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Tsunami

• Japanese term

– Tsu = harbor, Nami = wave

– Both singular & plural

• “Tidal Wave” a misnomer

– Nothing to do with tides

•Except both are waves on water

– “Seismic sea wave” better

• What causes tsunami?

– Usually major submarine quakes

– But also volcanoes, landslides, iceberg falls
1
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Tsunami

• Most common 
cause

– Vertical displace-
ment of sea floor

•Uplift (pictured) 
or subsidence

•Slippage on a 
quake fault

– Hill or hole at 
sea surface

•Spreads 
outward

2 www.globalsecurity.org/eye/andaman-pix2.htm
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Seismic Causes

• Vertical movement on 2 sides of a fault

– Slippage of subducting plate

3
Garrison Fig. 10. 30 p. 251
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Seismic Causes

• Classic subduction quake tsunami

– 7.4 on Aleutian trench April 1 1946

•Sea floor uplift

– Scotch Cap lighthouse 90 miles away

• 100-ft. wave struck ~48 minutes later, 5 killed

4
Garrison p. 251, www.usc.edu/dept/tsunamis/alaska/1946/webpages/index.html
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Northwest Seismic Causes

• Cascadia subduction 
zone

– Between quakes, sea 
floor sinks & continent 
rises

•Olympic coast rising 
~3 mm/yr

– Rupture: sea floor 
lifts, continent 
subsides

• Falls ~ 1 meter

5
http://www.pnsn.org/HAZARDS/CASCADIA/land_levels.html
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Northwest Seismic Causes

• Seattle Fault

– Crust blocks squeezed 
by plate collision

– Crust south of fault 
rose ~20 ft.

• ~7 m (20 ft.)

• 900 AD

•Crust north of fault fell

– Modeled scenario for 
future quake & 
tsunami

6

Figure 3. Freeze frames of animation of modeled tsunami at 30-second intervals (from left to right). The wave crest is colored pale blue. Note that because Harbor Island is uplifted by the earthquake, the Duwamish Waterway initially drains rapidly before the wave
reflects off the north side of the bay and then inundates the Harbor Island area.
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Figure 1. (left) Map showing Seattle fault and associated ground deformation model used in this
study. Numbered locations are localities mentioned in text. 1, Restoration Point; 2, Newcastle Hills;
3, Alki Point; 4, West Point; 5, Cultus Bay; 6, Snohomish Delta.
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The phenomenon we call “tsunami” (soo-NAH-mee) is a series of traveling
ocean waves of extremely long length generated by disturbances associated
primarily with earthquakes occurring below or near the ocean floor.
Underwater volcanic eruptions and landslides can also generate tsunamis. In
the deep ocean, their length from wave crest to wave crest may be a hundred
miles or more but with a wave height of only a few feet or less. They cannot be
felt aboard ships nor can they be seen from the air in the open ocean. In deep
water, the waves may reach speeds exceeding 500 miles per hour.

Tsunamis are a threat to life and property to anyone living near the ocean. For
example, in 1992 and 1993 over 2,000 people were killed by tsunamis
occurring in Nicaragua, Indonesia and Japan. Property damage was nearly one
billion dollars. The 1960 Chile Earthquake generated a Pacific-wide tsunami
that caused widespread death and destruction in Chile, Hawaii, Japan and other
areas in the Pacific. Large tsunamis have been known to rise over 100 feet,
while tsunamis 10 to 20 feet high can be very destructive and cause many
deaths and injuries.

From
by the U.S. Department of Commerce,

National Oceanic and Atmospheric Administration,
National Weather Service, Intergovernmental Oceanographic Commission,

and International Tsunami Information Center
Accessed at http://www.nws.noaa.gov/om/brochures/tsunami.htm on 8/27/02

Tsunamis—The Great Waves
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Figure 2. Computed current velocity zones. Note that velocities are highest along
the shoreline and in narrow channels. One meter/second is ~2.2 mph.
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I 1995, Congress directed the National Oceanic and Atmospheric Administration (NOAA)
to develop a plan to prot ct the West Coast from tsunamis generated locally. A panel of
representatives from NOAA, the Federal Emergency Management Agency (FEMA), the
U.S. Geological Survey (USGS) and the five Pacific coast states wrote the plan and
submitted it to Congress, which created the National Tsunami Hazard Mitigation Program
(NTHMP) in October of 1996. The National Tsunami Hazard Mitigation Program is
designed to reduce the impact of tsunamis through warning guidance, hazard assessment,
and mitigation. A key component of the hazard assessment for tsunamis is delineation of
areas subject to tsunami inundation. This map is part of a series of tsunami inundation maps
produced by the Washington Department of Natural Resources, Division of Geology and
Earth Resources, in cooperation with the Washington Emergency Management Division, as a
contribution of the National Tsunami Hazard Mitigation Program (Walsh and others,
2003a,b; 2002a,b; 2000). These maps are produced using computer models of earthquake-
generated tsunamis from nearby seismic sources. The modeling for this map was done by the
Center for the Tsunami Inundation Mapping Efforts (TIME) at NOAA's Pacific Marine
Environmental Laboratory in Seattle for a scenario earthquake on the Seattle fault.

Geographic features now known to be associated with the Seattle fault have been noted for
many years. Vancouver (1798) noted that the fault-uplifted bedrock wavecut platform at
Restoration Point (Fig. 1, Location 1) on Bainbridge Island “did not possess that beautiful
variety of landscape, being an almost impenetrable wilderness of lofty trees” that
characterized the rest of his explorations in Puget Sound. Kimball (1897) described the
Newcastle Hills (Fig. 1, Location 2), part of the hanging wall of the fault, as a “postglacial
eruption”. Daneš and others (1965) interpreted the large gravity and magnetic anomalies
through central Puget Sound and the associated abrupt change in the sedimentary section
thickness as an active fault with about 11 km of displacement. Rogers (1970) collected
additional gravity and magnetic data across the structure and named it the Seattle–Bremerton
fault. Gower (1978) demonstrated that the uplift at Restoration Point (Fig. 1, Location 1)
was Holocene in age and Bucknam and others (1992) showed that there was an uplift of 7
meters produced on the fault about 1,000 years ago.

In 1996, the first of a series of lidar (Light Detection And Ranging) surveys was flown
over Bainbridge Island. This and subsequent lidar missions have enabled scientists to locate
splays of the fault in a number of places accurately enough to dig trenches (Bucknam and
others, 1999; Nelson and others, 2002). Lidar mapping and trenching have enabled scientists
to accurately map the amount of uplift on the fault in some places. Also in 1996, the U.S.
Geological Survey began several large-scale geophysical studies. An aeromagnetic study of
the Puget Sound (Blakely and others, 1999, 2002) enabled more accurate location of the
fault along its entire length. Seismic reflection and tomographic studies, such as SHIPS
(Seismic Hazards Investigations in Puget Sound) and other geophysical studies in Puget
Sound have greatly increased the understanding of the fault characteristics at depth (Pratt
and others, 1997; Johnson and others, 1999; Brocher and others, 2001; ten Brink and others,
2002; Van Wagoner and others, 2002), although considerable uncertainties and controversy
remain.

There also is substantial evidence that earthquakes on the Seattle fault can generate
tsunamis. Atwater and Moore (1992) showed that tsunamis inundated part of Whidbey
Island (Fig. 1, Location 5) and West Point (Fig. 1, Location 4) about 1000 years ago, and
Jacoby and others (1992) showed that a tree in the tsunami deposit at West Point died in the
same season of the same year as a drowned forest carried into Lake Washington by a huge
landslide from Mercer Island, strongly implicating the A.D. 900–930 event. A discontinuous
sand layer along Snohomish delta distributaries—Ebey Slough, Steamboat Slough, Union
Slough, and Snohomish River (Fig. 1, Location 6)—also probably was deposited by the
tsunami from the large A.D. 900–930 earthquake on the Seattle fault (Bourgeois and
Johnson, 2001).

Tsunami inundation shown on the map is based on a computer model of waves generated by
the Seattle fault (Titov and others, in press). The model used is the finite difference model of
Titov and Synolakis (1998), also known as the Method of Splitting Tsunami (MOST) model
(Titov and González, 1997). It uses a grid of topographic and bathymetric elevations and
calculates a wave elevation and velocity at each gridpoint at specified time intervals to
simulate the generation, propagation and inundation of tsunamis in the Elliot Bay area.

In this MOST model study, the tsunami is generated by a Seattle fault deformation model
that simulates the A.D. 900–930 event as a credible worst-case scenario of magnitude 7.3.
The magnitude was chosen to be consistent with the 2002 USGS update of the National
Seismic Hazard Maps (Frankel and others, 2002). Parameter values are based on Brocher
and others (2001), Calvert and Fisher (2001), and ten Brink and others (2002).

1 0.5 15.2 20 87.9 60 1
2 0.5 6.3 20 86.6 60 1
3 0.5 8.9 20 96.0 60 12
4 0.5 3.2 20 128.8 60 11
5 0.5 11.5 20 99.3 60 4
6 0.5 14.9 20 81.0 60 1

The slip distribution was constrained, through trial-and-error, to match available field
estimates of vertical displacement at three sites—Alki Point (Fig. 1, Location 3; +4 m),
Restoration Point (Fig. 1, Location 1; +7 m) and West Point (Fig. 1, Location 4; –1 ±0.5 m).

Titov and others (in press) also modeled a M7.6 event, and the tsunami inundation values
and patterns were essentially the same as for the M7.3 event. No doubt this is due to the fact
that the deformation patterns and values were very similar for both events, since they were
each constrained by field estimates at the three sites. Also, the smaller ground displacement
zone of the M7.3 event forms a more concentrated tsunami source that compensates for its
smaller overall displacement.

The computed tsunami inundation is shown on the map in three color-coded depth
ranges—0–0.5 m, 0.5–2 m, and greater than 2 m. These depth ranges were chosen because
they are approximately knee-high or less, knee-high to head-high, and more than head-high.
The limit of tsunami inundation is the landward edge of the green zone. In previous maps,
we have shown only the edge of inundation, but for this map, much higher resolution
bathymetric and topographic data were available. Figure 2 also shows current velocities in
two zones—less than or greater than 1.5 meters/second (~3 miles/hour), which is the current
speed at which it would be difficult to stand. Within this zone, computed velocities locally
exceed 20 meters/second (~40 miles/hour). Computed wave heights in Elliott Bay were
approximately 6 meters. Figure 3 shows a time progression of the wave across Elliott Bay at
30-second intervals. Note that because Harbor Island is uplifted by the earthquake, the
Duwamish Waterway initially drains rapidly before the wave reflects off the north side of the
bay and then inundates the Harbor Island area.

Because the nature of the tsunami depends on the initial deformation of the earthquake,
which is poorly understood, the largest source of uncertainty is the input earthquake. The
earthquake scenario used in this modeling was selected to honor the paleoseismic
constraints, but the next Seattle fault earthquake may be substantially different from these.
Sherrod and others (2000) show that an uplift event at Restoration Point predating the A.D.
900–930 event was smaller. Trenching of subsidiary structures to the Seattle fault that are
thought to be coseimic with the main fault trace (Nelson and others, 2002) indicate that there
were at least two earthquakes in the 1500 years before the A.D. 900–930 event. These,
however, did not produce prominent uplifted wavecut platforms similar to the one made by
the A.D. 900–930 event, suggesting that significant earthquakes have occurred on the fault
that had different and smaller uplifts in central Puget Sound.

Another significant limitation is that the resolution of the modeling is no greater or more
accurate than the bathymetric and topographic data used. This can be up to 50 meters
horizontally, although high-resolution multibeam data (Gardner and others, 2001) is
available for Elliott Bay and 2-foot contour topography is available for the city of Seattle.

The model run does not include the influences of changes in tides and is referred to mean
high water. The tide stage and tidal currents can amplify or reduce the impact of a tsunami
on a specific community. In Elliott Bay, the mean spring tide range is about 11 feet and can
be as much as about 16 feet (NOAA, accessed at http://co-ops.nos.noaa.gov/co-ops.html,
June 25, 2003). This means that, while the modeling can be a useful tool to guide evacuation
planning, it is not of sufficient resolution to be useful for land-use planning.

This project was supported by the National Tsunami Hazards Mitigation Program (NTHMP)
in cooperation with the city of Seattle and the Washington Emergency Management
Division. Information about NTHMP is available at http://www.pmel.noaa.gov/tsunami-
hazard/. Discussions with Tom Pratt, Brian Sherrod, and Craig Weaver (all USGS, Seattle)
were invaluable for calibrating the fault source model. Karl Wegmann and Steve Palmer,
both Washington Division of Geology and Earth Resources, provided helpful reviews.
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Table 1. Segment (west to east) parameters for magnitude 7.3 Seattle fault earthquake models. The

vertical deformation pattern is shown in Figure 1.
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Seattle Fault

• Map of modeled 
tsunami flooding

– Downtown & port

• 2–5 m “>Head-high”

• 0.5-2 “Knee to head-
high”

• 0–0.5 “<Knee-high”

•Run-up higher than 
actual height of wave

– Animation
• http://nctr.pmel.noaa.gov/

animations/seattle_cap.qt
7

Figure 3. Freeze frames of animation of modeled tsunami at 30-second intervals (from left to right). The wave crest is colored pale blue. Note that because Harbor Island is uplifted by the earthquake, the Duwamish Waterway initially drains rapidly before the wave
reflects off the north side of the bay and then inundates the Harbor Island area.
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Figure 1. (left) Map showing Seattle fault and associated ground deformation model used in this
study. Numbered locations are localities mentioned in text. 1, Restoration Point; 2, Newcastle Hills;
3, Alki Point; 4, West Point; 5, Cultus Bay; 6, Snohomish Delta.
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The phenomenon we call “tsunami” (soo-NAH-mee) is a series of traveling
ocean waves of extremely long length generated by disturbances associated
primarily with earthquakes occurring below or near the ocean floor.
Underwater volcanic eruptions and landslides can also generate tsunamis. In
the deep ocean, their length from wave crest to wave crest may be a hundred
miles or more but with a wave height of only a few feet or less. They cannot be
felt aboard ships nor can they be seen from the air in the open ocean. In deep
water, the waves may reach speeds exceeding 500 miles per hour.

Tsunamis are a threat to life and property to anyone living near the ocean. For
example, in 1992 and 1993 over 2,000 people were killed by tsunamis
occurring in Nicaragua, Indonesia and Japan. Property damage was nearly one
billion dollars. The 1960 Chile Earthquake generated a Pacific-wide tsunami
that caused widespread death and destruction in Chile, Hawaii, Japan and other
areas in the Pacific. Large tsunamis have been known to rise over 100 feet,
while tsunamis 10 to 20 feet high can be very destructive and cause many
deaths and injuries.
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Figure 2. Computed current velocity zones. Note that velocities are highest along
the shoreline and in narrow channels. One meter/second is ~2.2 mph.
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I 1995, Congress directed the National Oceanic and Atmospheric Administration (NOAA)
to develop a plan to prot ct the West Coast from tsunamis generated locally. A panel of
representatives from NOAA, the Federal Emergency Management Agency (FEMA), the
U.S. Geological Survey (USGS) and the five Pacific coast states wrote the plan and
submitted it to Congress, which created the National Tsunami Hazard Mitigation Program
(NTHMP) in October of 1996. The National Tsunami Hazard Mitigation Program is
designed to reduce the impact of tsunamis through warning guidance, hazard assessment,
and mitigation. A key component of the hazard assessment for tsunamis is delineation of
areas subject to tsunami inundation. This map is part of a series of tsunami inundation maps
produced by the Washington Department of Natural Resources, Division of Geology and
Earth Resources, in cooperation with the Washington Emergency Management Division, as a
contribution of the National Tsunami Hazard Mitigation Program (Walsh and others,
2003a,b; 2002a,b; 2000). These maps are produced using computer models of earthquake-
generated tsunamis from nearby seismic sources. The modeling for this map was done by the
Center for the Tsunami Inundation Mapping Efforts (TIME) at NOAA's Pacific Marine
Environmental Laboratory in Seattle for a scenario earthquake on the Seattle fault.

Geographic features now known to be associated with the Seattle fault have been noted for
many years. Vancouver (1798) noted that the fault-uplifted bedrock wavecut platform at
Restoration Point (Fig. 1, Location 1) on Bainbridge Island “did not possess that beautiful
variety of landscape, being an almost impenetrable wilderness of lofty trees” that
characterized the rest of his explorations in Puget Sound. Kimball (1897) described the
Newcastle Hills (Fig. 1, Location 2), part of the hanging wall of the fault, as a “postglacial
eruption”. Daneš and others (1965) interpreted the large gravity and magnetic anomalies
through central Puget Sound and the associated abrupt change in the sedimentary section
thickness as an active fault with about 11 km of displacement. Rogers (1970) collected
additional gravity and magnetic data across the structure and named it the Seattle–Bremerton
fault. Gower (1978) demonstrated that the uplift at Restoration Point (Fig. 1, Location 1)
was Holocene in age and Bucknam and others (1992) showed that there was an uplift of 7
meters produced on the fault about 1,000 years ago.

In 1996, the first of a series of lidar (Light Detection And Ranging) surveys was flown
over Bainbridge Island. This and subsequent lidar missions have enabled scientists to locate
splays of the fault in a number of places accurately enough to dig trenches (Bucknam and
others, 1999; Nelson and others, 2002). Lidar mapping and trenching have enabled scientists
to accurately map the amount of uplift on the fault in some places. Also in 1996, the U.S.
Geological Survey began several large-scale geophysical studies. An aeromagnetic study of
the Puget Sound (Blakely and others, 1999, 2002) enabled more accurate location of the
fault along its entire length. Seismic reflection and tomographic studies, such as SHIPS
(Seismic Hazards Investigations in Puget Sound) and other geophysical studies in Puget
Sound have greatly increased the understanding of the fault characteristics at depth (Pratt
and others, 1997; Johnson and others, 1999; Brocher and others, 2001; ten Brink and others,
2002; Van Wagoner and others, 2002), although considerable uncertainties and controversy
remain.

There also is substantial evidence that earthquakes on the Seattle fault can generate
tsunamis. Atwater and Moore (1992) showed that tsunamis inundated part of Whidbey
Island (Fig. 1, Location 5) and West Point (Fig. 1, Location 4) about 1000 years ago, and
Jacoby and others (1992) showed that a tree in the tsunami deposit at West Point died in the
same season of the same year as a drowned forest carried into Lake Washington by a huge
landslide from Mercer Island, strongly implicating the A.D. 900–930 event. A discontinuous
sand layer along Snohomish delta distributaries—Ebey Slough, Steamboat Slough, Union
Slough, and Snohomish River (Fig. 1, Location 6)—also probably was deposited by the
tsunami from the large A.D. 900–930 earthquake on the Seattle fault (Bourgeois and
Johnson, 2001).

Tsunami inundation shown on the map is based on a computer model of waves generated by
the Seattle fault (Titov and others, in press). The model used is the finite difference model of
Titov and Synolakis (1998), also known as the Method of Splitting Tsunami (MOST) model
(Titov and González, 1997). It uses a grid of topographic and bathymetric elevations and
calculates a wave elevation and velocity at each gridpoint at specified time intervals to
simulate the generation, propagation and inundation of tsunamis in the Elliot Bay area.

In this MOST model study, the tsunami is generated by a Seattle fault deformation model
that simulates the A.D. 900–930 event as a credible worst-case scenario of magnitude 7.3.
The magnitude was chosen to be consistent with the 2002 USGS update of the National
Seismic Hazard Maps (Frankel and others, 2002). Parameter values are based on Brocher
and others (2001), Calvert and Fisher (2001), and ten Brink and others (2002).

1 0.5 15.2 20 87.9 60 1
2 0.5 6.3 20 86.6 60 1
3 0.5 8.9 20 96.0 60 12
4 0.5 3.2 20 128.8 60 11
5 0.5 11.5 20 99.3 60 4
6 0.5 14.9 20 81.0 60 1

The slip distribution was constrained, through trial-and-error, to match available field
estimates of vertical displacement at three sites—Alki Point (Fig. 1, Location 3; +4 m),
Restoration Point (Fig. 1, Location 1; +7 m) and West Point (Fig. 1, Location 4; –1 ±0.5 m).

Titov and others (in press) also modeled a M7.6 event, and the tsunami inundation values
and patterns were essentially the same as for the M7.3 event. No doubt this is due to the fact
that the deformation patterns and values were very similar for both events, since they were
each constrained by field estimates at the three sites. Also, the smaller ground displacement
zone of the M7.3 event forms a more concentrated tsunami source that compensates for its
smaller overall displacement.

The computed tsunami inundation is shown on the map in three color-coded depth
ranges—0–0.5 m, 0.5–2 m, and greater than 2 m. These depth ranges were chosen because
they are approximately knee-high or less, knee-high to head-high, and more than head-high.
The limit of tsunami inundation is the landward edge of the green zone. In previous maps,
we have shown only the edge of inundation, but for this map, much higher resolution
bathymetric and topographic data were available. Figure 2 also shows current velocities in
two zones—less than or greater than 1.5 meters/second (~3 miles/hour), which is the current
speed at which it would be difficult to stand. Within this zone, computed velocities locally
exceed 20 meters/second (~40 miles/hour). Computed wave heights in Elliott Bay were
approximately 6 meters. Figure 3 shows a time progression of the wave across Elliott Bay at
30-second intervals. Note that because Harbor Island is uplifted by the earthquake, the
Duwamish Waterway initially drains rapidly before the wave reflects off the north side of the
bay and then inundates the Harbor Island area.

Because the nature of the tsunami depends on the initial deformation of the earthquake,
which is poorly understood, the largest source of uncertainty is the input earthquake. The
earthquake scenario used in this modeling was selected to honor the paleoseismic
constraints, but the next Seattle fault earthquake may be substantially different from these.
Sherrod and others (2000) show that an uplift event at Restoration Point predating the A.D.
900–930 event was smaller. Trenching of subsidiary structures to the Seattle fault that are
thought to be coseimic with the main fault trace (Nelson and others, 2002) indicate that there
were at least two earthquakes in the 1500 years before the A.D. 900–930 event. These,
however, did not produce prominent uplifted wavecut platforms similar to the one made by
the A.D. 900–930 event, suggesting that significant earthquakes have occurred on the fault
that had different and smaller uplifts in central Puget Sound.

Another significant limitation is that the resolution of the modeling is no greater or more
accurate than the bathymetric and topographic data used. This can be up to 50 meters
horizontally, although high-resolution multibeam data (Gardner and others, 2001) is
available for Elliott Bay and 2-foot contour topography is available for the city of Seattle.

The model run does not include the influences of changes in tides and is referred to mean
high water. The tide stage and tidal currents can amplify or reduce the impact of a tsunami
on a specific community. In Elliott Bay, the mean spring tide range is about 11 feet and can
be as much as about 16 feet (NOAA, accessed at http://co-ops.nos.noaa.gov/co-ops.html,
June 25, 2003). This means that, while the modeling can be a useful tool to guide evacuation
planning, it is not of sufficient resolution to be useful for land-use planning.

This project was supported by the National Tsunami Hazards Mitigation Program (NTHMP)
in cooperation with the city of Seattle and the Washington Emergency Management
Division. Information about NTHMP is available at http://www.pmel.noaa.gov/tsunami-
hazard/. Discussions with Tom Pratt, Brian Sherrod, and Craig Weaver (all USGS, Seattle)
were invaluable for calibrating the fault source model. Karl Wegmann and Steve Palmer,
both Washington Division of Geology and Earth Resources, provided helpful reviews.
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Table 1. Segment (west to east) parameters for magnitude 7.3 Seattle fault earthquake models. The

vertical deformation pattern is shown in Figure 1.
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Indian Ocean Tsunami

• Source at NW tip of Indonesia

– Banda Aceh

– Magnitude 9.0

• Largest since 1964

– 231,452 deaths

•Highest toll in
recorded history

– Damage reached
E. African coast

– Waves detected in
Pacific & Atlantic

8 www.globalsecurity.org/eye/andaman-maps.htm
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"Some 11,460 people were killed
and thousands more were missing
after a powerful earthquake...
triggered giant tidal waves." (AFP)
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SITUATION
A massive earthquake struck the west coast of 
Indonesia's northern Sumatra island on 26 Dec 2005
generating Tsunamis that killed thousands of people
throughout east  and southeast Asia. AFP reports 
more than 11,000 deaths in the region: app. 4,200 in
Indonesia, 7,000 in India and Sri Lanka, hundreds of 
deaths in Thailand, Maldives, Myanmar, and 
Malaysia. Death toll expected to rise as more 
information becomes available.

ACTION
UNDP administrator, UN Emergency Relief
Coordinator requesting all UN Country Teams in 
affected region to convene crisis meetings 
immediately. Indonesian Red Cross en route to Aceh.
Sri Lanka declared state of disaster. IFRC has
launched 6.6 million USD appeal for assistance for
500,000 affected people for six months.
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• Subduction zone in 
E. Indian Ocean

9 www.globalsecurity.org/eye/andaman-sri-lanka.htm

Indian Ocean

www.globalsecurity.org/eye/andaman-maps.htm
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• Subduction 
zone in E. 
Indian Ocean

10

Indian Ocean

http://es.ucsc.edu/~ward/indo.mov
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An Unusual Tsunami

• Lituya Bay, Alaska July 7 1958

– 8.0 quake on land triggered coastal landslide

– Caused
wave in
enclosed
bay

– Wall of water
100 ft. high

• 2 boaters
killed, some
survived

11 www.usc.edu/dept/tsunamis/alaska/1958/webpages/index.html
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Lituya Bay

• Site of slide 

– Largest run-up
in recent history

• 1720 feet up
hillside

• Up to 3600
feet inland

12
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Hawaiian Landslide Tsunami

• Sonar evidence of huge landslide deposits

– Kona coast of Hawaii (Big Island)

• Coral debris
60 m above
sea level

– Both dated to
~110K years

– Island was
~300 m higher

– Run-up height
~1000 ft.

13 http://www.mala.bc.ca/~earles/kohala-tsunami-sep04.htm
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• La Palma, Canary Islands

– Volcano slope unstable?

• Landslide feared from eruption

• 100-meter tsunami?

– Strikes Morocco in 10 min.

– 50-m wave reaches U.S.
East Coast in 8–9 hours

• Many scientists skeptical

– Local tsunami only?

Future Mega-Tsunami?

14 http://volcano.und.edu/vwdocs/volc_images/africa/lapalma.html

archives.cnn.com/2001/TECH/science/08/29/tidal.wave/index.html

www.iberianature.com/material/megatsunami.html
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What Affects Tsunami Size?

• Area of sea floor that changes elevation

– Length of subduction zone that ruptures

– Vertical displacement distance

– Displace the “water column”

– Ripples travel outward from epicenter

• Some large quakes do not generate tsunami

– Or any at all

– Reasons not fully understood

– Strike-slip (transform) quakes often do not 
displace the sea surface much

15
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Northwest Scenario

• Up to 1100 km length of subduction zone 
rupture

– 50–150 km wide

– Shaking could cause damage inland in 
Seattle. Portland, Vancouver

• 1700 AD tsunami height

– Estimated @ 10 m

– 15-40 minutes to reach coast

• 500-600 year average recurrence interval

– But some have been less than 300
16

http://earthquake.usgs.gov/regional/pacnw/paleo/greateq/conf.html
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Tsunami Anatomy

• A classic progressive wave

– Crest = high point

– Trough = low point

– Height = vertical elevation of crest above trough

– Wavelength = horizontal distance between 
crests or troughs

– Period = time passage between successive 
crests or troughs

• = Time to travel
1 wavelength

17

Garrison Fig. 10.2
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• Wave sets travel radially out from source

– “Pebble in a pond”

– Crest or trough may lead

• Trough if
sea floor
drops

– Height
gradually
decreases
with
distance

Tsunami Propagation

18 www.pgc.nrcan.gc.ca/press/images/2003JB002521-animation.gif
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Tsunami Propagation

• Height generally very low in deep ocean

– Less than 1 meter

– Very long wavelength

•Hundreds of kilometers

– Very long period

• 5–20 minutes between crests

– May not be noticed by ships at sea

• Height increases as waves approach shore

– Wave motion occurs over entire depth of “water 
column”

– Energy squeezed into a shallower depth19
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• “Shallow-water wave”

– Defined as wave with length >20 times depth

•Or depth <1/20 (5%) of wavelength

– Speed controlled by depth of water

• Friction against the bottom

Tsunami Speed

20 Garrison Fig. 10.6 p. 233
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• “Shallow-water wave”

– Tsunami waves so long that all the ocean is 
“shallow”

– 5000 m abyssal plain vs. wavelength "200 km

– Except deepest trenches (11 km)

Tsunami Speed

21
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Tsunami Speed

• Speed controlled by depth of water

– Wave motion reaches to the bottom

• Speed calculated from water depth

– C (m/sec) = “Celerity” !gd

• g = gravitational acceleration 9.8 m/sec2

• d = depth in meters

•Garrison p. 249

– Speed range 500–1000 km/hr

• = 300–600 miles/hr

•Speed of a jetliner!

– Wavelength up to 500–650 km
22
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• Wave front affected by depth of water

• Slows in shallower water

•E.g. mid-ocean ridges

Tsunami Speed

23

http://nctr.pmel.noaa.gov/animate.html
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Tsunami at the Shore

• Wave slowing & shortening near shore

– Increases
height

24
www.globalsecurity.org/eye/andaman-pix2.htm
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Tsunami at the Shore

• Some waves are channeled
by shape of shoreline

– Increases height

– Hilo, Hawaii v-shaped harbor

• Funnels incoming waves

• Less damage on other shores

• 1946 Aleutian quake

– 96 dead in Hilo, 150 total in Hawaii

– 25 foot wave

– Led to establishment of Pacific Tsunami Warning Network

• 1960 Chilean quake

– 61 drown
25
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Tsunami at the Shore

• Steady rise in sea level

– Patong Beach 12/26/2004
• http://video.google.com/videoplay?docid=-177191999770155473&q=tsunami

– Phuket Thailand 12/26/2004
• http://video.google.com/videoplay?docid=-8583433486934683879&q=tsunami

– Prolonged landward flow & powerful drainage

• NOT the huge breaker of sci-fi movies

– Except rare cases of bay funneling

•Koh Lanta Thailand 12/26/2004
• http://video.google.com/videoplay?docid=-529794418106164793&q=tsunami

• A series of waves 5–20 min apart (period)
26
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Tsunami Warnings

• Arrival time predictions based on known 
speed & depth relationship

– Simulated
quake at Neah
Bay WA

• Tip of Olympic
Peninsula

– Each colored
band  = 1 hour

– Note slowing in
shallow areas

27
http://wcatwc.arh.noaa.gov/ttt/ttt.htm
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Tsunami Detection

• Global seismometer network

– Sense any quake within minutes

– Triangulate to determine location epicenter

• Tidal stations

– Detect changes is sea level along coast

– In sequence, calculate wave speed & direction

• New Pacific tsunami sensor system (2006)

– U.S. Nat. Oceanic & Atmospheric Admin. 

•  Deep Ocean Assessment & Reporting of Tsunami

• NOAA DART http://nctr.pmel.noaa.gov/Dart/index.html

28
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“Tsunameter”

• DART system

– Surface buoy detects 
vertical motion

•Computer filters out 
shorter waves

– Bottom instrument 
detects pressure waves

•Relays data to surface

•Buoy relays to land 
stations via satellite

•Animation http://

nctr.pmel.noaa.gov/Mov/

DART_04.swf29
http://nctr.pmel.noaa.gov/Dart/dart_ms1.html
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Tsunami Detection

• “Nerve centers” in Hawaii & Alaska

– Set up starting 1948

•After 1946 Aleutian/Hawaiian disaster

– Collect data from all 3 sources

•Seismic, tide, now tsunameter

– Predict arrival time & send warning

– Pacific Tsunami Warning Center (Hawaii)
• www.prh.noaa.gov/pr/ptwc/

– West Coast & Alaska Tsunami Warning 
Center
• http://wcatwc.arh.noaa.gov/

30
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Pacific Tsunami Warning
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www.globalsecurity.org/eye/andaman-pix2.htm
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Tsunami Warnings

• No warning system in 
Indian Ocean at time 
of “Banda Aceh”

– Hawaii Center 
predicted tsunami in 
real time

– But no notification 
system in Indian Ocean

•Poverty, lack of 
technology & education

•Motivation?
32

http://epod.usra.edu/archive/epodviewer.php3?oid=226848
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