Values of some physical constants

Quantity	Usual symbol	Value
Charge on electron	e	$1.602 \times 10^{-19} \mathrm{C}$
Rest-mass of electron	m_{0}	$9.109 \times 10^{-31} \mathrm{~kg}$
Electron charge/mass	e / m_{0}	$1.759 \times 10^{11} \mathrm{Ckg}^{-1}$
Rest-mass of proton	\boldsymbol{M}	$1.673 \times 10^{-27} \mathrm{~kg}$
Ratio: proton/electron mass	$\boldsymbol{M} / \boldsymbol{m}_{\boldsymbol{e}}$	1836
Boltzmann constant	\boldsymbol{k}	$1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}{ }^{-1}$
Avogadro's number	$\boldsymbol{N}_{\boldsymbol{A}}$	$6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Gas constant	\boldsymbol{R}	$8.315 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
Mechanical equivalent of heat	-	$4.186 \mathrm{~J} \mathrm{cal}^{-1}$
Volume of 1 mole of gas at s.t.p.*	V	$22.41 \times 10^{-3} \mathrm{~m}^{3}$
Faraday constant	F	$96490 \mathrm{Cmol}^{-1}$
Planck's constant	h	$6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Planck's constant/ 2π	h	$1.055 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Bohr magneton [$\mathrm{eh} / 4 \pi \mathrm{~m}_{e}$)	μ_{B}	$9.274 \times 10^{-24} \mathrm{~J} \mathrm{~T}^{-1}$
Bohr radius	a_{0}	$0.529 \times 10^{-10} \mathrm{~m}$
Gravitational constant	\boldsymbol{G}	$6.673 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
Energy equivalent of 1 eV		$1.602 \times 10^{-19} \mathrm{~J}$
Velocity of light	c	$299800 \mathrm{~km} \mathrm{~s}^{-1}$
Permeability of free space	μ_{0}	$4 \pi \times 10^{-7} \mathrm{H} \mathrm{m}^{-1}$
Permitivity of free space	$\begin{aligned} & \varepsilon_{0} \\ & =\left(\mu_{0} c^{2}\right)^{-1} \end{aligned}$	$8.854 \times 10^{-12} \mathrm{Fm}^{-1}$

The values in the above table for N_{A}, R, J and F are 'physical' constants based on the number of atoms in 0.012 kg of ${ }^{12} \mathrm{C}$. The equivalent constants used by chemists are sometimes based on a different molar convention and the values quoted may differ by up to one part in a thousand. The calorie in this table is the $15^{\circ} \mathrm{C}$ calorie defined on p. 33.
*s.t.p. $=273 \mathrm{~K}$ and 1 atm .

