What is an Estuary?

- Portion of the ocean that is semi-enclosed by land and diluted by freshwater runoff
 - All estuaries are embayments
 - But embayments without rivers ≠ estuaries
- Very elastic size definition
 - Small stream mouth (Pipers Creek, N. Seattle)
 - Large river mouths (Columbia)
 - Complex embayments (Puget Sound)

Oceanography 101, Richard Strickland

Importance of Estuaries

© 2006 University of Washington

- Economically important
- Sites for human settlement
 - Sheltered harbors & access to rivers
 - Fishing, recreation, & aesthetic activities
 - Liquid waste disposal
 - Municipal sewage
 - Industrial effluent

Importance of Estuaries

- Biologically important
 - Very productive
 - Habitat for wildlife & commercial species
 - Birds, mammals
 - Oysters, clams, shrimp, crab
 - Sole, flounder
 - Nursery grounds for oceanic species
 - Crab, sole, flounder, salmon, shad
 - Migratory pathway for oceanic species
 - · Salmon, shad, striped bass

Oceanography 101, Richard Strickland

© 2006 University of Washington

Importance of Estuaries

- Environmentally vulnerable
 - Alteration of flow (dams)
 - Habitat degradation & destruction
 - Depletion of fish and wildlife
 - Chemical contamination ("pollution")
 - Fresh/salt water boundary affects physical state and chemical reactions of pollutants

Types of Estuaries

- 4+1 types of estuaries
 - Classified by pattern of vertical stratification
 - Salinity is the most important factor
 - Unlike temperature dominance in most oceans
 - Change in salinity between upper and lower layers
- Vertical salinity gradient is a balance
 - River flow creates the stable vertical stratification
 - Mixing due to tidal action disrupts stratification.

17

Oceanography 101, Richard Strickland

Lecture 2

© 2006 University of Washington

Classification of Estuaries II

- Based on ratio of mean volume of river inflow (R) to mean volume of tidal prism (P) over 1 (mean) tidal cycle
 - R/P > 1 = Salt Wedge or Fjord (highly stratified)
 - R/P ~0.25 = Partially Mixed (moderately stratified)
 - R/P <0.1 = Well Mixed (weakly stratified or unstratified)

Classification of Estuaries I

- Salinity difference ΔS between surface and bottom layers at any station in the estuary
 - Δ S > ~19 g/kg = Salt Wedge or Fjord (highly stratified)
 - $\sim 3 \text{ g/kg} > \Delta \text{S} > \sim 19 \text{ g/kg (PSU)} = \text{Partially}$ Mixed (moderately stratified)
 - ΔS < ~3 g/kg = Well Mixed (weakly stratified or unstratified)

18

Oceanography 101, Richard Strickland

Lecture 20

© 2006 University of Washington

Salt wedge estuaries

- Dominated by high river runoff
 - Large river mouths
 - Columbia & Mississippi
 - Smaller river mouths entering larger estuaries
 - Duwamish entering Puget Sound
 - Named for sharp boundary between river & sea water
 - Strong halocline moves back and forth with tides
 - Strong vertical stratification

19

20

Oceanography 101, Richard Strickland

Lecture 20

© 2006 University of Washington

Well-mixed estuaries

- Currents in inland passages
 - Large volume of water squeezing into a narrow shallow channel
 - Admiralty Inlet
 - Tacoma Narrows
 - Speed of current & rough bottom topography
 - Strong vertical mixing
 - · Breaks down stratification

29

"Reverse" estuaries

© 2006 University of Washington

Not really estuaries

Oceanography 101, Richard Strickland

- Semi-enclosed evaporative basins
 - Arid, subtropical latitudes
 - Fresh water gain from rivers much less than loss to evaporation
 - Mediterranean & Red Seas
- Vertically instability & convection
 - Evaporation increases surface salinity
 - Surface water more dense despite temperature

32

Oceanography 101, Richard Strickland Lecture 20 © 2006 University of Washington

"Reverse" estuaries

- Inverse circulation (Mediterranean)
 - Net subsurface seaward higher-S outflow
 - Dense bottom water flows over Gibraltar "sill"
 - Sinks to a depth of about 1000 m in Atlantic

Oceanography 101, Richard Strickland

© 2006 University of Washington

"Reverse" estuaries

- Inverse circulation (Mediterranean)
 - Net surface landward inflow from Atlantic
 - Replaces evaporating and sinking water
 - Surface inflow lower-S than water it replaces

Lecture 20

