Chapter 3: Crystallographic directions and planes

- **Outline**
- Crystallographic directions
- Crystallographic planes
- Linear and planar atomic densities
- Close-packed crystal structures

Crystallographic directions

- Direction: a line between two points and a vector
- General rules for defining a crystallographic direction
 - pass through the origin of a coordinate system
 - determine length of the vector projection in the unit cell dimensions a, b, and c
 - remove the units $[u_a v_b w_c]$ ---[uvw] e.g [2a 3b 5c]--[2 3 5]
 - uvw are multiplied and divided by a common factor to reduce them to smallest integer values

Crystallographic directions (continue)

- denote the direction by [uvw]
- family direction <u v w>, defined by transformation
- material properties along any direction in a family are the same, e.g. [100] [100] [010] in simple cubic are same.
- for uniform crystal materials, all parallel directions have the same properties
- negative index: a bar over the index

Determine a direction

Examples

Determining the indices of line directions

Examples

Sketch the following directions: [110], [-1-21], [-1 0 2]

Hexagonal crystal

□ 4-index, or Miller-Bravais coordinate system

□ Conversion from 3-index index system

$$[u'v'w'] \longrightarrow [uvtw]$$

is accomplished by the following formulas:

$$u = \frac{n}{3}(2u' - v')$$

$$v = \frac{n}{3}(2v' - u')$$

$$t = -(u + v)$$

$$w = nw'$$

Hexagonal crystal (continue)

□ Convert [100] direction into the four- index Miller-Bravais scheme for hexagonal unit cells.

Crystallographic planes

- Orientation representation (hkl)--Miller indices
- Parallel planes have same miller indices
- Determine (hkl)
 - A plane can not pass the chosen origin
 - A plane must intersect or parallel any axis
 - If the above is not met, translation of the plane or origin is needed
 - Get the intercepts a, b, c. (infinite if the plane is parallel to an axis)
 - take the reciprocal
 - smallest integer rule
- (hkl) // (hkl) in opposite side of the origin
- □ For cubic only, plane orientations and directions with same
 - indices are perpendicular to one another

(111) planes

□ Determine Miller indices of planes

□ Determine Miller indices of planes

□ Determine Miller indices of planes

□ Construct planes by Miller indices of planes (0 -1 -1) and (1 1 -2)

Atomic arrangements

☐ The atomic arrangement for a crystallographic plane depends on the crystal structure c

FCC: (a) reduced sphere (b) atomic packing of an FCC (110) plane

BCC: (a) reduced sphere (b) atomic packing of an BCC (110) plane

Atomic arrangements

- A family of planes contains all the planes that are crystallographically equivalent.
- ☐ In cubic system, planes with same indices, irrespective of order and sign, are equivalent
 - (111), (111), (111) ... belong to {111} family
 - (100), (100), (010), and (001) belong to {100} family
 - (123), (123), (312) in cubic crystals belong to {123} family
- □ In tetragonal, (001) (001) are not as same family as (100), (100)

Linear and planar atomic density

■ Linear atomic density: length of intersected atoms/length of edges in a unit cell

$$LD_{[100]} = \frac{L_{atoms}}{L_{MN}} = \frac{2R}{4R/\sqrt{3}} = 0.866$$

$$LD_{[111]} = 1$$
(b)

Atomic planar density: area occupied by atoms/total area of a crystallographic plane

Close-packed crystal structures

Close-packed plane stacking sequence for HCP

Close-packed plane stacking sequence for HCP

