -smaller toughness

Adapted from Fig. 8.11(a) and (b), *Callister 6e.* (Fig. 8.11(b) is adapted from H.W. Hayden, W.G. Moffatt, and J. Wulff, *The Structure and Properties of Materials*, Vol. III, *Mechanical Behavior*, John Wiley and Sons, Inc. (1965) p. 13.)

TEMPERATURE

- Increasing temperature... --increases %EL and K_c
- Ductile-to-brittle transition temperature (DBTT)...

DESIGN STRATEGY: STAY ABOVE THE DBTT!

• Pre-WWII: The Titanic

Reprinted w/ permission from R.W. Hertzberg, "Deformation and Fracture Mechanics of Engineering Materials", (4th ed.) Fig. 7.1(a), p. 262, John Wiley and Sons, Inc., 1996. (Orig. source: Dr. Robert D. Ballard, *The Discovery of the Titanic*.) • WWII: Liberty ships

Reprinted w/ permission from R.W. Hertzberg, "Deformation and Fracture Mechanics of Engineering Materials", (4th ed.) Fig. 7.1(b), p. 262, John Wiley and Sons, Inc., 1996. (Orig. source: Earl R. Parker, "Behavior of Engineering Structures", Nat. Acad. Sci., Nat. Res. Council, John Wiley and Sons, Inc., NY, 1957.)

• Problem: Used a type of steel with a DBTT ~ Room temp.

FATIGUE

• Fatigue = failure under cyclic stress.

FATIGUE DESIGN PARAMETERS

FATIGUE MECHANISM

Crack grows incrementally

increase in crack length per loading cycle

- Failed rotating shaft

 -crack grew even though
 K_{max} < K_c
 - --crack grows faster if
 - $\Delta \sigma$ increases
 - crack gets longer
 - loading freq. increases.

crack origin

Adapted from Fig. 8.19, *Callister 6e.* (Fig. 8.19 is from D.J. Wulpi, *Understanding How Components Fail*, American Society for Metals, Materials Park, OH, 1985.)

IMPROVING FATIGUE LIFE

1. Impose a compressive surface stress (to suppress surface cracks from growing)

N = Cycles to failure

2. Remove stress concentrators.

Adapted from Fig. 8.23, *Callister 6e.*

CREEP

- Occurs at elevated temperature, $T > 0.4 T_{melt}$
- Deformation changes with time.

SECONDARY CREEP

- Most of component life spent here.
- Strain rate is constant at a given T, σ --strain hardening is balanced by recovery

CREEP FAILURE

• Failure: along grain boundaries.

From V.J. Colangelo and F.A. Heiser, *Analysis of Metallurgical Failures* (2nd ed.), Fig. 4.32, p. 87, John Wiley and Sons, Inc., 1987. (Orig. source: Pergamon Press, Inc.)

Time to rupture, tr
 T(20 + log tr) = L
 temperature function of applied stress time to failure (rupture)

• Estimate rupture time S 590 Iron, T = 800C, σ = 20 ksi

SUMMARY

- Engineering materials don't reach theoretical strength.
- Flaws produce stress concentrations that cause premature failure.
- Sharp corners produce large stress concentrations and premature failure.
- Failure type depends on T and stress:
 - -for noncyclic σ and T < 0.4Tm, failure stress decreases with:
 - increased maximum flaw size,
 - decreased T,
 - increased rate of loading.
 - **-for cyclic** σ:

cycles to fail decreases as $\Delta\sigma$ increases.

-for higher T (T > $0.4T_m$):

time to fail decreases as σ or T increases.

ANNOUNCEMENTS

Reading:

Core Problems:

Self-help Problems:

