	Usual	** *
Quantity	symbol	Value
Charge on electron	е	$1.602 \times 10^{-19} \text{ C}$
Rest-mass of electron	me	9.109×10^{-31} kg
Electron charge/mass	e/m _e	1.759 × 10 ¹¹ C kg ⁻¹
Rest-mass of proton	M	1.673×10^{-27} kg
Ratio: proton/electron mass	M/m_e	1836
Boltzmann constant	k	$1.381 \times 10^{-23} \text{ J K}^{-1}$
Avogadro's number	NA	$6.022 \times 10^{23} \text{ mol}^{-1}$
Gas constant	R	8.315 J mol ⁻¹ K ⁻¹
Mechanical equivalent of heat		4.186 J cal ⁻¹
Volume of 1 mole of gas at s.t.p.*	V	$22.41 \times 10^{-3} \text{ m}^3$
Faraday constant	F	96 490 C mol ⁻¹
Planck's constant	h	$6.626 \times 10^{-34} \text{ J s}$
Planck's constant/ 2π	ħ	$1.055 \times 10^{-34} \text{ J s}$
Bohr magneton $[eh/4\pi m_e]$	μ _e	9.274 × 10 ⁻²⁴ J T ⁻¹
Bohr radius	ao	0.529 × 10 ⁻¹⁰ m
Gravitational constant	G	$6.673 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
Energy equivalent of 1 eV		$1.602 \times 10^{-19} \text{ J}$
Velocity of light	c	299 800 km s ⁻¹
Permeability of free space	μο	$4\pi \times 10^{-7} \mathrm{H} \mathrm{m}^{-1}$
Permittivity of free space	£0	$8.854 \times 10^{-12} \mathrm{F m^{-1}}$
	$=(\mu_0 c^2)^{-1}$	

Values of some physical constants

The values in the above table for N_A , R, J and F are 'physical' constants based on the number of atoms in 0.012 kg of ¹²C. The equivalent constants used by chemists are sometimes based on a different molar convention and the values quoted may differ by up to one part in a thousand. The calorie in this table is the 15 °C calorie defined on p. 33.

* s.t.p. = 273 K and 1 atm.