Energy and packing

Materials and packing

Crystalline materials...

Noncrystalline materials...

noncrystalline SiO₂ Adapted from Fig. 3.22(b), *Callister 7e.*

Crystals

Unit cell:

a, *b*, and *c* are the lattice constants

Simple cubic structure (SC)

- Rare due to low packing density (only Po has this structure)
- Close-packed directions are cube edges.

(Courtesy P.M. Anderson)

Face centered cubic structure (FCC)

- Atoms touch each other along face diagonals.
 - --Note: All atoms are identical; the face-centered atoms are shaded differently only for ease of viewing.

ex: Al, Cu, Au, Pb, Ni, Pt, Ag

Adapted from Fig. 3.1, Callister 7e.

(Courtesy P.M. Anderson)

Atomic packing factor (APF): FCC

close-packed directions

contains 6 x 1/2 + 8 x 1/8 =

4 atoms/unit cell

Theoretical density, ρ

Density = $\rho = \frac{\text{Mass of atoms in unit cell}}{\text{Total volume of unit cell}}$

$$\rho = \frac{nA}{V_C N_A}$$

where

n = number of atoms/unit cell A = atomic weight V_C = Volume of unit cell = a^3 for cubic N_A = Avogadro's number = 6.023 x 10²³ atoms/mol

Body centered cubic structure (BCC)

- Atoms touch each other along cube diagonals.
 - --Note: All atoms are identical; the center atom is shaded differently only for ease of viewing.

ex: Cr, W, Fe (α), Tantalum, Molybdenum

Adapted from Fig. 3.2, *Callister 7e.*

(Courtesy P.M. Anderson)

Atomic packing factor (APF): BCC

FCC stacking sequence

- ABCABC... Stacking Sequence
- 2D Projection

• FCC Unit Cell

Hexagonal close-packed structure (hcp)

- ABAB... Stacking Sequence
- 3D Projection

2D Projection
Top layer
Middle layer
Bottom layer

6 atoms/unit cell

ex: Cd, Mg, Ti, Zn