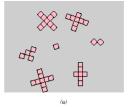
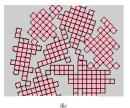
Single crystals


- Periodic and repeated arrangement of atoms is perfect or extends through the entirety of the specimen
- ☐ Unit cells interlock in the same way and have the same orientation
- ☐ Can be produced naturally and artificially


Single crystals of fluorite (CaF₂)

Polycrystalline materials

- A collection of many small crystals or grains
- ☐ Grain boundary: some atomic mismatch within the region where two grains meet

Anisotropy

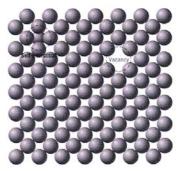
- Anisotropy:
- ☐ Isotropic:

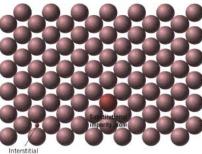
Table 3.3 Modulus of Elasticity Values for Several Metals at Various Crystallographic Orientations

Metal	Modulus of Elasticity (GPa)		
	[100]	[110]	[111]
Aluminum	63.7	72.6	76.1
Copper	66.7	130.3	191.1
Iron	125.0	210.5	272.7
Tungsten	384.6	384.6	384.6

Chapter 4: Imperfections in solids

Outline

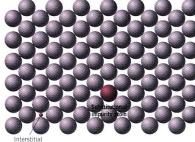

- Introduction
- Points defects
- Impurities in solids
- Dislocations-linear defects
- Interfacial defects
- Bulk or volume defects
- Microscopy


Types of imperfections

- Point defects
 - Vacancy atoms
 - Interstitial atoms
 - Substitutional atoms
- ☐ Dislocations (linear defects)
- ☐ Grain boundaries (planar defects)
- Volume

Point defects

- Vacancy:
- Self-interstitial:
- Substitutional


impurity atom

Point defects: equilibrium concentration

☐ Equilibrium concentration varies with temperature

Impurities in solids

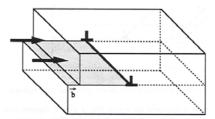
- □ Fundamental concepts
 - alloy
 - solute
 - solvent
 - solid solution
- Solute solutions
 - substitution
 - → atomic size factor
 - → crystal structure
 - → electronegativity
 - → valences
 - interstitial

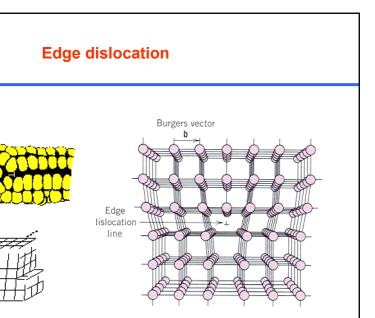
Interstitial

Impurities in solids (continue)

- Specification of composition
 - composition of an alloy in weight percent

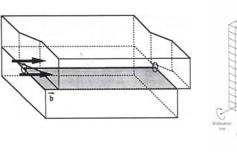
$$C_1 = \frac{m_1}{m_1 + m_2} \times 100\%$$

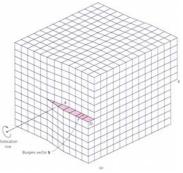

· composition of an alloy in atom percent


$$C_1' = \frac{n_{m1}}{n_{m1} + n_{m2}} \times 100\%$$

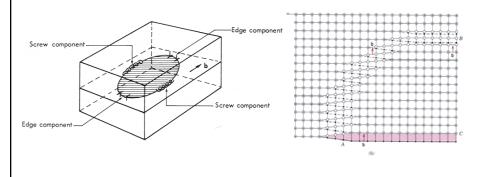
$$n_{m1} = \frac{m_1'}{A_1}$$

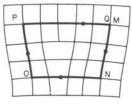
Dislocations-linear defects


- □ Edge dislocation:
- Dislocation line:



Dislocations-linear defects


- Screw dislocation:
- Slip plane:
- □ Slip plane contains both Burgers Vectors and dislocation line


Dislocations-linear defects

Mixed dislocation

Burgers Circuit & Burgers Vector

- Burgers circuit: any close loop contain dislocations by an atom to atom path
- Burgers vectors: the vector required to complete the circuit in a perfect crystal; the direction of atom displacement

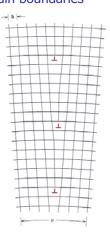
(a)

(b)

P M Q Burgers vector

- (a) Burgers circuit round an edge dislocation
- (b) the same circuit in a perfect crystal

Dislocations-linear defects


- What cause dislocations?
 - processing
 - plastic deformation
 - thermal stresses
- Observation of dislocations

A TEM micrograph of a titanium alloy

Interfacial defects (two dimension)

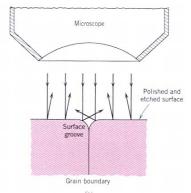
- ☐ External surfaces
- Grain boundaries

Angle of misalignment

High-angle grain boundary

Jawa and a service of the servi

Bulk Defects (three dimension)


- Void
- Cracks
- Inclusions

TEM image of voids

Microscopic examination

Optical microscopy

- ☐ Transmission electron microscopy
- Scanning electron microscopy
- Scanning probe microscopy