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Ceramic bonding

[0 Bonding:
--Mostly ionic, some covalent.
--% ionic character increases with difference in
electronegativity.
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Imperfections in ceramics

OSchottky defects: --a paired set of cation and anion
vacancies.

OFrenkel defects: an atom from a lattice site to an
interstitial position

Point defects in lonic Crystals

O Impurities must also satisfy charge balance
« Ex: NaCl Na*® cI-
® Substitutional cation impurity vacancy
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Point Defects in lonic Crystals

O Defect examples for other ionic crystal systems

MIn simple ionic crystals, both Schottky and Frenkel
defects occur, but the concentration of one type
generally exceeds that of the other

» Schottky defects dominate in alkali halides
» Cation Frenkel defects dominate in AgCl and AgBr

= Anion Frenkel defects dominate in CaF, and
fluorites

Electric Properties

[ Electrical conductivity: the mobility of charged point
defects
o=n(u" +u)e
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Since the cation vacancy is more mobile than anion vacancy
n-- defect concentration

e-- charge

p-- mobility




Electric Properties (continue)

[ Electrical conductivity Lno
e Region I: Schottky defects
E,=E*, +1/2(E,+E.)

e Region II: Cation vacancies
E,=E*,

e Region Ill: cation vacancies,
impurity ions, clustering of defects |
L
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Effect of temperature on electrical conductivity
of a NaCl crystal containing a small conc. of a
divalent cation

Ceramic phase diagram
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Ceramic phase diagram
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Stress-strain behavior

[C1Flectural testing replace tensile testing

[JReasons for not a standard tension test

« difficult to prepare and test specimens having a
required geometry

e difficult to grip brittle materials without fracturing
them

e ceramics fail after only about 0.1% strain and

samples are difficult to align without experiencing
bending stress




Measuring elastic modulus

[J Room T behavior is usually elastic, with brittle failure.
3-Point Bend Testing often used.
[J Tensile tests are difficult for brittle materials.
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Measuring strength

O 3-point bend test to measure room T strength.
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Elastic behavior

[J Typical stress-
strain behavior to

fracture for

aluminum oxide

and glass
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Mechanisms of plastic deformation
[ Crystalline ceramics are brittle
« Covalent bonds are relatively strong
e There are limited numbers of slip systems
» Dislocation structures are complex
[0 Noncrystalline ceramics
A i

» Plastic deformation does not

occur by dislocation motion
for noncrystalline ceramics

« Viscosity is a measure of
of non-crystalline material’s

resistance to deformation




Influence of porosity on mechanical behavior

Modulus of elasticity (GPa)

[0 E=E,(1-1.9P+0.9P2)
O o= o, exp (-nP)
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Hardness

Table 13.6  Approximate Knoop
Hardness (100 g load) for Seven Ceramic

Materials
Approximate

Material Knoop Hardness
Diamond (carbon) 7000
Boron carbide (B,C) 2800
Silicon carbide (SiC) 2500
Tungsten carbide (WC) 2100
Aluminum oxide (Al,O3) 2100
Quartz (Si0;) 300

Glass 550




Summary

* Ceramic materials have mostly ironic bonding& some
covalent bonding.

* Defects

--must preserve charge neutrality

--have a concentration that varies exponentially w/T.
Room T mechanical response is elastic, but fracture

is brittle, with negligible ductility.
Elevated T creep properties are generally superior to

those of metals (and polymers).




