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PROJECT SUMMARY:

The objective of this proposed project plan is to characterize the flow of the Equatorial 

Undercurrent (EUC) upon its approach and subsequent bifurcation around the 

Archipiélago de Colón (Galápagos Islands).  The three methods of data acquisition that 

will be employed are as follows.  A combination of transects to the north, west, and south 

of Isabela Island will gather water flow data using a 75 MHz hull-mounted Acoustic 

Doppler Current Profiler (ADCP) on the R/V Thomas G. Thompson.  Various 

Conductivity, Temperature, and Depth (CTD) casts, mounted with additional sensors, 

will profile stations along ADCP transects and elsewhere in Isabela’s vicinity to profile 

the local water mass properties, namely, salinity, temperature, and dissolved oxygen.  

Finally, ARGOS and Iridium Drifters will be deployed in each bifurcated core of the 

EUC (one Drifter on the north side of Isablea, the other Drifter on the south side of 

Isabela) in attempt to identify the paths of the bifurcated EUC core flows.  The 

importance of identifying the location, magnitude, and subsequent distribution of the 

EUC lies not only in improved parameterization, but also for the availability of data for 

comparison to other seasonal and interannual phenomena.



INTRODUCTION:

Though some meridional fluctuations are evident, once formed, the eastward propagation 

of the EUC west of the Galápagos is constricted to within two degrees latitude of the

equator (Steger 1997) and exists at  depths between 50 and 275 meters (Steger 1997).  

Roughly speaking, the EUC is a subsurface current about 200 meters thick and typically 

has maximum eastward velocities at a depth of 75 meters (Feldman 1984).  The presence 

of the South Equatorial Current, which is about 15 meters thick and found above the EUC 

and is thickest north and south of the EUC (Felman 1984) complicates local circulation.  

Upon approaching the Galápagos, the core of the EUC (highest flow velocities and 

deepest subsurface extent) is centered approximately 0.5 degrees south of the equator 

(Lukas 1986, Steger 1997).  Since the Galápagos Archipelago extends roughly from 1°N 

to 1.5°S, it represents an obstacle to the eastward propagation of the EUC.  The collision 

of the EUC’s flow against the Galápagos Archipelago results in a combination of three 

subsequent flows: 1) some of the EUC is upwelled along the steep western bathymetry of 

Isabela and Fernandina Islands, 2) some of the EUC is deflected to around the northern 

perimeter of Isabela Island, and 3) some of the EUC is deflected to around the southern 

perimeter of Isabela Island.

Though the vast majority of the EUC remains subsurface along the western margins of 

the Galápagos Archipelago, the significance of the presence of nutrient-rich upwelled 

EUC waters is of tremendous biological importance (Feldman 1984).  Among the 

determinants of the nature of the location and magnitude of the EUC are seasonal and 



interannual variations in wind stress, strength of neighboring or adjacent currents, and 

geostrophic forcings (Cane 1979, Enfield 1981).   

Water mass properties such as a high salinity core (34.95-35.00 PSU) and a thermostad of 

13°C demark waters typical of the EUC (Lukas 1986), and thus CTD casts taken at 

regular intervals in addition to strategic locations, such as the center of the EUC core and 

the interfaces between the EUC and the neighboring water masses and currents would be 

valuable.  Some seasonal fluctuations of the EUC include strong and shallow current 

speeds between March and September, and weaker deeper maximum current velocities 

between November and January (Lukas 1986, Sakai 1972, Fernander and Miller 1981).  

During the boreal spring a surfacing of the EUC is noted in Jones 1969, and might be 

attributed to “first baroclinic mode Kelvin waves having an eastward current maximum at 

the surface (Hayes and Halpern 1984).  This process actually displaces the EUC 

downward with the thermocline (Lukas 1986).  During mid November of 1993 the EUC 

along 92°W was observed to have peak velocities of 60 centimeters per second at a depth 

of 70 meters and was transporting water at a rate of 6.6 Sverdrups (Steger 1997).



PROPOSED RESEARCH:

<<<< NOTE: An updated chart indicating ADCP transect and CTD cast locations will 

be provided on Tuesday November 29, 2005 due to continuing refinements in cruise 

planning by affiliated professors and students.>>>>

The three adjacent line segments drawn in red in the chart below indicate the original 

proposed transects along which ADCP and CTD would have been gathered.  This plan, 

henceforth referred to as Plan A, is an unreasonable proposition because even when 

excluding the CTD time requirements, at the ADCP-limited seven knot maximum 

velocity, these three adjacent transects would require approximately 44.7 hours, which is 

more time than an undergraduate principle investigator has the right to consume.



Plan A:     Traveling three segments at the ADCP-limited 7 knot speed I propose to 

voyage from the northwest portion of Isabela (anywhere between Punta Vincente Roca 

on the west and Punta Albemarle on the east) to 1°N and 92°W which would take about 

9.5 hours, then travel 3° latitude southward to 2°S and 92°W, which would require about 

26.7 hours, and finally, complete a transect towards the southwestern portion of Isabela 

(anywhere between Punta Essex on the west and Puerto Villamil on the east) requiring an 

additional 9.5 hours. Total time required for ADCP alone is 44.7 hours (9+26.7+9).

Some version of Plan A is in the process of being contorted to the time available for such 

experimentation.  As soon as I am provided with the facet of the EUC that will be made 

measurable by ship-time constraints, I will submit an appropriate and detailed purpose 

and procedure for this feasible data set.
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