Multiple Operations involving the **del Operator** (∇) in Cartesian, Cylindrical Coordinates

https://en.wikipedia.org/wiki/Del_in_cylindrical_and_spherical_coordinates

Del formula [edit]

Table with the del operator in cartesian, cylindrical and spherical coordinates

Operation	Cartesian coordinates (x, y, z)	Cylindrical coordinates $(ho, arphi, z)$	Spherical coordinates $(r, heta, arphi)$, where $ heta$ is the polar and $arphi$ is the azimuth $ ext{angle}^{lpha}$
A vector field A	$A_x\hat{f x}+A_y\hat{f y}+A_z\hat{f z}$	$A_{ ho}\hat{oldsymbol{ ho}}+A_{arphi}\hat{oldsymbol{arphi}}+A_{z}\hat{f z}$	$A_{ au}\hat{f r}+A_{ heta}\hat{m heta}+A_{arphi}\hat{marphi}$
Gradient $ abla f$	$rac{\partial f}{\partial x}\hat{\mathbf{x}} + rac{\partial f}{\partial y}\hat{\mathbf{y}} + rac{\partial f}{\partial z}\hat{\mathbf{z}}$	$rac{\partial f}{\partial ho}\hat{oldsymbol{ ho}} + rac{1}{ ho}rac{\partial f}{\partial arphi}\hat{oldsymbol{arphi}} + rac{\partial f}{\partial z}\hat{f z}$	$rac{\partial f}{\partial r}\hat{\mathbf{r}} + rac{1}{r}rac{\partial f}{\partial heta}\hat{oldsymbol{ heta}} + rac{1}{r\sin heta}rac{\partial f}{\partial arphi}\hat{oldsymbol{arphi}}$
Divergence $ abla \cdot \mathbf{A}$	$rac{\partial A_x}{\partial x} + rac{\partial A_y}{\partial y} + rac{\partial A_z}{\partial z}$	$rac{1}{ ho}rac{\partial\left(ho A_{ ho} ight)}{\partial ho}+rac{1}{ ho}rac{\partial A_{arphi}}{\partialarphi}+rac{\partial A_{z}}{\partial z}$	$rac{1}{r^2}rac{\partial \left(r^2A_r ight)}{\partial r}+rac{1}{r\sin heta}rac{\partial}{\partial heta}\left(A_ heta\sin heta ight)+rac{1}{r\sin heta}rac{\partial A_arphi}{\partialarphi}$
Curl $ abla imes \mathbf{A}$	$egin{aligned} &\left(rac{\partial A_z}{\partial y} - rac{\partial A_y}{\partial z} ight)\hat{\mathbf{x}} \ + \left(rac{\partial A_x}{\partial z} - rac{\partial A_z}{\partial x} ight)\hat{\mathbf{y}} \ + \left(rac{\partial A_y}{\partial x} - rac{\partial A_x}{\partial y} ight)\hat{\mathbf{z}} \end{aligned}$	$egin{aligned} \left(rac{1}{ ho}rac{\partial A_z}{\partial arphi}-rac{\partial A_{arphi}}{\partial z} ight)\hat{oldsymbol{ ho}}\ +\left(rac{\partial A_ ho}{\partial z}-rac{\partial A_z}{\partial ho} ight)\hat{oldsymbol{arphi}}\ +rac{1}{ ho}\left(rac{\partial \left(ho A_{arphi} ight)}{\partial ho}-rac{\partial A_ ho}{\partial arphi} ight)\hat{oldsymbol{z}} \end{aligned}$	$egin{aligned} &rac{1}{r\sin heta}\left(rac{\partial}{\partial heta}\left(A_{arphi}\sin heta ight)-rac{\partial A_{ heta}}{\partialarphi} ight)\hat{\mathbf{r}}\ &+rac{1}{r}\left(rac{1}{\sin heta}rac{\partial A_{r}}{\partialarphi}-rac{\partial}{\partial r}\left(rA_{arphi} ight) ight)\hat{oldsymbol{ heta}}\ &+rac{1}{r}\left(rac{\partial}{\partial r}\left(rA_{ heta} ight)-rac{\partial A_{r}}{\partial heta} ight)\hat{oldsymbol{arphi}} \end{aligned}$
Laplace operator $\nabla^2 f \equiv \Delta f$	$rac{\partial^2 f}{\partial x^2} + rac{\partial^2 f}{\partial y^2} + rac{\partial^2 f}{\partial z^2}$	$rac{1}{ ho}rac{\partial}{\partial ho}\left(horac{\partial f}{\partial ho} ight)+rac{1}{ ho^2}rac{\partial^2 f}{\partialarphi^2}+rac{\partial^2 f}{\partial z^2}$	$rac{1}{r^2}rac{\partial}{\partial r}igg(r^2rac{\partial f}{\partial r}igg) + rac{1}{r^2\sin heta}rac{\partial}{\partial heta}igg(\sin hetarac{\partial f}{\partial heta}igg) + rac{1}{r^2\sin^2 heta}rac{\partial^2 f}{\partialarphi^2}$
Vector Laplacian $\nabla^2 \mathbf{A} \equiv \Delta \mathbf{A}$	$ abla^2 A_x \hat{\mathbf{x}} + abla^2 A_y \hat{\mathbf{y}} + abla^2 A_z \hat{\mathbf{z}}$	— View by clicking [show] — [show]	— View by clicking [show] — [sh
Material derivative $^{\alpha[1]}$ $(\mathbf{A}\cdot \nabla)\mathbf{B}$	$\mathbf{A} \cdot abla B_x \hat{\mathbf{x}} + \mathbf{A} \cdot abla B_y \hat{\mathbf{y}} + \mathbf{A} \cdot abla B_z \hat{\mathbf{z}}$	$\begin{split} &\left(A_{\rho}\frac{\partial B_{\rho}}{\partial \rho} + \frac{A_{\varphi}}{\rho}\frac{\partial B_{\rho}}{\partial \varphi} + A_{z}\frac{\partial B_{\rho}}{\partial z} - \frac{A_{\varphi}B_{\varphi}}{\rho}\right)\hat{\boldsymbol{\rho}} \\ &+ \left(A_{\rho}\frac{\partial B_{\varphi}}{\partial \rho} + \frac{A_{\varphi}}{\rho}\frac{\partial B_{\varphi}}{\partial \varphi} + A_{z}\frac{\partial B_{\varphi}}{\partial z} + \frac{A_{\varphi}B_{\rho}}{\rho}\right)\hat{\boldsymbol{\varphi}} \\ &+ \left(A_{\rho}\frac{\partial B_{z}}{\partial \rho} + \frac{A_{\varphi}}{\rho}\frac{\partial B_{z}}{\partial \varphi} + A_{z}\frac{\partial B_{z}}{\partial z}\right)\hat{\mathbf{z}} \end{split}$	— View by clicking [show] — [sh
Tensor divergence $\nabla \cdot \mathbf{T}$	— View by clicking [show] — [show]	— View by clicking [show] — [show]	— View by clicking [show] — [sh
Differential displacement $d\ell$	$dx\hat{f x} + dy\hat{f y} + dz\hat{f z}$	$d ho\hat{oldsymbol{ ho}}+ hodarphi\hat{oldsymbol{arphi}}+dz\hat{f z}$	$dr\hat{f r} + rd heta\hat{m heta} + r\sin hetadarphi\hat{m arphi}$
	$dydz\hat{\mathbf{x}}$	$ hodarphidz\hat{m{ ho}}$	$r^2\sin hetad hetadarphi\hat{\mathbf{r}}$
Differential normal area dS	$+dxdz\hat{\mathbf{y}}\ +dxdy\hat{\mathbf{z}}$	$egin{aligned} &+d hodz\hat{oldsymbol{arphi}}\ &+ hod hodarphi\hat{f z} \end{aligned}$	$+r\sin hetadrdarphi\hat{m{ heta}}\ +rdrd heta\hat{m{arphi}}$
Differential volume dV	dxdydz	$ ho\mathrm{d} ho\mathrm{d}arphi\mathrm{d}z$	$r^2\sin hetadrd hetadarphi$
	I	I .	<u> </u>

 $^{^{\}alpha}$ This page uses θ for the polar angle and φ for the azimuthal angle, which is common notation in physics. The source that is used for these formulae uses θ for the azimuthal angle and φ for the polar angle, which is common mathematical notation. In order to get the mathematics formulae, switch θ and φ in the formulae shown in the table above.