Chem E530

Vector Notation Problems for Recitation 09/27/19
\mathbf{T} and \mathbf{v} are defined as $\underline{\underline{T}}=\left[\begin{array}{lll}2 & 3 & 4 \\ 3 & 4 & 5 \\ 4 & 5 & 6\end{array}\right]$ and $\vec{v}=\left[\begin{array}{l}2 \\ 2 \\ 0\end{array}\right]$.
(i) Determine $\underline{\underline{T}} \cdot \vec{v}$
(ii) If $\underline{\underline{T}}$ is a stress tensor, find the force/area exerted on a fluid oriented such that its normal, \vec{n}, is collinear with \vec{v}.

$$
\begin{aligned}
& \text { (i) } I \cdot \vec{V}=\text { vector be } \begin{array}{c}
2+1-v^{\text {dot }}=1 \\
\text { teresor teacher }
\end{array} \quad \quad I=\left[\begin{array}{ccc}
2 & - & 1 \\
3 & 4 & 5 \\
4 & 5 & 6
\end{array}\right] \\
& \underline{I} \cdot \vec{V}=\sum_{i} \sum_{j} T_{i j} \delta_{i} \delta_{j} \cdot \sum_{k} v_{k} \delta_{n}=\sum_{j k}^{1} \sum_{i} T_{i j} v_{k} \delta_{i} \delta_{j} \cdot \delta_{n}{ }^{*}=\sum_{i} \delta_{i} \sum_{j} T_{i j} v_{j} \\
& { }^{\text {Recall }} \delta_{i j}=1 \text { when } i=j \text { and } \delta_{i j}=0 \text { when ito } \\
& \Rightarrow \underset{T}{ } \cdot \vec{V}=\left[\begin{array}{l}
T_{11} v_{1}+T_{12} v_{2}+T_{13} v_{3} \\
T_{21} v_{1}+T_{22} V_{2}+T_{23} v_{3} \\
T_{32} v_{1}+T_{32} v_{2}+T_{32} v_{3}
\end{array}\right]=\left[\begin{array}{l}
2 \times 2+3 \times 2+0 \\
3 \times 2+4 \times 2+0 \\
4 \times 2+5 \times 2+0
\end{array}\right]=\left[\begin{array}{l}
10 \\
14 \\
18
\end{array}\right] \leftarrow \\
& \text { (ii) } \vec{n} \text { is wineur } w|\vec{v} \Rightarrow| v \mid=\sqrt{2^{2}+2^{2}+0}=\sqrt{r}=2 \sqrt{2} \\
& \frac{\vec{I}}{\sqrt{n}}=\vec{n}=(1 / \sqrt{2}, 1 / \sqrt{2}, 0) \\
& I \text { is symmetric thus } I \cdot \vec{n}=\vec{n} \cdot I=\text { vector } \Rightarrow I \cdot \vec{n}=\left[\begin{array}{l}
T_{11} n_{1}+T_{12} n_{2} \\
T_{21} n_{1}+T_{22} n_{2} \\
I_{3}
\end{array}\right]=\left[\begin{array}{l}
2(1 / \sqrt{2})+3(1 / 2) \\
3(1 / \sqrt{2})+4(1 / \sqrt{2}) \\
4(1 / \sqrt{2})+5(1 / \sqrt{2}
\end{array}\right] \\
& \Rightarrow \sqrt{I \cdot \vec{n}}=(5 / \sqrt{2}, z / \sqrt{2}, 9 / \sqrt{2})
\end{aligned}
$$

1-4 Flux Normal to a Surface (Been Text, page 23)
Consider a point $P=(x, y, z)=(2 a / 3, b / 3,2 c / 3)$, which is on the surface of a spheroid defined by

$$
\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}+\left(\frac{z}{c}\right)^{2}=1
$$

Suppose that there is a flux, \mathbf{f}, that has the components

$$
\boldsymbol{f}=\left(f_{x}, f_{y}, f_{z}\right)=\left(\frac{2 a}{3}, \frac{b}{3}, \frac{2 c}{3}\right)
$$

Compute $f_{n}=\mathbf{n} . \boldsymbol{f}$ at point P , where n is the outward unit normal.

1-4. Flax Normal to a Surface
Given a point $P=(x, y, z)=(2 a / 3, b / 3,2 c / 3)$ on the surface of ain ellipsoid defined by

$$
\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}+\left(\frac{z}{c}\right)^{2}=1
$$

and a flux $f=\left(f_{x}, f_{y}, f_{z}\right)=(2 a / 3, b / 3,2 c / 3)$, compute $f_{n}=\underline{n}-\underline{f}$

There are tiv e ways to composite the unit outward n ormol, 2:
Method 1 : Cross Product of Tangent Vectors

$$
\begin{array}{ll}
r_{s}=x e_{x}+y e_{y}+F(x, y) e_{z} & (\text { position on surface) } \\
\underline{A}=\frac{\partial r_{s}}{\partial x} ; B=\frac{\partial r_{s}}{\partial y} & \begin{array}{ll}
\text { (tongan vectors, } \\
\text { from Eq. }(A, 8-1))
\end{array} \\
\underline{n}=\frac{A \times \underline{B}}{\mid A \times \underline{B}} & \text { Eq. }(A .8-2)
\end{array}
$$

Apply to the ellipsoid:

$$
\begin{aligned}
\left(\frac{z}{c}\right)^{2} & =1-\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2} \text { on surface } \\
z & =c\left[1-\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}\right]^{1 / 2} \equiv F(x, y) \\
\frac{\partial F}{\partial x} & =C\left(\frac{1}{2}\right)\left(-\frac{2 x}{a^{2}}\right)\left[1-\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}\right]^{-1 / 2} \\
& =-\frac{c x}{a^{2}}\left[1-\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}\right]^{-1 / 2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial F}{\partial X}(2 a / 3, b / 3)=-\frac{c}{a^{2}}\left(\frac{2 a}{3}\right)\left[1-\left(\frac{2}{3}\right)^{2}-\left(\frac{1}{3}\right)^{2}\right]^{-1 / 2} \\
& =-\frac{2 c}{3 a}\left(\frac{4}{a}\right)^{-1 / 2}=-\frac{c}{a} \\
& \frac{\partial F}{\partial y}=-\frac{c y}{b^{2}}\left[1-\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}\right]^{-1 / 2} \\
& \frac{\partial F}{\partial y}(2 a / 3, b / 3)=-\frac{c}{3 b}\left(\frac{4}{9}\right)^{-1 / 2}=-\frac{c}{2 b} \\
& \underline{A}=(1) e_{x}+(0) e_{y}-(c / a) e_{z} \\
& \underline{B}=(0) \underline{e}_{x}+(1) \underline{e}_{y}-(c / 2 b) \underline{e}_{z} \\
& A \times B=\left|\begin{array}{lll}
e_{x} & e_{y} & e_{z} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right| \\
& =\underline{e}_{x}\left(A_{y} B_{z}-A_{z} B_{y}\right)+\underline{e}_{y}\left(A_{z} B_{x}-A_{x} B_{z}\right) \\
& +e_{z}\left(A_{x} B_{y}-A_{y} B_{x}\right) \\
& =e_{x}\left(\frac{c}{a}\right)+e_{y}\left(\frac{c}{2 b}\right)+e_{z}(1) \\
& |A \times B|=\left[(c / a)^{2}+(c / 2 b)^{2}+1\right]^{1 / 2} \\
& \Gamma_{n}=\frac{(c / a) e_{x}+(c / 2 b) e_{y}+e_{z}}{\left[(c / a)^{2}+(c / 2 b)^{2}+1\right]^{1 / 2}} \\
& \begin{array}{l}
\left.=\frac{2 b c e_{x}+a c e_{y}+2 a b e_{z}}{\left(4 b^{2} c^{2}+a^{2} c^{2}+4 a^{2} b^{2}\right)^{1 / 2}} \right\rvert\,
\end{array}
\end{aligned}
$$

Method 2: Gradient

$$
\begin{aligned}
& G(x, y, z) \equiv z-F(x, y) \\
& \underline{n}=\frac{\nabla G}{|\nabla G|}
\end{aligned}
$$

$$
E_{9},(A, B-7)
$$

Apply to: the ellipsoid:

Same result as method 1.

$$
\begin{aligned}
& G(x, y, z)=z-c\left[1-\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}\right]^{1 / 2} \\
& \underline{\nabla} G=\frac{\partial G}{\partial x} \underline{e}_{x}+\frac{\partial G}{\partial y} \underline{e}_{y}+\frac{\partial G}{\partial z} e_{z} \\
& \frac{\partial G}{\partial X}=-\frac{\partial F}{\partial X}=\frac{c}{a} \text { at point } \rho \\
& \frac{\partial G}{\partial y}=-\frac{\partial F}{\partial y}=\frac{c}{2 b} \quad \text { at point } \rho \\
& \frac{\partial G}{\partial z}=1 \\
& \nabla G=\left(\frac{c}{a}\right) e_{x}+\left(\frac{c}{2 b}\right) e_{y}+e_{z} \\
& |\nabla G|=\left[\left(\frac{c}{a}\right)^{2}+\left(\frac{c}{2 b}\right)^{2}+1\right]^{1 / 2} \\
& \underline{n}=\frac{2 b c e_{x}+a c e_{y}+2 a b e_{z}}{\left(4 b^{2} c^{2}+a^{2} c^{2}+4 a^{2} b^{2}\right)^{1 / 2}}
\end{aligned}
$$

Now calculate the normal component of the flux at point P :

$$
\begin{aligned}
& f_{n}=\underline{n} \cdot f=\left[\frac{2 b c e_{x}+a c e_{y}+2 a^{2} e_{z}}{\left(4 b^{2} c^{2}+a^{2} c^{2}+4 a^{2} b^{2}\right)^{1 / 2}}\right] \cdot\left[\frac{2 a}{3} e_{x}+\frac{b}{3} e_{y}+\frac{2 c}{3} e_{z}\right] \\
&=\frac{a b c}{\left(4 b^{2} c^{2}+a^{2} c^{2}+4 a^{2} b^{2}\right)^{1 / 2}}\left(\frac{4}{3}+\frac{1}{3}+\frac{4}{3}\right) \\
& {[-----------} \\
& f_{n}=\frac{3 a b c}{\left(4 b^{2} c^{2}+a^{2} c^{2}+4 a^{2} b^{2}\right)^{1 / 2}} \\
& L
\end{aligned}
$$

