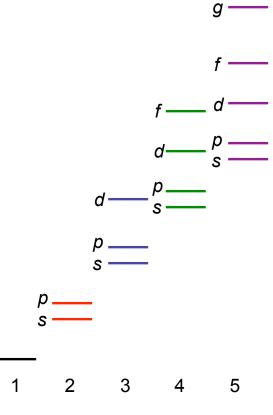

Atomic structure

Atomic mass $A \approx N =$

Electronic structure

Valence electrons determine all of the following properties:

Electrons have wavelike and particulate properties.

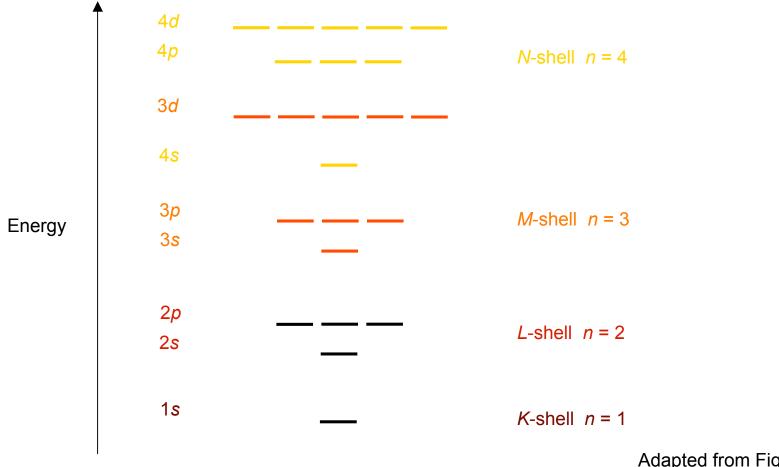

- This means that electrons are in orbitals defined by a probability.
- Each orbital at discrete energy level determined by quantum numbers.

Quantum #

Designation

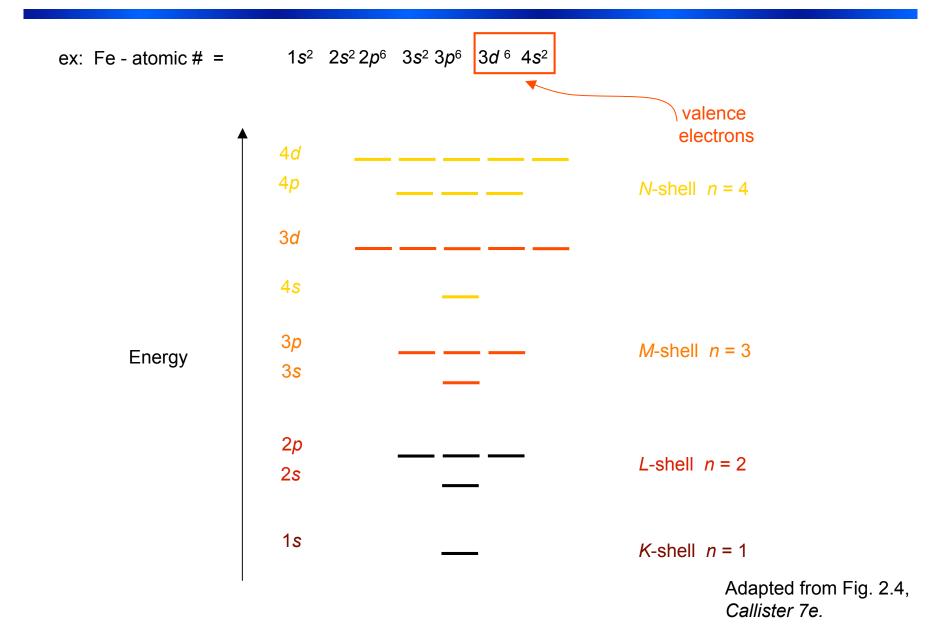
Electronic structure

Principal	Shell	Cubaballa	No. of	Number of electrons			
quantum no.	designation	Subshells	states	Per subshell	Per shell		
1	K	S	1	2	2		
2	L	S	1	2	8		
		р	3	6			
3	М	S	1	2	18		
		р	3	6			
		d	5	10			
4	N	S	1	2	32		
		р	3	6			
		d	5	10			
		f	7	14			


р_ s-

s -

Electron energy states


Electrons...

- have discrete energy states
- tend to occupy lowest available energy state.

Adapted from Fig. 2.4, *Callister 7e.*

Electronic configuration

Survey of elements

٠	Most elements:	Electron configuration	not stable.
---	----------------	------------------------	-------------

<u>Element</u>	Atomic #	Electron configuration
Hydrogen	1	1s ¹
Helium	2	1s ² (stable)
Lithium	3	1s ² 2s ¹
Beryllium	4	1s ² 2s ²
Boron	5	1s ² 2s ² 2p ¹
Carbon	6	1s ² 2s ² 2p ²
Neon	10	1s ² 2s ² 2p ⁶ (stable)
Sodium	11	1s ² 2s ² 2p ⁶ 3s ¹
Magnesium	12	1s ² 2s ² 2p ⁶ 3s ²
Aluminum	13	1s ² 2s ² 2p ⁶ 3s ² 3p ¹
Argon	18	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ (stable)
Krypton	36	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ⁶ (stable)

• Why? Valence (outer) shell usually not filled completely.

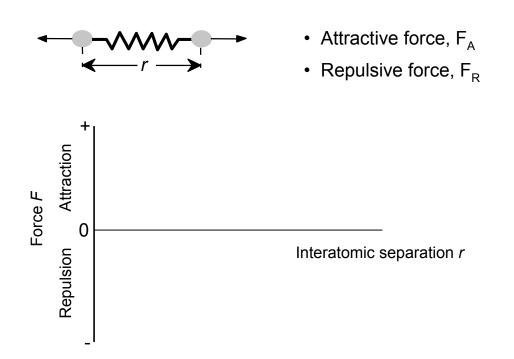
Adapted from Table 2.2, *Callister 7e.*

The periodic table

~	<u>ש</u> ב																	gases	
		up 2e								Met	al				(N V	spt 1e	inert (
ſ	IA 1	IVe	(L)							Non	meta					accept	accept	0	
	Н	IIA	0 3e]			IIIA	IVA	VA	VIA	VIIA	He	
	3 Li	4 Be	e nb							Inte	rmed	iate	5 B	6 C	7 N	8	9 F	10 Ne	
	11	12	ßl≤						VIII	1			13	14	15	16	17	18	
	Na	Mg	IIIB	IVB	VB	VIB	VIIB				IB	IIB	AI	Si	Р	S	CI	Ar	
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	
	K	Ca		Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	
	Rb	Sr		Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe	
	55	56	Rare	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	
	Cs	Ba	earth series	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn	
	87	88	Acti-	104	105	106	107	108	109	110									
	Fr	Ra	nide series	Rf	Db	Sg	Bh	Hs	Mt	Ds									

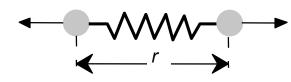
Electropositive elements: Readily give up electrons to become + ions. Electronegative elements: Readily acquire electrons to become - ions.

Adapted from Fig. 2.6, *Callister 7e.*

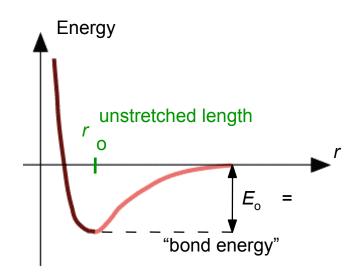

Electronegativity

- Ranges from 0.7 to 4.0,
- Large values: tendency to acquire electrons.

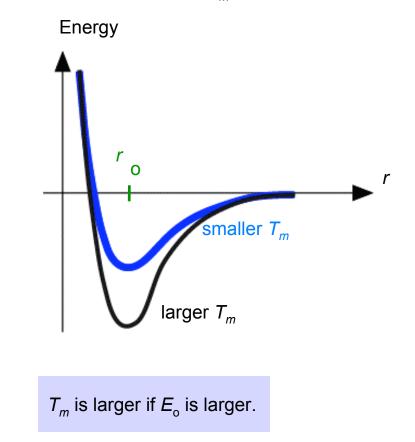
IA																	0
Н																	He
2.1	IIA											IIIA	IVA	VA	VIA	VIIA	-
Li	Be											В	C	Ν	0	F	Ne
1.0	1.5											2.0	2.5	3.0	3.5	4.0	-
Na	Mg							VIII				AI	Si	Ρ	S	CI	Ar
0.9	1.2	IIIB	IVB	VB	VIB	VIIB				IB	IIB	1.5	1.8	2.1	2.5	3.0	-
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
0.8	1.0	1.3	1.5	1.6	1.6	1.5	1.8	1.8	1.8	1.9	1.6	1.6	1.8	2.0	2.4	2.8	-
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
0.8	1.0	1.2	1.4	1.6	1.8	1.9	2.2	2.2	2.2	1.9	1.7	1.7	1.8	1.9	2.1	2.5	-
Cs	Ba	La–Lu	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
0.7	0.9	1.1-1.2	1.3	1.5	1.7	1.9	2.2	2.2	2.2	2.4	1.9	1.8	1.8	1.9	2.0	2.2	-
Fr	Ra	Ac-No															
0.7	0.9	1.1-1.7															
	Smaller electronegativity Larger electronegativity																


Adapted from Fig. 2.7, *Callister 7e.* (Fig. 2.7 is adapted from Linus Pauling, *The Nature of the Chemical Bond*, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by Cornell University.

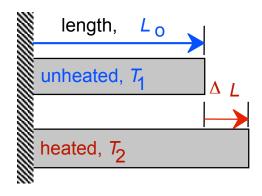
Bonding forces and energies



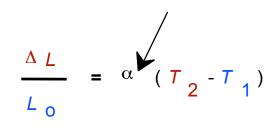
Properties from bonding


• Bond length, *r*

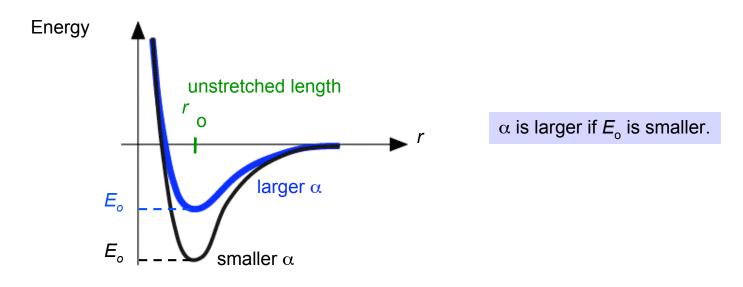
• Bond energy, *E*_o

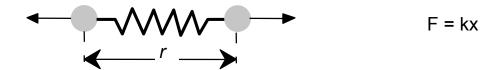


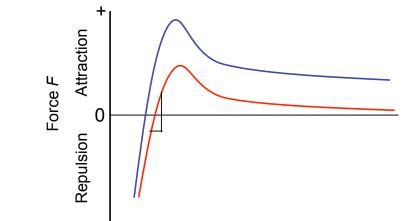
• Melting Temperature, T_m



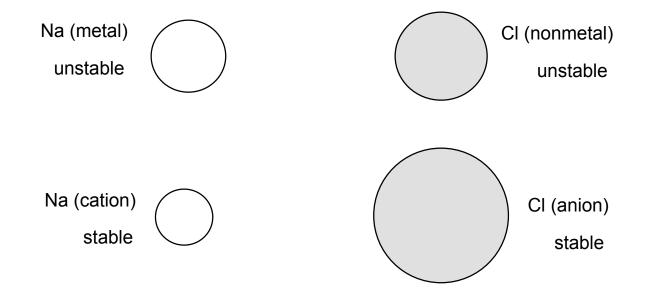
Properties from bonding: thermal expansion coefficient

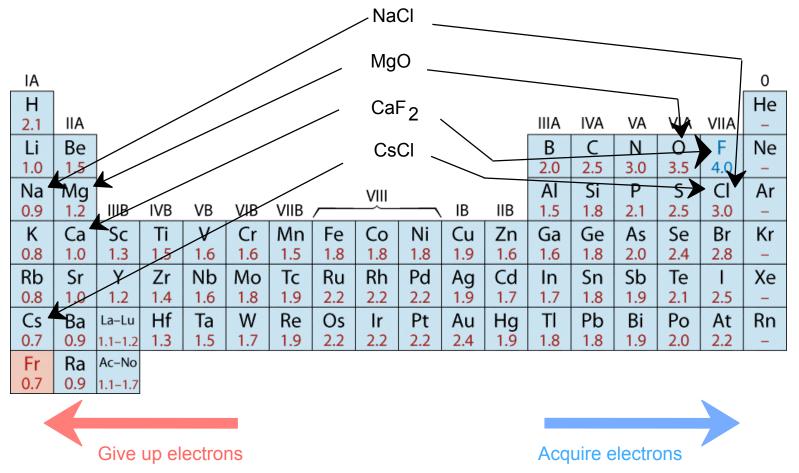

- Coefficient of thermal expansion, $\boldsymbol{\alpha}$


coeff. thermal expansion



• α ~ symmetry at r_{o}

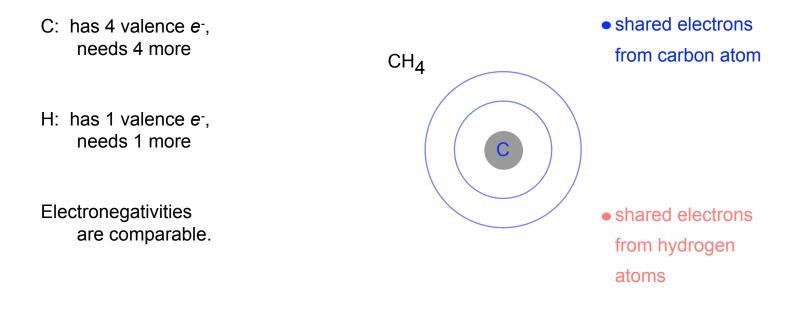

Properties from bonding: modulus *E*


Types of bonding: ionic

- Occurs between + and ions.
- Requires electron transfer.
- Large difference in electronegativity required.
- Example: NaCl

Examples of ionic bonding

• Predominant bonding in Ceramics

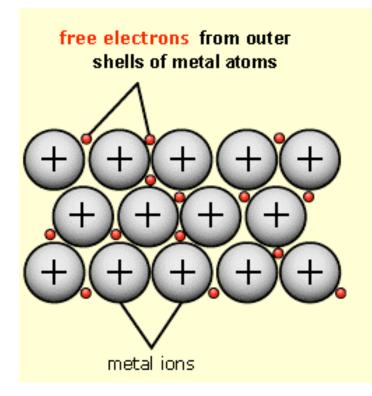


Adapted from Fig. 2.7, *Callister 7e.* (Fig. 2.7 is adapted from Linus Pauling, *The Nature of the Chemical Bond*, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by Cornell University.

Covalent bonding

similar electronegativity ∴ share electrons
bonds determined by valence – s & p orbitals dominate bonding

•Example: CH₄



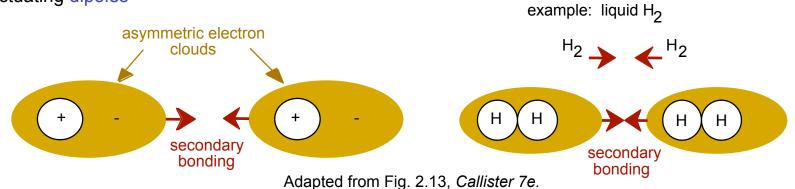
Adapted from Fig. 2.10, Callister 7e.

Metallic bonding

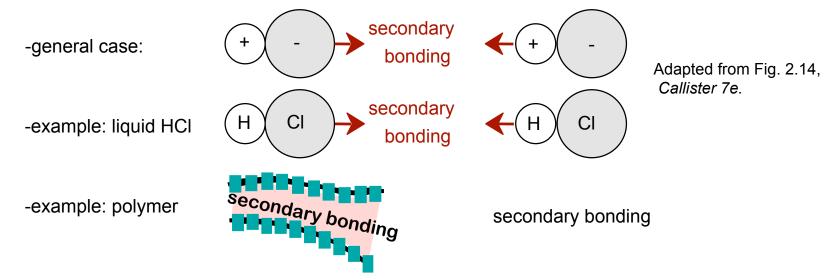
•lons in a sea of electrons

•Attraction between free electrons and metal ions

Ionic-covalent mixed bonding


% ionic character =
$$\begin{pmatrix} -\frac{(X_A - X_B)^2}{4} \\ 1 - e^{-\frac{(X_A - X_B)^2}{4}} \end{pmatrix} x (100\%)$$

where $X_A \& X_B$ are Pauling electronegativities


Secondary bonding

Arises from interaction between dipoles

• Fluctuating dipoles

• Permanent dipoles-molecule induced

Summary

Туре	Bond Energy	Comments
Ionic	Large!	Non-directional (ceramics)
Covalent	Variable Diamond (large) Bismuth (small)	Directional (semiconductors, ceramics, polymer chains)
Metallic	Variable Tungsten (large) Mercury (small)	Non-directional (metals)
Secondary	Smallest	Directional Interchain (polymer) Intermolecular

Ceramics	Large bond energy
(Ionic & covalent bonding)	Large T_{m} and E, small α
Metals	Variable bond energy
(Metallic bonding)	Moderate $T_{m}^{},$ E, and α
Polymers (Covalent & secondary)	Directional properties, Secondary bonding dominates
	Small T _m and E, large α