CHAPTER 6: MECHANICAL PROPERTIES

ISSUES TO ADDRESS...

- Stress and strain: What are they and why are they used instead of load and deformation?
- Elastic behavior: When loads are small, how much deformation occurs? What materials deform least?
- Plastic behavior: At what point do dislocations cause permanent deformation? What materials are most resistant to permanent deformation?
- Toughness and ductility: What are they and how do we measure them?

ELASTIC DEFORMATION

PLASTIC DEFORMATION (METALS)

ENGINEERING STRESS

• Tensile stress, □:

• Shear stress, []:

Stress has units: N/m² or lb/in²

COMMON STATES OF STRESS

• Simple tension: cable-

Area (when unloaded)

$$\Box = \frac{\mathsf{F}}{\mathsf{A}_{\mathsf{o}}} \quad \sigma \longleftrightarrow \sigma$$

Ski lift (photo courtesy P.M. Anderson)

• Simple shear: drive shaft

Note: $\square = M/A_cR$ here.

OTHER COMMON STRESS STATES (1)

• Simple compression:

OTHER COMMON STRESS STATES (2)

• Bi-axial tension:

• Hydrostatic compression:

ENGINEERING STRAIN

• Tensile strain:

$$\varepsilon = \frac{\delta}{L_o}$$

• Lateral strain:

$$\varepsilon_{L} = \frac{-\delta_{L}}{\mathbf{W_{o}}}$$

• Shear strain:

Strain is always dimensionless.

STRESS-STRAIN TESTING

LINEAR ELASTIC PROPERTIES

- Modulus of Elasticity, E: (also known as Young's modulus)
- Hooke's Law:

$$\square = \mathsf{E} \square$$

Poisson's ratio, □:

$$v = -\frac{\varepsilon_L}{\varepsilon}$$

ceramics: ~0.25

polymers: ~0.40

Units:

E: [GPa] or [psi]

: dimensionless

OTHER ELASTIC PROPERTIES

Elastic Shear modulus, G:

 Elastic Bulk modulus, K:

$$P = -K \frac{\Delta V}{V_O}$$

Special relations for isotropic materials:

$$G = \frac{E}{2(1 + \square)}$$

$$\mathsf{K} = \frac{\mathsf{E}}{3(1 \mid 2 \mid)}$$

YOUNG'S MODULI: COMPARISON

Eceramics

- > Emetals
- >> Epolymers

Based on data in Table B2, *Callister 6e*.

Composite data based on reinforced epoxy with 60 vol% of aligned carbon (CFRE), aramid (AFRE), or glass (GFRE) fibers.

USEFUL LINEAR ELASTIC RELATIONS

• Simple tension:

$$\delta = \frac{FL_o}{EA_o} \quad \delta_L = -v \frac{Fw_o}{EA_o}$$

Simple torsion:

$$\alpha = \frac{2ML_o}{\pi r_o^4 G}$$

M=moment
=angle of twist

- Material, geometric, and loading parameters all contribute to deflection.
- Larger elastic moduli minimize elastic deflection.

PLASTIC (PERMANENT) DEFORMATION

(at lower temperatures, $T < T_{melt}/3$)

YIELD STRENGTH, □y

• Stress at which *noticeable* plastic deformation has occurred.

when $\lceil_p = 0.002 \rceil$ tensile stress, □ engineering strain, [= 0.002

YIELD STRENGTH: COMPARISON

□y(ceramics)

>> y(metals)
>> y(polymers)

Room T values

Based on data in Table B4, Callister 6e.

= annealed

= hot rolled

= aged

cd = cold drawn

cw = cold worked

at = quenched & tempered

TENSILE STRENGTH, TS

Maximum possible engineering stress in tension.

Adapted from Fig. 6.11, *Callister 6e.*

- Metals: occurs when noticeable necking starts.
- Ceramics: occurs when crack propagation starts.
- Polymers: occurs when polymer backbones are aligned and about to break.

 Chapter 6-

TENSILE STRENGTH: COMPARISON

DUCTILITY, %EL

• Plastic tensile strain at failure: %EL =

$$6EL = \frac{L_f \square L_o}{L_o} \times 100$$

Another ductility measure: %AR = A_o A

$$\%AR = \frac{A_o \square A_f}{A_o} \times 100$$

- Note: %AR and %EL are often comparable.
 - --Reason: crystal slip does not change material volume.
 - --%AR > %EL possible if internal voids form in neck.

TOUGHNESS

- Energy to break a unit volume of material
- Approximate by the area under the stress-strain curve.

HARDNESS

- Resistance to permanently indenting the surface.
- Large hardness means:
 - --resistance to plastic deformation or cracking in compression.
 - --better wear properties.

Adapted from Fig. 6.18, *Callister 6e.* (Fig. 6.18 is adapted from G.F. Kinney, *Engineering Properties and Applications of Plastics*, p. 202, John Wiley and Sons, 1957.)

Chapter 6- 2

HARDENING

An increase in □y due to plastic deformation.

Curve fit to the stress-strain response:

DESIGN OR SAFETY FACTORS

Design uncertainties mean we do not push the limit.

• Ex: Calculate a diameter, d, to ensure that yield does not occur in the 1045 carbon steel rod below. Use a factor of safety of 5.

SUMMARY

- Stress and strain: These are size-independent measures of load and displacement, respectively.
- Elastic behavior: This reversible behavior often shows a linear relation between stress and strain. To minimize deformation, select a material with a large elastic modulus (E or G).
- Plastic behavior: This permanent deformation behavior occurs when the tensile (or compressive) uniaxial stress reaches □y.
- Toughness: The energy needed to break a unit volume of material.
- Ductility: The plastic strain at failure.

Note: For materials selection cases related to mechanical behavior, see slides 22-4 to 22-10.

ANNOUNCEMENTS

Reading:

Core Problems:

Self-help Problems: