MSE 170: Introduction to Materials Science & Engineering

Course Objective...

Introduce fundamental concepts in MSE

You will learn about:

- material structure
- how structure dictates properties
- how processing can change structure

This course will help you to:

- use materials properly
- realize new design opportunities with materials

What does Materials Science and Engineering do?

LECTURES

Lecturer: Fumio S. Ohuchi

Professor of Materials Science and Engineering, and Physics

TA: Isaiah N. Gatuna

Third year PhD graduate student gatunan@u.washington.edu

Technical Assistant: Bob Smith

ras7@u.washington.edu

Time/Location: Mue 153, M/W/Th

COURSE MATERIAL

Required text:

 Materials Science and Engineering: An Introduction W.D. Callister, Jr., 6th edition, John Wiley and Sons, Inc. (2003). Both book and accompanying CD-ROM are needed.

Optional Material:

GRADING

Midterm 25%

Tentatively scheduled for: July 17 (Thursday)

Material covered: TBA

Final 35%

Homework/Labs 15%

Project 25%

CHAPTER 1: MATERIALS SCIENCE & ENGINEERING

Materials are...

engineered structures...not blackboxes!

Structure...has many dimensions...

Structural feature	Dimension (m)		
atomic bonding	< 10 -10		
missing/extra atoms	10-10		
crystals (ordered atoms)	10 ⁻⁸ -10 ⁻¹		
second phase particles	10 ⁻⁸ -10 ⁻⁴		
crystal texturing	> 10 ⁻⁶		

Nanoscience and Nanotechnology

The Materials Selection Process

Pick Application → Determine required Properties
 Properties: mechanical, electrical, thermal,

Properties → Identify candidate Material(s)
 Material: structure, composition.

magnetic, optical, deteriorative.

3. Material → Identify required Processing Processing: changes structure and overall shape ex: casting, sintering, vapor deposition, doping forming, joining, annealing.

ELECTRICAL

Electrical Resistivity of Copper:

Adapted from Fig. 18.8, *Callister 6e.* (Fig. 18.8 adapted from: J.O. Linde, *Ann Physik* 5, 219 (1932); and C.A. Wert and R.M. Thomson, *Physics of Solids*, 2nd edition, McGraw-Hill Company, New York, 1970.)

- Adding "impurity" atoms to Cu increases resistivity.
- Deforming Cu increases resistivity.

THERMAL

- Space Shuttle Tiles:
 - --Silica fiber insulation offers low heat conduction.

Fig. 19.0, *Callister 6e.* (Courtesy of Lockheed Missiles and Space Company, Inc.)

Adapted from
Fig. 19.4W, Callister
6e. (Courtesy of
Lockheed Aerospace
Ceramics Systems,
Sunnyvale, CA)
(Note: "W" denotes
fig. is on CD-ROM.)

Fhermal Conductivity

Thermal Conductivity
 of Copper:

 --It decreases when

Adapted from Fig. 19.4, *Callister 6e.* (Fig. 19.4 is adapted from *Metals Handbook: Properties and Selection: Nonferrous alloys and Pure Metals*, Vol. 2, 9th ed., H. Baker, (Managing Editor), American Society for Metals, 1979, p. 315.)

OPTICAL

Transmittance:

--Aluminum oxide may be transparent, translucent, or opaque depending on the material structure.

MAGNETIC

- Magnetic Storage:
 - --Recording medium is magnetized by recording head.

Fig. 20.18, *Callister 6e.* (Fig. 20.18 is from J.U. Lemke, *MRS Bulletin*, Vol. XV, No. 3, p. 31, 1990.)

Magnetic Permeability
 vs. Composition:
 --Adding 3 atomic % Simakes Fe a better

recording medium!

Adapted from C.R. Barrett, W.D. Nix, and A.S. Tetelman, *The Principles of Engineering Materials*, Fig. 1-7(a), p. 9, 1973. Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New Jersey.

Structure, Processing, & Properties

 Properties depend on structure ex: hardness vs structure of steel

 Processing can change structure ex: structure vs cooling rate of steel

DETERIORATIVE

Stress & Saltwater...--causes cracks!

Adapted from Fig. 17.0, *Callister 6e.* (Fig. 17.0 is from *Marine Corrosion, Causes, and Prevention*, John Wiley and Sons, Inc., 1975.)

 Heat treatment: slows crack speed in salt water!

Adapted from Fig. 11.20(b), R.W. Hertzberg, "Deformation and Fracture Mechanics of Engineering Materials" (4th ed.), p. 505, John Wiley and Sons, 1996. (Original source: Markus O. Speidel, Brown Boveri Co.)

--material:

7150-T651 Al "alloy" (Zn,Cu,Mg,Zr)

Adapted from Fig. 11.24,

Callister 6e. (Fig. 11.24 provided courtesy of G.H. Narayanan and A.G. Miller, Boeing Commercial Airplane Company.)

Chapter 1-8

Roadmap for Semiconductors

YEAR	2008	2011	2014
TECHNOLOGY NODE	70 nm	50 nm	35 nm
DRAM			
Half pitch (nm)	70	50	35
Contacts (nm)	100	70	50
Overlay (nm, mean + 3 sigma)	25	20	15
CD control (nm, 3 sigma, post-etch)	7	5	4
MPU			
Half pitch	80	55	40
Gate length (nm, in resist)	45	30	20
Gate length (nm, post-etch)	45	30	20
Contacts (nm, in resist)	80	55	40
Gate CD control (nm, 3 sigma, post-etch)	4	3	2
ASIC (SoC)			
Half pitch	80	55	40
Gate length (nm, in resist)	70	50	35
Gate length (nm, post-etch)	70	50	35
Contacts (nm, in resist)	80	55	40
Gate CD control (nm, 3 sigma, post-etch)	7	5	4

Solutions being pursued

No known solutions

The Challenge?

SUMMARY

Course Goals:

- Use the right material for the job.
- Understand the relation between properties, structure, and processing.
- Recognize new design opportunities offered by materials selection.