Pelagic Food Chain: Summary

- The food chain concept
 - An attempt by scientists to make a simple model of the extreme complexity of biological communities
 - Illustrate simple principles
 - Goal of constructing a budget of
 - Production at each trophic level
 - Who eats what
 - Also understand how these properties change over time and location

Pelagic Food Chain: Summary

- More realistic: food web
 - Still very oversimplified
 - Can be verified by measurements
 - Observe gut contents
 - Use isotopes to track flow of organic carbon
 - Even at this level, calculations of production & efficiency get complex quickly

Pelagic Food Chain: Summary

- Example of a food web model derived from research
 - Puget Sound pelagic zone
 - Large number of organisms (but still not all)
 - Based on gut contents
 - Weight of arrow shows proportion of production following that path
 - How we derive simpler “food chain” model
 - Highlight “dominant” species & trophic pathways
Pelagic Food Chain: Summary

- The main chain:
 - 4 Birds & whales
 - 3 Baitfish
 - (2.5) Carnivorous zooplankton
 - Side branches not leading to higher levels
 - 2 Copepods & krill
 - 1 Phytoplankton

Pelagic Food Chain: Summary

- What determines which organisms are found in which environment? Evolution
 - Example:
 - Anchovy & sardine dominant baitfish off California
 - Herring & sand lance dominant baitfish off Washington
 - Why? Not entirely clear
 - Herring prefer cooler water
 - Differences in types of zooplankton & fish feeding adaptations?
 - Example:
 - Mackerel dominant feeder on baitfish off California
 - Prefer warmer water
 - Salmon off Washington
 - Prefer cooler water & need rivers

Productivity in Ocean Zones

- Comparing 3 general types of environments
 - Again a great simplification
 - Based on productivity
- Types defined in Sverdrup textbook
 - Upwelling zones
 - Coasts
 - Open ocean
- My modification
 - “Coasts” lumped with temperate & subpolar open ocean
 - “Open ocean” includes only low latitudes

Pelagic Food Chain: Summary

- 3 factors that determine food-chain productivity differences in different environments
 - Primary productivity
 - Subject of next lecture
 - Trophic efficiency
 - Argued to reflect dispersal of food supplies
 - Predators expend more energy to obtain dispersed prey
 - Number of trophic levels
 - Size of primary producers
 - Small phytoplankton: more trophic levels to grow a fish big enough to harvest
 - Size of harvestable fish
 - Small fish harvestable near shore, big fish far from shore

NOTE: Biomass used here as an indicator of productivity
Comparing Food Chains

• Upwelling vs. (low-latitude) open ocean
 - Remember Peruvian case is unique
 - More typical upwelling has harvest from 3rd trophic level
 • Also some from 4th

• In (low-lat) open ocean, phytoplankton small
 - Microflagellates & cyanobacteria
 - So herbivores small (Protozoa microzooplankton)
 - Copepod- & krill-sized zooplankton are carnivores
 - 1 extra trophic level to reach that size of ZP

Result: 2 extra trophic level in (low-lat) open ocean vs. (typical non-Peru) upwelling

• Combines with lower efficiency in open ocean
 - These two factors illustrated in these pyramids
 - For 1000 arbitrary units of PP (primary productivity)
 - But PP is 10-20 times higher in upwelling