Density of Sea Water ρ

- Definition: mass of substance per unit volume
 - Grams per cm3 (=cc, =ml)
- ρ of pure water at 4°C = 1.0 g/cm3
- Salts make water more dense
 - Salinity = grams salts per kilogram water
 - = parts per thousand or %
 - 1 g/kg = 0.1 %
 - In 35 g/kg seawater (at 4°C) density = 1.028
- Temperature also affects density
 - Warm water expands, density decreases
 - Cold water contracts, density increases

T-S Diagrams

- T&S have opposite effects on ρ
 - $\uparrow T = \downarrow \rho$
 - $\downarrow S = \downarrow \rho$
 - but $\uparrow T = \uparrow \rho$

T-S Diagrams

- Density is calculated from T & S
 - Uses a complex formula
 - Results printed in tables
 - Easier to use is a T-S diagram
 - Isopycnals = lines of constant density
 - Density increases from upper left to lower right

T-S Diagrams

- Many combinations of T&S give the same ρ
 - $\rho=1.025$
 - T=18, S=35
 - T=15, S=33.9
 - T=10, S=32.5
 - Changes in T&S counteract
T-S Diagrams

- Small changes in ρ very important
 - Most salinities
 $34.5 < S < 35.5$
 - Most temps
 $3^\circ < T < 20^\circ C$
 - Most densities
 $1.025 < \rho < 1.028$

Density of Sea Water

- Sigma-t (σ_t) is an abbreviation or shorthand for density.
 - $(\rho-1) * 1000$.
 - $\rho=1.025$, $\sigma_t=25.0$; $\rho=1.028$, $\sigma_t=28.0$
- Used because small differences in density have important effects on water movement.

Determining Density

- T-S diagram a graphical display of σ_t values
 - Read directly from T & S
 - Simpler than solving the formulas
 - Today instruments are programmed to make calculations automatically

Example #1

- $T = 15^\circ C$
- $S = 35$ g/kg
- $\sigma_t = ?$
 - 26
- $\rho = ?$
 - 1.026 g/cm3
Oceanography 101, Richard Strickland
Lecture 19 © 2006 University of Washington

Determining Density

• Example #2
 - $T = 20^\circ C$
 - $S = 32 \text{ g/kg}$
 - $\sigma_t =$?
 - 22.5
 - $\rho =$?
 - 1.0225 g/cm3

• Example #3
 - $T = 5^\circ C$
 - $S = 32 \text{ g/kg}$
 - $\sigma_t =$?
 - 25.3
 - $\rho =$?
 - 1.0253 g/cm3

• Rank the examples in order of increasing density
 - #2 $\sigma_t = 22.5$
 - $\rho = 1.0225 \text{ g/cm}^3$
 - #3 $\sigma_t = 25.3$
 - $\rho = 1.0253 \text{ g/cm}^3$
 - #1 $\sigma_t = 26.0$
 - $\rho = 1.026 \text{ g/cm}^3$

• Rank the examples in order of increasing density
 - #2 $\sigma_t = 22.5$
 - T @ same S
 - $\uparrow \rho$
 - #3 $\sigma_t = 25.3$
 - S overcomes T
 - $\uparrow \rho$
 - #1 $\sigma_t = 26.0$
Vertical Stratification

- Water column
 - Hypothetical vertical section of water from surface to bottom
 - Square cross-section

Vertical Stability

- Stability of stratified water column
 - Depends on relative density of layers
 - Less dense water atop more dense water = stable
 - It will persist until disturbed

- Stable stratification resists disturbance
 - tends to return to original state

Examples: Stability

- Thermal—Lake Washington
 - Surface warms in summer
 - Warm (lower-density) water lies atop cool (higher-density) water
 - Thermocline: boundary between layers of different temperature
 - Rapid change in temperature with depth

- Density stratification
 - Warmer water floats & cooler water sinks (constant salinity)
 - Fresher water floats & saltier water sinks (constant temperature)
Examples: Stability

- Haline—Puget Sound
 - River runoff meets sea water at the river mouths
 - Fresh or brackish (low-salinity) water lies atop higher-salinity water
 - Halocline: boundary between layers of different salinity
 - Rapid change in salinity with depth

- Rapid change in salinity with depth

Vertical Stability

- In general, the oceans are stable
 - Greater density difference between layers = stronger stability

- If not, they would move until stable
 - Vertical instability occurs in certain situations in the oceans

- Neutral stability = unstratified
 - Density is same at all levels

- In general, T has greater effects than S
 - Some important exceptions
 - Puget Sound, Mediterranean

Examples: Stability

- Pycnocline
 - Boundary between 2 layers of different density
 - If there is a thermocline or halocline, there is also a pycnocline.

- Mixed layer
 - Layer above the pycnocline
 - Homogenized by wind mixing
 - Nearly uniform properties over depth

Instability

- Instability of stratified water column
 - More dense water atop less dense
 - Initiates rather than resists motion
 - Dense water sinks, less dense water floats
Examples: Instability

- Thermal—Polar seas in winter
 - Strong cooling
 - Dense water at the surface
 - Sinks below warmer water beneath
 - Major factor in global density-driven ocean currents

- Haline—Polar seas in winter
 - Sea ice freezing & “brine exclusion”
 - Sea ice is almost pure fresh water
 - Salt remains in sea water, raising salinity & density
 - Sinks below less-saline water beneath.

Examples: Instability

- Haline—Mediterranean
 - Evaporation in desert climate
 - Creates high-salinity surface layer
 - Denser than the lower-salinity water beneath, and so it sinks.

Stratifying processes

- What external natural processes enhance stratification?
 - Anything that changes density
 - Heating & cooling
 - Freshwater runoff
 - Evaporation & precipitation
 - Freezing & melting of sea ice

Stabilizing processes

- What external natural processes enhance vertical stability?
 - Surface solar heating (T)
 - Freshwater runoff (S)
 - Rain (S)
 - Melting of sea ice (S)
Destabilizing processes

- What external natural processes enhance vertical instability?
 - Surface cooling (T)
 - Sea ice formation (T & S)
 - Surface evaporation (S)
 - Sea-floor heating (T)

Destratifying forces

- What external natural processes break down vertical stratification?
 - Forces that move water rather than exchanging heat or fresh water
 - Wind mixing
 - Fast, turbulent currents (esp. over or around bathymetric barriers)
 - Instability-induced convection

The Real Ocean

- Vertical changes in both T & S
 - If both T & S increase, what happens to density & stability?
 - If both T & S decrease, what happens to density & stability?
- Must determine density from T & S to answer this question

The Real Ocean

- Curious example—the Red Sea
 - Surface = 30˚C, 42.5 g/kg
 - Heating & evaporation
 - Bottom = 36˚C & 257 g/kg
 - Rift valley & hydrothermal vents
- Vertically stable or unstable?
 - Stable - S overcomes T
- Puget Sound in winter
 - Surface = 4˚C, 20 g/kg
 - Deep = 8˚C, 31 g/kg
 - Stable because low surface S overcomes low T