CHAPTER 10: PHASE TRANSFORMATIONS

ISSUES TO ADDRESS...

Transforming one phase into another takes time.

- How does the rate of transformation depend on time and T?
- How can we slow down the transformation so that we can engineering non-equilibrium structures?
- Are the mechanical properties of non-equilibrium structures better?

FRACTION OF TRANSFORMATION

Fraction transformed depends on time.

Transformation rate depends on T.

Adapted from Fig. 10.2, *Callister 6e*. (Fig. 10.2 adapted from B.F. Decker and D. Harker, "Recrystallization in Rolled Copper", *Trans AIME*, 188, 1950, p. 888.)

r often small: equil not possible!

TRANSFORMATIONS & UNDERCOOLING

EUTECTOID TRANSFORMATION RATE ~ ||T

Growth of pearlite from austenite:

Diffusive flow of C needed α **Adapted from** Fig. 9.13, α Callister 6e.

 Reaction rate increases with **□T.**

Adapted from Callister 6e.

NUCLEATION AND GROWTH

 Reaction rate is a result of nucleation <u>and</u> growth of crystals.

• Examples:

ISOTHERMAL TRANSFORMATION DIAGRAMS

- Fe-C system, C_o = 0.77wt%C
- Transformation at T = 675C.

EX: COOLING HISTORY Fe-C SYSTEM

- Eutectoid composition, C_o = 0.77wt%C
- Begin at T > 727C
- Rapidly cool to 625C and hold isothermally.

PEARLITE MORPHOLOGY

Two cases:

- Ttransf just below TE
 - -- Larger T: diffusion is faster
 - --Pearlite is coarser.

- T_{transf} well below T_E
 - -- Smaller T: diffusion is slower
 - --Pearlite is finer.

Adapted from Fig. 10.6 (a) and (b), *Callister 6e*. (Fig. 10.6 from R.M. Ralls et al., *An Introduction to Materials Science and Engineering*, p. 361, John Wiley and Sons, Inc., New York, 1976.)

- Smaller □T: colonies are larger

- Larger □T: colonies are smaller

NON-EQUIL TRANSFORMATION PRODUCTS: Fe-C

- Bainite:
 - --□ lathes (strips) with long rods of Fe₃C
 - --diffusion controlled.
- Isothermal Transf. Diagram

(Adapted from Fig. 10.8, *Callister, 6e*. (Fig. 10.8 from *Metals Handbook*, 8th ed., Vol. 8, *Metallography, Structures, and Phase Diagrams*, American Society for Metals, Materials Park, OH, 1973.)

Bainite reaction rate:

 $r_{bainite} = e^{-Q/RT}$

Adapted from Fig. 10.9, Callister 6e.

(Fig. 10.9 adapted from H. Boyer (Ed.) *Atlas of Isothermal Transformation and Cooling Transformation Diagrams*, American Society for Metals, 1997, p. 28.)

OTHER PRODUCTS: Fe-C SYSTEM (1)

(ferrite

Chapter 10-

• Spheroidite:

--□ crystals with spherical Fe₃C

--diffusion dependent.

--heat bainite or pearlite for long times

--reduces interfacial area (driving force) Fe3C

Isothermal Transf. Diagram

OTHER PRODUCTS: Fe-C SYSTEM (2)

- Martensite:
 - --□(FCC) to Martensite (BCT)

(involves single atom jumps)

Isothermal Transf. Diagram

Martentite needlesAustenite

(Adapted from Fig. 10.12, *Callister, 6e.* (Fig. 10.12 courtesy United States Steel Corporation.)

- **☐**to M transformation..
 - -- is rapid!
 - -- % transf. depends on T only.

COOLING EX: Fe-C SYSTEM (1)

- C_o = C_{eutectoid}
- Three histories...

Case I

Rapid Hold Rapid Hold Rapid cool to: for: cool to:

350°C 104s Troom

250°C 10²s T_{room}

COOLING EX: Fe-C SYSTEM (2)

- C_o = C_{eutectoid}
- Three histories...

Case II

Rapid Hold Rapid Hold Rapid cool to: for: cool to:

350°C 10⁴s Troom

250°C 10²s Troom

650°C 20s 400°C 103s Troom

COOLING EX: Fe-C SYSTEM (3)

<mark>‰10</sub>5 time (s)</mark>

- C_o = C_{eutectoid}
- Three histories...

Case III

10

Rapid Hold Rapid Hold Rapid cool to: for: cool to: for: cool to:

350°C 104s Troom

250°C 10²s Troom

650°C 20s 400°C 103s Troom

MECHANICAL PROP: Fe-C SYSTEM (1)

Effect of wt%C

Pearlite (med)ferrite (soft)

Adapted from Fig. 9.27, Callister

6e. (Fig. 9.27 courtesy Republic

Steel Corporation.)

C_o<0.77wt%C

Hypoeutectoid

C₀>0.77wt%C

Hypereutectoid

Pearlite (med)
Cementite

Cementite (hard)

Adapted from Fig. 9.30, *Callister* 6e. (Fig. 9.30 copyright 1971 by United States Steel Corporation.)

Adapted from Fig. 10.20, *Callister 6e*. (Fig. 10.20 based on data from *Metals Handbook: Heat Treating*, Vol. 4, 9th ed., V. Masseria (Managing Ed.), American Society for Metals, 1981, p. 9.)

More wt%C: TS and YS increase, %EL decreases.

MECHANICAL PROP: Fe-C SYSTEM (2)

Fine vs coarse pearlite vs spheroidite

Hardness: fine > coarse > spheroidite

%AR: fine < coarse < spheroidite

Adapted from Fig. 10.21, *Callister* 6e. (Fig. 10.21 based on data from *Metals Handbook: Heat Treating*, Vol. 4, 9th ed., V. Masseria (Managing Ed.), American Society for Metals, 1981, pp. 9 and 17.)

MECHANICAL PROP: Fe-C SYSTEM (3)

Fine Pearlite vs Martensite:

Adapted from Fig. 10.23, Callister 6e. (Fig. 10.23 adapted from Edgar C. Bain, Functions of the Alloying Elements in Steel, American Society for Metals, 1939, p. 36; and R.A. Grange, C.R. Hribal, and L.F. Porter, Metall. Trans. A, Vol. 8A, p. 1776.)

Hardness: fine pearlite << martensite.

TEMPERING MARTENSITE

- reduces brittleness of martensite,
- reduces internal stress caused by quenching.

- produces extremely small Fe₃C particles surrounded by α.
- decreases TS, YS but increases %AR

SUMMARY: PROCESSING OPTIONS

ANNOUNCEMENTS

Reading:

Core Problems:

Self-help Problems: