Multiple Operations involving the del Operator (∇) in Cartesian, Cylindrical Coordinates

https://en.wikipedia.org/wiki/Del_in_cylindrical_and_spherical_coordinates
Del formula [edit]

Operation	Cartesian coordinates (x, y, z)	Cylindrical coordinates (ρ, φ, z)	Spherical coordinates (r, θ, φ), where θ is the polar and φ is the azimuthal angle ${ }^{\alpha}$
A vector field \mathbf{A}	$A_{x} \hat{\mathbf{x}}+A_{y} \hat{\mathbf{y}}+A_{z} \hat{\mathbf{z}}$	$A_{\rho} \hat{\boldsymbol{\rho}}+A_{\varphi} \hat{\boldsymbol{\varphi}}+A_{z} \hat{\mathbf{z}}$	$A_{r} \hat{\mathbf{r}}+A_{\theta} \hat{\boldsymbol{\theta}}+A_{\varphi} \hat{\boldsymbol{\varphi}}$
Gradient ∇f	$\frac{\partial f}{\partial x} \hat{\mathbf{x}}+\frac{\partial f}{\partial y} \hat{\mathbf{y}}+\frac{\partial f}{\partial z} \hat{\mathbf{z}}$	$\frac{\partial f}{\partial \rho} \hat{\boldsymbol{\rho}}+\frac{1}{\rho} \frac{\partial f}{\partial \varphi} \hat{\boldsymbol{\varphi}}+\frac{\partial f}{\partial z} \hat{\mathbf{z}}$	$\frac{\partial f}{\partial r} \hat{\mathbf{r}}+\frac{1}{r} \frac{\partial f}{\partial \theta} \hat{\boldsymbol{\theta}}+\frac{1}{r \sin \theta} \frac{\partial f}{\partial \varphi} \hat{\boldsymbol{\varphi}}$
Divergence $\nabla \cdot \mathbf{A}$	$\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}$	$\frac{1}{\rho} \frac{\partial\left(\rho A_{\rho}\right)}{\partial \rho}+\frac{1}{\rho} \frac{\partial A_{\varphi}}{\partial \varphi}+\frac{\partial A_{z}}{\partial z}$	$\frac{1}{r^{2}} \frac{\partial\left(r^{2} A_{r}\right)}{\partial r}+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(A_{\theta} \sin \theta\right)+\frac{1}{r \sin \theta} \frac{\partial A_{\varphi}}{\partial \varphi}$
Curl $\nabla \times \mathbf{A}$	$\begin{aligned} & \left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right) \hat{\mathbf{x}} \\ + & \left(\frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}\right) \hat{\mathbf{y}} \\ + & \left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right) \hat{\mathbf{z}} \end{aligned}$	$\begin{array}{r} \left(\frac{1}{\rho} \frac{\partial A_{z}}{\partial \varphi}-\frac{\partial A_{\varphi}}{\partial z}\right) \hat{\boldsymbol{\rho}} \\ +\left(\frac{\partial A_{\rho}}{\partial z}-\frac{\partial A_{z}}{\partial \rho}\right) \hat{\boldsymbol{\varphi}} \\ +\frac{1}{\rho}\left(\frac{\partial\left(\rho A_{\varphi}\right)}{\partial \rho}-\frac{\partial A_{\rho}}{\partial \varphi}\right) \hat{\mathbf{z}} \end{array}$	$\begin{aligned} & \frac{1}{r \sin \theta}\left(\frac{\partial}{\partial \theta}\left(A_{\varphi} \sin \theta\right)-\frac{\partial A_{\theta}}{\partial \varphi}\right) \hat{\mathbf{r}} \\ & +\frac{1}{r}\left(\frac{1}{\sin \theta} \frac{\partial A_{r}}{\partial \varphi}-\frac{\partial}{\partial r}\left(r A_{\varphi}\right)\right) \hat{\boldsymbol{\theta}} \\ & \quad+\frac{1}{r}\left(\frac{\partial}{\partial r}\left(r A_{\theta}\right)-\frac{\partial A_{r}}{\partial \theta}\right) \hat{\boldsymbol{\varphi}} \end{aligned}$
Laplace operator $\nabla^{2} f \equiv \Delta f$	$\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}$	$\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial f}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} f}{\partial \varphi^{2}}+\frac{\partial^{2} f}{\partial z^{2}}$	$\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial f}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial f}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} f}{\partial \varphi^{2}}$
Vector Laplacian $\nabla^{2} \mathbf{A} \equiv \Delta \mathbf{A}$	$\nabla^{2} A_{x} \hat{\mathbf{x}}+\nabla^{2} A_{y} \hat{\mathbf{y}}+\nabla^{2} A_{z} \hat{\mathbf{z}}$	- View by clicking [show] - [show]	- View by clicking [show] - [show]
Material derivative ${ }^{a[1]}$ $(\mathbf{A} \cdot \nabla) \mathbf{B}$	$\mathbf{A} \cdot \nabla B_{x} \hat{\mathbf{x}}+\mathbf{A} \cdot \nabla B_{y} \hat{\mathbf{y}}+\mathbf{A} \cdot \nabla B_{z} \hat{\mathbf{z}}$	$\begin{array}{r} \left(A_{\rho} \frac{\partial B_{\rho}}{\partial \rho}+\frac{A_{\varphi}}{\rho} \frac{\partial B_{\rho}}{\partial \varphi}+A_{z} \frac{\partial B_{\rho}}{\partial z}-\frac{A_{\varphi} B_{\varphi}}{\rho}\right) \hat{\boldsymbol{\rho}} \\ +\left(A_{\rho} \frac{\partial B_{\varphi}}{\partial \rho}+\frac{A_{\varphi}}{\rho} \frac{\partial B_{\varphi}}{\partial \varphi}+A_{z} \frac{\partial B_{\varphi}}{\partial z}+\frac{A_{\varphi} B_{\rho}}{\rho}\right) \hat{\boldsymbol{\varphi}} \\ +\left(A_{\rho} \frac{\partial B_{z}}{\partial \rho}+\frac{A_{\varphi}}{\rho} \frac{\partial B_{z}}{\partial \varphi}+A_{z} \frac{\partial B_{z}}{\partial z}\right) \hat{\mathbf{z}} \end{array}$	- View by clicking [show] - [show]
Tensor divergence $\nabla \cdot \mathbf{T}$	- View by clicking [show] - [show]	- View by clicking [show] $-\quad$ [show]	- View by clicking [show] - [show]
Differential displacement $d \ell$	$d x \hat{\mathbf{x}}+d y \hat{\mathbf{y}}+d z \hat{\mathbf{z}}$	$d \rho \hat{\boldsymbol{\rho}}+\rho d \varphi \hat{\boldsymbol{\varphi}}+d z \hat{\mathbf{z}}$	$d r \hat{\mathbf{r}}+r d \theta \hat{\boldsymbol{\theta}}+r \sin \theta d \varphi \hat{\boldsymbol{\varphi}}$
Differential normal area $d \mathbf{S}$	$\begin{array}{r} \quad d y d z \hat{\mathbf{x}} \\ +d x d z \hat{\mathbf{y}} \\ +d x d y \hat{\mathbf{z}} \end{array}$	$\begin{array}{r} \rho d \varphi d z \hat{\boldsymbol{\rho}} \\ +d \rho d z \hat{\boldsymbol{\varphi}} \\ +\rho d \rho d \varphi \hat{\mathbf{z}} \end{array}$	$\begin{array}{r} r^{2} \sin \theta d \theta d \varphi \hat{\mathbf{r}} \\ +r \sin \theta d r d \varphi \hat{\boldsymbol{\theta}} \\ +r d r d \theta \hat{\boldsymbol{\varphi}} \end{array}$
Differential volume $d V$	$d x d y d z$	$\rho d \rho d \varphi d z$	$r^{2} \sin \theta d r d \theta d \varphi$

[^0]
[^0]: 别

