Chapter 5

Quarks and hadrons

Every atom has its ground state — the lowest energy state of its electrons in the presence of the
atomic nucleus — as well as many excited states, which can decay to the ground state via emission
of photons. Nuclei composed of multiple protons and neutrons also have their ground state plus
various excited nuclear energy levels, which typically also decay via emission of photons (plus a and
B radiation). But what about individual protons or neutrons?

It was asserted earlier that individual nucleons are also composite objects, and may be viewed as
bound states of quarks. And just as atoms and nuclei have excited states, so do individual nucleons.

The force which binds quarks together into bound states is known as the strong interaction, and the
theory which describes strong interactions (on distance scales small compared to a fermi) is called
quantum chromodynamics, often abbreviated as QCD. The quarks carry a corresponding charge,
the analogue of electric charge, which is labeled “color” charge, leading to the “chromo” in the
name. Unlike electric charge, for which there is only a single variety - either plus or minus (with
the underlying symmetry group U(1)), there are three possible ”colors” for the color charge of a
quark, along with the corresponding “anti-colors”. The group describing the underlying symmetry is
SU(3). E] We will have more to say about QCD as we progress. But the justification for the validity
of the following qualitative description of quarks and their bound states lies in the success of QCD.
Using this theory, one can do detailed quantitative calculations of the masses and other properties of
bound states of quarks and compare with experimental results. The theory works. (In fact, the story
of how this theory has been verified in experiment, even though the theory has quarks as degrees
of freedom, while experiment never detects individual quarks, is an interesting one indeed. We will
have only a limited opportunity to discuss it this quarter, but I will note that an essential feature
of this story is the emergence of “jets” of hadrons in the final states of high energy collisions, and I
have spent much of my scientific career clarifying both the theoretical and experimental properties
of these jets.)

In this Chapter we will introduce a variety of new concepts, which we will return in more detail in
subsequent discussion. In particular, we will be using several techniques from group theory. Now
would be a good time to read both Chapters 10 and 11.

In the group theory language of Chapter 10 U(1) is an Abelian group and the particle corresponding to the
interaction, the photon, does not interact directly with itself, i.e., the photon has zero electric charge. SU(3), on the
other hand, is a non-Abelian group and the gluons, the analogs of the photon, come in 8 varieties and do interact
directly with each other, i.e., have nonzero color charge.
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5.1 Quark flavors

Quarks are spin-1/2 particles (fermions), which come in various species, referred to as flavors. Dif-
ferent quark flavors have been given somewhat whimsical names, as shown in Table (values from
the PDG). Note that the table includes values for the quark “masses”, but care must be taken when
interpreting these values as individual, isolated quarks are never observed experimentally. On the
other hand, it should be clear that the masses for different flavors vary substantially.

flavor symbol mass charge
up u ~ 2.310% MeV/c? 2 e
down d ~ 4.810% MeV/c? —1 ]
strange s ~ 95+ 5 MeV/c? —1le]
charm c 1.275 4 0.025 GeV/c? 2 e
bottom b 4.18 £0.03 GeV/c? —1 ||
top t 173.54 0.6 + 0.8 GeV/c? 2 e

Table 5.1: Known quark flavors

Along with quarks, there are, of course, also antiquarks, denoted 1, d, 5, etc., with the same masses
but opposite electric charge as their partner. (So, for example, the 4 antiquark has charge —2/3 and
the d has charge 4+1/3 - note the non-integer values.) As suggested above, quarks are distinguished
from leptons by an additional quantum number that is called color, which takes three possible values:
say red, blue, or green (and anti-red, anti-blue and anti-green for the antiquarks). These names are
simply labels for different quantum states of the quarkE] Since quarks have spin 1/2, they can also
be labeled by their spin projection, 1 or |, along any chosen spin quantization axis. Hence, for each
quark flavor, there are really six different types of quark, distinguished by the color (red, blue, green)
and spin projection (up, down).

In addition to the curious names, two other things in Table[5.1]should strike you as odd: the enormous
disparity of masses of different quarks, spanning five orders of magnitude, and the fact that quarks
have fractional charge (in units of |e|). Both issues are at the core of ongoing research, including
that at the LHC, seeking evidence of the dynamics of mass generation and the connection between
quarks and leptons.

5.2 Hadrons

No (reproducible) experiments have detected any evidence for free, i.e., isolated quarks. Moreover,
there is no evidence for the existence of any isolated charged particle whose electric charge is not
an integer multiple of the electron charge. This is referred to as charge quantization. Consistent
with these observational facts, the theory of strong interactions predicts that quarks will always be

2These names are purely conventional — one could just as well label the different “color” states as 1, 2, and 3. But
the historical choice of names explains why the theory of strong interactions is called quantum chromodynamics: a
quantum theory of the dynamics of “color” — although this color has nothing to do with human vision!
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trapped inside bound states with other quarks and antiquarks, never separated from their brethren
by distances larger than about a fermiE| The bound states produced by the strong interactions are
called hadrons (hadros is Greek for strong).

Quantum chromodynamics, in fact, predicts that only certain types of bound states of quarks can
exist, namely those which are “colorless”. (This can be phrased in a mathematically precise fashion
in terms of the symmetries of the theory. More on this later. For now consider this situation as being
similar to that in atomic physics where the low energy states, the atoms, are electrically neutral.)
Recall that to make white light, one mixes together red, blue, and green light. Similarly, to make a
colorless bound state of quarks one sticks together three quarks, one red, one blue, and one green.
But this is not the only way. Just as antiquarks have electric charges which are opposite to their
partner quarks, they also have “opposite” color: anti-red, anti-blue, or anti-green. So another way
to make a colorless bound state is to combine three antiquarks, one anti-red, one anti-blue, and one
anti-green. A final way to make a colorless bound state is to combine a quark and an antiquark,
say red and anti-red, or better the truly colorless combination r7 + bb + gg. Bound states of three
quarks are called baryons, bound states of three antiquarks are called antibaryons, both of which are
fermions, while quark-antiquark bound states are called mesons and are bosons.

How these rules emerge from QCD will be described in a bit more detail later. For now, let’s
just look at some of the consequences. The prescription that hadrons must be colorless bound
states says nothing about the flavors of the constituent quarks and antiquarks. In the language of
quantum mechanics we say that color dependent operators and flavor dependent operators commute,
[color, flavor] = 0. Since quarks come in the multiple flavors of Table we can (and will) enumerate
the various possibilities for the hadrons. Similar comments apply to the spatial (orbital angular
momentum) and spin parts of the wave function (i.e., the dynamics of these various parts commute
to a good approximation), and we can think of the wave functions describing the hadrons, again
to a good approximation, as products of a color wave function, a flavor wave function, a spatial
wave function and a spin wave function. The most important violation of this assumption of the
factorization of the wave function arises due to the role of the Pauli Exclusion Principle for baryons,
as we will shortly see.

For the lowest mass hadrons we may assume that the quarks are essentially at rest (except for the
constraints of quantum mechanics) and that the orbital angular momentum vanishes, L = 0. Thus
the rest energy of such a hadron (like any bound state, although it is admittedly a bit more subtle
in this case) may be regarded as the sum of the rest energies of its constituents plus the energy
associated with the binding interaction. For the lowest mass hadrons, including nucleons, we will see
that most of their total rest energy (mass) comes from the binding energy, i.e., the “gluon cloud”,
the analog of the electromagnetic potential for an atom. But the masses of quarks also play a part.
Looking at the quark masses listed in Table [5.1], it is apparent that u, d and s quarks are quite light
compared to the mass (= 1 GeV/c?) of a nucleon, while the other quark flavors are considerably
heavier. So it should not be surprising that the lightest hadrons will be those which are bound
states of u and d quarks. Further, since a proton is composed of uud while a neutron is udd (i.e.,

3Except at sufficiently high temperatures. Above a temperature of T, ~ 2 x 10!2 K (or kKT ~ 170 MeV), hadrons
“melt” or “vaporize” and quarks are liberated. This is important in the physics of the early universe, since temperatures
are believed to have exceeded this value in the earliest moments after the big bang. Temperatures above T, can also
be produced, briefly, in heavy ion collisions. A nice overview of heavy ion collisions and quark gluon plasma may be
found at jwww.bnl.gov/rhic/physics.asp. There is also an ongoing heavy ion program at the LHC, i.e., some running
time is dedicated to accelerating and colliding heavy nuclei rather than protons.
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the difference is only lu — 1d), we are gratified to see that m,, is only slightly larger than m, (see
Eqgs. (4.1.3) and (4.1.4)). Substituting a strange quark for a u or d quark should be expected to raise
the mass of the resulting bound by roughly 100 MeV (due to the larger s quark mass). And hadrons
containing the other quark flavors (¢, b, or ¢) should be substantially heavier.

As noted above, when enumerating possible combinations of quarks that could form hadrons, we
must also consider the role of spin and flavor (electric charge, strangeness, etc.). For this purpose
it is helpful to recall what you have learned in Quantum Mechanics about how to combine spins
(consistently with the principles of QM). In particular, combining the angular momentum of two
spin 1/2 particles can yield either spin 1 or 0, and the corresponding states have definite symmetry
under the interchange of the two spins (symmetric for the spin 1 state and antisymmetric for the
spin 0). Three spin 1/2 particles can combine to form either spin 3/2 or 1/2.

ASIDE Let us review a bit of what you learned in your Quantum Mechanics course. The arithmetic
of the construction of the combined spin states (wave functions) is encoded in the so-called Clebsch-
Gordan coefficients ((symy, saomo|SM), where s; and s9 are the two spins, m; and mg are the spin
components along say the 2 direction and S and M are the combined (total) spin and 2% component).
A table of these coefficients is included at the end of this chapter. The action of the raising/lowering
or “ladder” operators, S, allows us to change the value of m for a fixed value of s. These operators
obey the relation (the "ket” |s,m) represents a state of definite s and m)

Sils,m) = /(s Tm)(sE£m+1)hls,m=£1). (5.2.1)

Thus the (normalized) combined states of two spin 1/2 particles can be represented (in a hopefully
familiar and obvious notation) as

|Sv M> = |17 1> = ‘ TT)) |170> = (‘ Ti) + | iT))/\/ﬁv |1a _1> = | \H/>7 (5'2'2)

and
10,0) = (| 1)) — | 41)) /V2. (5.2.3)

In the language of Group Theory and Representations (see Chapter 10, here we are thinking of
representations of either SO(3) or SU(2), which are identical for our current purposes) we call
spin 1/2 a doublet representation (two states, spin up and spin down) and label it as 2. Thus the

combination and subsequent reduction (into irreducible representations) of two spin 1/2 states can
be written 2 ® 2 = 3 @ 1, where the triplet is the spin 1 state (corresponding to the 3 values of M)

and the singlet is the spin 0 state (with only a single M value). Since the singlet representation
has only 1 element, it is, as expected, invariant under rotations as a rotation acts to transform the
elements of a representation into each other (and no transformation can occur for a single element).
On the other hand, the 3 elements of the spin 1 (vector) representation can be transformed into one
another by a rotation.

The corresponding expression describing the combination of 3 spin 1/2 states is 2Q2®2 =4®2® 2.

Thus we obtain the expected spin 3/2 state (the quartet) and two spin 1/2 states corresponding to
differing internal symmetry; think of combining two of the spins to yield either spin 1 or spin 0 as
above and then combine the third spin to yield spin 3/2 and two forms of spin 1/2 (two doublets -
either 3®2 = 4®2 or 1®2 = 2). (See the discussion in Chapter 11 for the “technology” of combining

multiplets of the SU(n) groups.)

Combining electric charge is easy: the charge of a hadron is just the algebraic sum of the charges of
its constituent quarks. Combining the rest of the quarks’ flavor is more complicated but we can use
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the same technology as we used to combine spin above (recall the words of the famous theoretical
physicist Richard Feynman, “The same equations have the same solutions.”). In particular, we can
treat the nearly degenerate (nearly equal mass) u and d quarks as being members of a doublet
representation of some underlying approximate SU(2) symmetry and combine as above to find the
corresponding flavor states. Since this structure parallels that for ordinary spin, the corresponding
quantum number was historically labeled isospin, and we will use it to understand the flavor structure
of the hadrons.

5.3 Mesons

Let us start with mesons and (for the moment) consider those “constructed” from just the lightest
two flavors of quarks and antiquarks, u,u and d,d. We know that the color wave function is the
trivial color singlet 77+ bb+ gg (i.e., the singlet, 1, in the color SU(3) representation decomposition

3®3 =8®1). For the lowest mass states we expect that there is no orbital angular momentum

and the spatial wave function is trivial. From our earlier discussion we know that the spin wave
function can be reduced to either a spin singlet (spin 0 or scalar particle) or spin triplet (spin 1
or vector particle). Taking the u and d quarks to form an isospin doublet (as outlined above) we
combine to find 4 flavor states as outlined in the first line of Table [5.2] where the lines are labeled
by the number of strange plus antistrange quarks. Using the isospin language we can define these

(#s)+(#5) | Q=1 Q=0 Q=-1

0 ud wil, dd du
1 us sd, ds su
2 S5

Table 5.2: Possible light quark-antiquark combinations

states in terms of “total isospin I” and a single component I3. Historically the phases chosen for the
antiquark doublet are ¢ = (—d, %) (note the minus sign which, although unmotivated here, does
lead to some attractive features and you will see it in the literature, although sometimes with the

minus sign attached to the @ instead of the d). Thus the corresponding mesons (of definite isopsin)
are defined as

11,13) = [1,1) = —|ud), |1,0) = (Jui) — |dd))/V2, |1,—1) = |da), (5.3.1a)
10,0) = (Ju@) + |dd))/V2. (5.3.1Db)

With little extra effort we can expand this discussion to include the three lightest quark flavors, u,
d, and s, where we treat the s quark as an isospin singlet but carrying the “new” quantum number
strangeness. Since it was mesons with the 5 antiquark that were observed first (and labeled as having
strangeness +1), the s quark is actually defined to have strangeness -1! By simple counting we see
that we have added 4 extra possibilities to Table in the second and third lines. We can interpret
the states in Table more precisely if we take the 3 lightest quarks to be members of a triplet of an
approximate SU(3) flavor symmetry, which is apparently even more badly “broken” than the SU(2)
of isospin, i.e., the s quark mass differs by about 100 MeV /c?. Without further discussion here (see
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Chapter 10) we will simply assert that, when we combine a triplet and anti-triplet of SU(3), we
obtain the expected 9 favor states in the form 3 ® 3 = 8 ® 1. (Note this is the same structure we

asserted above for color SU(3) - the same equations have the same solutions, only the labels change).
In particular, one of the states is a singlet under this flavor SU(3) and we see a new representation,
the octet (8 different individual states characterized by differing values of I, I3 and strangeness).

ASIDE Thus, as noted earlier, in “color space” ¢q includes both an color octet and a color singlet.
The latter is just the singlet color state that we have claimed is the physical meson, while the former
is precisely the description of the coupling between quarks and gluons, where gluons are members of
the octet representation (the “adjoint” representation) of color SU(3).

As suggested by Table we want to be able represent the 8 of meson flavor in a 2-D form using I3

(to the right) and strangeness (up) as the axes. So instead of the 1-D structure for the representations
of SU(2) in Eq. , described by the single quantum number m, for SU(3) the representations
are 2-D and labeled by the two quantum numbers I3 and S (strangeness). We begin by (graphically)
representing the quark and antiquark, 3 and 3, including the minus sign in the antiquark,

o
QL
<

0|
Y

TS
and -
s U —d — I3

Table 5.3: Flavor Triplet quarks and antiquarks

We then can combine the flavor (isopsin and strangeness) of the quark and antiquark in a meson to
find the flavor 1 in this notation as,

1 (u@ + dd + s5)/V3, (5.3.2)

which we recognize as having the basic structure as the SU(3) color singlet we mentioned earlier
(i.e., again “the same equations have the same solutions”). Finally the flavor 8 can be represented
as

8 ds us )
du (uii — dd)/+/2 —ud — I3
(it + dd — 2s5)/v/6

Su —SCZ
Table 5.4: Quark - antiquark octet

Note that there are three orthogonal strangeness zero, I3 = 0 states. One is the SU(3) singlet
(Eq. , one is the isoscalar (I = 0) state in the SU(3) octet (the lower line in the middle of Table
[.4), and the last is the I3 = 0, I = 1 member of the SU(3) octet (the upper line in the middle of

Table .
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ASIDE To make the concept of orthogonal more explicit think of a 3-D vector space defined by

orthogonal “unit vectors” |uu), |dd) and |ss), where
(ut|uw) = 1, etc., (dd|ut) = 0, etc.. (5.3.3)

Then it follows that B B
(vt — dd|luu + dd + s5) =1 -1 =0, etc.. (5.3.4)

Since we expect that both the SU(3) of flavor and the SU(2) of isopsin are “broken” symmetries in
nature, we should also expect that the quark content of the physical mesons with zero strangeness
and zero electric charge may be mixtures of the combinations above.

Summarizing the above discussion there are (3 x 3 =) 9 different flavor possibilities for both spin 0
and spin 1. The actual observed lowest-mass mesons do indeed fall into just this pattern. In the
same tabular form the names of the observed scalar mesons are

0~ 8 K° K+ 1+ S
T a0 (I =1) ot — I3
n(I =0)
K- KO
01 n(I=0,5=0).

Table 5.5: Scalar mesons

The corresponding “nonet” of vector mesons are labeled

1-8 K*0 K** 19
p- P (I=1) pt — I3
w(l=0)
K*— K*O
=1 ¢(I=0,8=0)

Table 5.6: Vector mesons

The “small print” associated with these tables includes the following. First, note that we have labeled
these multiplets in terms of the spin but with superscript “-”, as in 0~ and 17. This serves to remind
us, as we will discuss in more detail shortly, that these particles have negative intrinsic parity. We
will come to understand this as arising from the fact that fermions and antifermions necessarily have
opposite intrinsic parity. Thus a quark-antiquark pair with only trivial spatial wave function (L = 0)
must have negative parity. Next, as suggested above, mixing is observed between the strangeless,
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chargeless states compared to the expectations expressed in Table In particular, while the scalar
mesons seem to match Table [5.4] the physical ¢ state seems to be essentially pure s5, while the w is
(uti + dd)/+/2. As we will see, this last point is suggested by the fact that the ¢ decays dominantly
into KK states. Finally the structure of decays of the neutral kaons is a special story unto itself and
illustrates the “near” conservation of the combined symmetry C'P (parity and charge conjugation)
by the weak interactions.

These states (particles) are listed again in Table|5.7 n 7| for the scalars, along with their dominant decay

modes and quark content, while Table |5.8| provides the same information for light spin one mesonsﬁ
These are the lightest mesons.

meson mass lifetime dominant decays quark content
70 135.0 MeV 8.5 x 10717 s vy %(uﬂ — dd)
Tt 139.6 MeV 2.6 x 1078 s wtu, ud
T~  139.6 MeV  2.6x107%s Wy du
Kt 493.7 MeV  1.2x 10785 vy, us
K- 493.7 MeV  1.2x 10785 WDy, oY s
K% K9 497.6 MeV ds, —sd
K{  497.6 MeV  8.95 x 107! g atr~, mOn° %(dg — sd)
K 497.6 MeV 51 x107%s  3n07xTn— a0 nteFu,, ntufuy, %(dg + sd)
n 547.9 MeV 5.1 x 107 g vy, T~ w0, 707070 7(uu + dd — 255)
n 957.8 MeV 3.3 x 1072 s atn=n, pOy, n97% T(UU + dd + s5)

Table 5.7: Light spin zero, parity odd mesons.

meson mass lifetime dominant decays quark content
pT.p% p~  T75.5 MeV 44 x107% s T , \[(uu —dd), du
w 782.7 MeV 7.8 x 10723 s ata— 0 A~ ﬁ(uﬂ + dd)
K*f K*~ 891.7MeV 13x10%s Kn us, st
KO K 8959 MeV 14 x1072 s Kn ds, sd
o 1019.5 MeV 1.5 x 107%2 s KTK~, KK ~ 55

Table 5.8: Light spin one, parity odd mesons.

4As noted earlier Tables and list parity odd mesons, as this is the parity of quark-antiquark bound states
with no orbital excitation. We will discuss parity assignments in the next chapter. Note that the mass values listed in
these and subsequent tables should really have units of MeV/c? (or the column should be labeled “rest energy” instead
of “mass”). We will become increasingly sloppy about this distinction, since one can always insert a factor of ¢?, as
needed, to convert mass to energy or vice-versa, and in the end we want to set ¢ = 1.



Particles and Symmetries CHAPTER 5. QUARKS AND HADRONS

In general, and as expected, mesons containing strange quarks are heavier than those with no strange
quarks. But among the neutral, S = 0 mesons, it is noteworthy (and we have already noted it) that,
while the n and ' in Table have the naively expected quark content, the w and ¢ in Table do
not. This reflects the possibility of quantum mechanical mixing among states with identical quantum
numbers. In other words, eigenstates of the Hamiltonian can be linear combinations of basis states
which have simple quark content. The form of this mixing will be discussed in more detail later, but
the important conclusion here is that the basic description of mesons as bound states of quarks works!
Finally It is also worthwhile noting the realization in Table of the previous comment about the
decays of the neutral kaons (K°, KY). As we will discuss in more detail shortly the weak interactions
(and these are weak decays since we must change the flavor of the strange quark) approximately
respect C'P. Hence the neutral kaons dominantly decay through states of definite C'P. The “even”
CP state (CP eigenvalue +1) is allowed to decay into 2 pions and decays more quickly. Hence the
label Kg(hort). The CP odd state (CP eigenvalue —1) labeled KE( ong) decays more slowly into 3
pions or the more familiar states with leptons.

5.4 Baryons

One can go through a similar exercise for baryons. The primary differences are the further algebraic
complexities of dealing with 3 instead of 2 quarks, and the fact that we are now dealing with 3
identical fermions. The exclusion principle now plays a role. In particular, the overall wavefunction
describing the 3 quarks must be anti-symmetric with respect to the interchange of (all of) the
quantum numbers of any pair of quarks. So, by way of introduction, we will quickly mention the
expected behavior in color, space, spin and flavor and then we will go through the construction of
baryons in more detail.

In the same notation we used for mesons (see Chapter 11), we find that combining 3 color triplets
yields
3®IR3I=10680841. (5.4.1)

Thus the expected 3% = 27 color states break-up into a “decuplet” (10), two octets (8), and a singlet
(1). The most important feature of these representations is that the decuplet is symmetric under

the interchange of the color quantum number of any pair of quarks, while the singlet is purely
antz’symmetricﬁ The two octets have (different) “mixed” symmetry for different quark pairs (see
the discussion below). Most importantly, by our rule that the only viable physical states are color
singlets, we choose to put the 3 quarks in the antisymmetric color 1. Since Pauli requires the

complete wave function to be antisymmetric, the remaining bits of the wavefunction must be overall
symmetric.

Since we are interested (first) in the least massive baryons, we take the spatial wavefunction to be
symmetric (and trivial) with L = 0. Thus, due to the statistics of fermions, the combined spin and
flavor wavefunctions of the lowest mass baryons must be symmetric under the interchange of any
pair of quarks.

®The structure of this antisymmetric 3-quark color wave function is the (hopefully) familiar antisymmetric form in
terms of the SU(3) structure constant, €;.1q;qrq (€51 is antisymmetric under the exchange of any pair of indices). We
can tell this is a singlet because there are no “left-over” indices and this state cannot be transformed.
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baryon mass lifetime dominant decays quark content
P 938.3 MeV stable — uud
n 939.6 MeV 8.8 x 102 s pe U udd
A 1115.7 MeV 2.6 x 10719 s pr—, na° uds
»t 1189.4 MeV  0.80 x 10710 g pr, nat uus
¥0 1192.6 MeV 7.4 x 10720 s Ay uds
> 1197.4 MeV 1.5 x 107105 nm~ dds
=0 13149 MeV 2.9 x 107105 Ar® uss
= 1321.7 MeV 1.6 x 107105 An~ dss

Table 5.9: Light spin 1/2, parity even baryons.

Combining three spin 1/2 objects can yield either spin 1/2 or 3/2, or in our new notation
29202=40202, (5.4.2)

where the spin 3/2 is the quartet that is again the symmetric state. The two spin 1/2 doublets,
like the color octets above, are of mixed symmetry. To illustrate that point more explicitly we can
assemble the 3 quark state by first putting together 2 quarks. Now the spin arithmetic is the same
as for the quark-antiquark above, 2 ® 2 = 3 & 1, where the triplet is symmetric under interchange

of the 2 quarks and the singlet is antisymmetric. To be explicit, label the first two quarks as 1 and
2,2 ®2 =3 @1 with S for symmetric and A for antisymmetric. Now include quark 3 to

1 2 7s12 Al2
yieldd ®2 =4 D2 andl ®2 =2 . The differing mized qualities of the resulting
S

12 73 5123 78123 Al2 73 A12,3
symmetries for the doublets should be clear from the following more explicit version of Eq. (5.4.2))

21 © 22 © 23 B 45123 © 2512,3 © 2,412,3 ’ (54.3)
Similar mixed underlying symmetry is what distinguishes the SU(3) octets above.
baryon mass lifetime dominant decays quark content
A7, A AT ATT 1232 MeV 6x 1072 s P, N ddd, udd, uud, vuu
DIRD Ml Vs 1385 MeV  2x 1072 s An dds, uds, uus
z*, 50 1530 MeV  7x 1072 s =r dss, uss
O 1672 MeV  0.82 x 10719 s AK~, Erm $S5S

Table 5.10: Light spin 3/2, parity even baryons.

As expected the lightest observed baryons are, in fact, either spin 1/2 or spin 3/2. Tables and
list the lightest spin 1/2 and spin 3/2 baryons, respectively. The intrinsic parity of these states
is the same as the intrinsic parity as a quark, which, by convention, is chosen to be positive. Finally,

10



Particles and Symmetries CHAPTER 5. QUARKS AND HADRONS

we must consider the SU(3) flavor structure. Again we note that “the same equations have the
same solutions” and we use the same representation structure as for the SU(3) of color above in
Eq. ‘i 3®3®3=1068®84 1. The only step remaining is to pull the various factors together

while ensuring overall antisymmetry under interchange of any 2 quarks.

We now discuss that final step in some detail (reviewing some of our previous discussions). Our goal
is to understand the experimental observations summarized in Tables and In particular,
Table shows that the ten lightest J = 3/2 baryons form a decuplet representation of the SU(3)
of flavor. This simply corresponds to matching the symmetric spin state (the 4) with the symmetric

flavor state (the 10) (with the antisymmetric color 1 state and the trivial but symmetric L = 0 spatial

state). From the masses listed in Table one sees that the X* baryons, which contain one strange
quark, are heavier than the A baryons, which contain only v and d quarks, by about 150 MeV. The
Z* baryons, which contain two strange quarks are heavier than the ¥* by an additional ~ 150 MeV,
and the 2~ baryon, containing three strange quarks, is yet heavier by about the same increment.
This is consistent with our expectations that substituting heavier quarks for lighter quarks should
increase the mass of bound states (by approximately the mass change of the substituted quark),
since the binding dynamics due to the color interactions remains the same independent of the quark
flavors involved.

As Table shows, there are only eight light J = 1/2 baryons and they form a flavor SU(3), spin
1/2 baryon octet. There is only one combination of flavor octet and spin doublet with the correct
overall symmetric behavior, which we then combine (as above) with the antisymmetric color 1 state

and the trivial but symmetric L = 0 spatial state. As noted earlier, this difference between J = 3/2
and J = 1/2 bound states can be understood as a consequence of the Pauli exclusion principle.

5.5 Baryon wavefunctions

To understand how the fermionic nature of quarks produces the observed pattern of spin and flavor
for the baryons, we first review in more detail the structure of the color wave function. Our goal is
to characterize the form of the colorless bound state. What does this really mean? Just as you can
think of a spin 1/2 particle as having a wavefunction which is a two-component complex vector,

()= () 551

the wavefunction of a quark (of definite flavor and spin) is a three-component vector in “color-space”,

L (red|y)
U= |1, | =| (greenly) | . (5.5.2)
U (blue|t))

The component 9, gives the amplitude for the quark color to be red, v is the amplitude to be green,
etc. The assertion that hadrons must be “colorless” really means that the multi-quark wavefunction
must not depend on the choice of basis in three-dimensional “color” space, i.e., is unchanged by
rotations in color space. Since the quark (color) wavefunction is a three-component vector, to build
a colorless state from three quarks, A, B and C', one must combine the three color vectors describing
the individual quarks, 15 A, 1/7 B, and @Zc, in such a way that the result is basis independent. In practice
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this means that the three three-component color vectors must be combined to yield an expression
with no left-over color indices, i.e., no index on which a color transformation could act.

This may sound peculiar, but the mathematical problem is the same as asking how to build a
rotationally-invariant scalar from three (ordinary) 3-vectors ff, B and C_", in such a way that the
result is a linear function of each of the vectors. You already know the (essentially unique) answer,
namely the scalar triple-product of the three vectors, A- (é X C_") This triple product may be
expressed in a variety of ways, including as the determinant of the components,

o Ay B Cy
A- (B X C) =det | Ay By Cy| = €ijk A; Bj Ch. (5.5.3)
Az B3 Cs

In the last expression €;;; is the totally antisymmetric (3x3x3) tensor which equals +1 when (ijk)
is any cyclic permutation of (123), —1 when (ijk) is any cyclic permutation of (321), and zero
otherwiseﬁ Recall that a determinant changes sign if any two columns (or rows) are interchanged.
Consequently, the triple product is antisymmetric under any interchange of two of the vectors, which
is encoded in the antisymmetry of the ¢;;; symbol. This is exactly the antisymmetric character
that we claimed above for the color singlet state that arises when we combine 3 color triplets,
3R3®3=1008®8® 1 (see footnote 5). As the unique 3x3x3 antisymmetric tensor it must also be

the structure constant for both of the groups SU(2) and SO(3), as discussed in Chapter 10.3. Thus
the color singlet state of 3 quarks has the form

W gqqsinglet = €ijk Va1, Yo, Vs » (5.5.4)

where the ¥ ’s are the 3-component quark color (triplet) vectors of Eq. (5.5.2)).

The complete wavefunction describing three quarks in a bound state must characterize not only the
color of the quarks, but also their flavor, spin, and spatial location. To a good approximation, the
wavefunction describing the lowest mass baryons will be a product of a color wavefunction (depending
only on the color vectors as in Eq. ), a spatial wavefunction (depending only on the quark
positions, or orbital angular momentum), and a flavor & spin wavefunction,

U = Weolor X \I]space X \I’spin—l—ﬂavor . (555)

The essential point of the above discussion about triple products is that the color wavefunction for
three quarks is antisymmetric under any interchange of the color vectors of any two quarks. The
lightest hadrons which can be built from a given set of quark flavors will have a spatial wavefunc-
tion which is symmetric under interchange of quark positions, i.e., it will have no orbital angular
momentum. If this is not true (i.e., if the orbital angular momentum is nonzero) then the wavefunc-
tion will have spatial nodes across which it changes sign, and this behavior invariably increases the
kinetic energy of the state. The Pauli principle (or the fact that quarks are fermions) requires that
the total wavefunction must be antisymmetric under interchange of any two quarks — which means
simultaneous interchange of the positions, spins, flavors, and colors of the two quarks. Since the
color part of the wavefunction must be antisymmetric, while the spatial part should be symmetric,

5The geometric definition of a cross product only makes sense for real vectors, but the expressions involving com-
ponents of the vectors are equally well-defined for complex vectors.
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this means that the flavor plus spin part must also be symmetric under permutationsm Thus the
symmetry properties of the spin and flavor wave functions must be matched to each other in order
to provide the overall symmetry. This is why the two quantities are coupled in Eq. (i.e., we
were planning ahead).

For a spin 3/2 baryon, such as the A™", the flavor structure of the wavefunction is trivial, and
totally symmetric, since all three quarks are the same type, namely wuu. For the S, = 3/2 state,
the spin structure is also trivial, and totally symmetric, since all three quarks must individually
have S, = 1/2 if the total spin projection is 3/ QE| Therefore the combined spin+flavor part of the

wavefunction,
ATT

\I]spin—i-ﬂavor ~ (uuu) X (TTT) ’ (556)

satisfies the above condition of symmetry under permutation of quark spins and flavors. Analogous
spin+flavor wavefunctions may be constructed for all baryons (with any spin projection) in the spin
3/2 decuplet. Just like the example in Eq. , these wavefunctions are independently symmetric
under permutations of quark spins, or permutations of quark flavors. For completeness the quark
content (in the same language as for the mesons) of the decuplet is presented in Table and the
particle names in Table (which agree with the results already included in Table .

10 ddd ddu duu uuw TS

dds dus UUS — I3
dss Uuss

S8S

Table 5.11: 3 quark decuplet

(][N

+
2!—‘
"

A0 AT ATt 1S
¥ ¥*0 vt — I3

*— —=*0

Table 5.12: Baryon decuplet

Note that, since both the 10 of flavor SU(3) and the 4 of spin are individually symmetric wave-

functions, there is no real coupling of spin and flavor in this case (the overall wave function is just
a simple product). But note also that the need to match the symmetry properties of the spin and

"This was actually an issue in the early days (~ 1970) when quarks had been postulated as the underlying degrees of
freedom but the color quantum number had not yet appeared. The spatial, flavor and spin wavefunctions that matched
the observed states are clearly symmetric, but the quarks are fermions. Where was Pauli? Then color appeared to save
statistics and provide the needed interactions!

8This ignores the possibility of further constituents in the baryon in addition to the three up quarks. Using an
improved description of the structure of baryons does not change the essential conclusions of the following discussion.
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flavor wavefunctions means that, at least for the lowest mass baryons (with L = 0), there can be no
spin 1/2 flavor decuplets (10) and no spin 3/2 flavor octets (8).

For J = 1/2 baryons, the situation is more complicated. As noted earlier the two possible spin
doublets constructed from 3 spin 1/2 quarks have mixed symmetry with respect to interchanging
pairs of the quark spins. Luckily the two flavor octets that can be constructed from 3 flavor triplets
(quarks) have similar mixed symmetry and there is a combined spin 1/2, flavor octet 3 quark state
that is overall symmetric under the simultaneous interchange of both the spin and flavor quantum
numbers of any pair of quarks. To construct this state we recognize first that the case where all three
quarks have the same flavor is not possible in the mixed symmetry octet. A flavor wavefunction such
as uuu is totally symmetric. This explains why there are no light spin 1/2 baryons composed of three
up (or three down, or three strange) quarks, in contrast to the case for spin 3/2 baryons. But if there
are at least two distinct quark flavors involved, then it is possible to build a flavor wavefunction with
the required symmetry. As an example, let us build a spin+flavor wavefunction for the proton. We
need two u quarks and one d quark. A spin wavefunction of the form (1| — [1)1 describes a state
in which the first two quarks have their spins combined to form an (antisymmetric) S = 0 state,
so that adding the third spin yields a total spin of 1/2, as desired. Since this spin wavefunction is
antisymmetric under interchange of the first two spins, we need a flavor wavefunction which is also
antisymmetric under interchange of the first two quark flavors, namely (ud — du)u. If we multiply
these, we have a spin+flavor wavefunction,

[(ud — du)u] x [(14 — 1) 1] = (udu — duw) (111 — 1), (5.5.7)

which is symmetric under combined spin and flavor exchange of the first two quarks. But we need a
wavefunction which is symmetric under interchange of any pair of quark spins and flavors. This can
be accomplished by simply adding terms which are related to the above by cyclic permutations (or
in another words by repeating the above construction when it is the second and third, or first and
third quarks which are combined to form spin zero). The result, which is unique up to an overall
normalization factor, has the form

U S avor = (udu — duw) (111 = 111) + (uud — udu) (114 — N1 + (wud — duw) (111 — 141).
(5.5.8)
To be explicit we can also write this wavefunction with the terms multiplied out and normalized as

roton 1
\I}spion—oi—ﬂavor:\/T>8[2uTqu¢+2qu\LuT+2d\LUTUT

—udutdt—utuldt—uldtut

—utdtul—-dtutul —dtulut]. (5.5.9)
You can, and should, check that these expressions satisfy the required condition of symmetry under
interchange of spins and flavors of any pair of quarks. It should be clear that in this case the spin
and flavor structures are truly intertwined. The wavefunction in Eq. (5.5.9) represents, for the case
of 2 u quarks and 1 d quark, the unique member of an SU(3) flavor octet and spin doublet (with
S3 = +1/2) that is symmetric under the interchange of any pair of quarks.

For fun (e.g., in the HW) try to generate the following wavefunction for the neutron.

1

Wﬁﬂﬁﬁmf:;ﬁgpdeTu¢+2dTu¢dT+2u¢deT
—dldtut—dtdlut—-dlutd?
—dtutdl—utdtdl—utdld1]. (5.5.10)
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Similar constructions can be performed for all the other members of the spin 1/2 baryon octet. The
expected quark content of the baryon octet is given in Table [5.13]

8 udd uud TS

sdd sud (I =1) suu — I3
sud (I =0)

ssd SS5U

Table 5.13: Baryon octet

The corresponding identification with the lowest mass baryons is provided in Table

+
3 8 n p +S
5 $0(1 = 1) s+ A

Table 5.14: Baryon octet

One notable feature of the set of octet baryons, shown in Tables and [5.14], is the presence
of two different baryons whose quark content is sud, specifically the A and the X°. This is not
inconsistent. When three distinct flavors are involved, instead of just two, there are more possibilities
for constructing a spin+flavor wavefunction with the required symmetry. A careful examination (left
as a problem) shows that there are precisely two independent possibilities, completely consistent
with the observed list of spin 1/2 baryons.

The mass values in Table show that for spin 1/2 baryons, just as for spin 3/2 baryons, baryons
with strange quarks are heavier than those with only up and down quarks; each substitution of a
strange quark for an up or down raises the energy of the baryon by roughly 130-250 MeV.

5.6 Baryon number

Baryon number, denoted B, is defined as the total number of baryons minus the number of an-
tibaryons, similarly to how we defined lepton number L in Eq. (4.6.1). Since baryons are bound
states of three quarks, and antibaryons are bound states of three antiquarks, baryon number is the
same as the number of quarks minus antiquarks, up to a factor of three,

B = (# baryons) — (# antibaryons) = — [(# quarks) — (# antiquarks)] . (5.6.1)

W=

All known interactions conserve baryon numberﬂ High energy scattering processes can change the

9This is not quite true. As with lepton number, the current theory of weak interactions predicts that there are
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number of baryons, and the number of antibaryons, but not the net baryon number. For example, in
proton-proton scattering, the reaction p+p — p+p+n+n can occur, but not p+p — p+p+n+n.

5.7 Hadronic decays

Turning to the decays of the various hadrons listed in Tables [5.7H5.10], it is remarkable how much
can be explained using a basic understanding of the quark content of the different hadrons together
with considerations of energy and momentum conservation. This is essentially the statement that
understanding the basic symmetry properties, i.e., the conserved quantum numbers, will get you
a long way in the world of particle physics. This discussion will also help to illustrate the basic
structure of the Standard Model (SM).

As an example, consider the baryons in the spin 3/2 decuplet. The rest energy of the A baryons
is larger than that of a nucleon by nearly 300 MeV. This is more than the ~ 140 MeV rest energy
of a pion, which is the lightest meson. Consequently, a A baryon can decay to a nucleon plus a
pion via strong interactions, which is the dominant way to produce pions as long as the process does
not change the number of quarks minus antiquarks of each quark flavor (i.e., the strong interactions
preserve the net flavor). Specifically, a A** can decay to pr™, a At can decay to either pr® or n7t, a
A can decay to pr~ or nn’, and a A~ can decay to nm~. These are the (overwhelmingly) dominant
decay modes observed. The short lifetime of A baryons, 7 ~ 6 x 107%* s or e¢r ~ 1.8 fm, is also
indicative of a decay via strong interactions. (After all, “strong” should mean rapid interactions!)
To set the scale, note that the time for light to travel a fermi is of order 3 x 10724 s. The A~ barely
has time to “figure out” that it exists before it decays.

ASIDE: Let us take this opportunity to both study the isopsin

1x1/2 +§§§ 3/2 172 structure of the A decays in detail and utilize the Table of Clebsch-

[T 4172 1fr1/2+41/2 Gordan coefficients appended at the end of this Chapter. The
+1-172[ 173 2/3[ 372 172 ) . .

0+1/2| 2/3-1/3|-1/2-1/2 appropriate (upper left) section of that Table is shown to the

01l a3 131 32| left. The label on this section, “1 x 1/27, tells us this section

2><'|| 3 12| 1| describes in detail how to combine isospin (or ordinary spin) 1
— s[5 (a triplet representation) with isospin 1/2 (a doublet representa-
tion), 3 ® 2. We know that the resulting combined representations are an isospin 3/2 quartet and an

isospin 1/2 doublet, 3 ® 2 = 4 @ 2. This is precisely what we see along the uppermost line in each

(funny shaped) box, 3/2 or 1/2. The next row of labels down tells us the specific value of I3 (or J3)
for the joint representation. The labels to the left in the (funny shaped) boxes are the I3 (or J3) val-
ues labeling the specific states we are combining. Finally the numbers in the central, shaded regions
of each of the (funny shaped) boxes are the actual Clebsch-Gordan coefficients. Strictly speaking,
as explained near the top of the Table, the actual coefficient is the square root of the number in the
Table, not including the sign. More specifically we interpret the upper left (funny shaped) box to
mean |1, I3) = |3,3) = [1,1)|3, 3) or, in our particular application, [A*+) = |77)|p). There is only
one possible final state that conserves isospin. Now consider the more interesting case in the second

(funny shaped) box down. We read the Table to mean |3,4) = \/§|1, D3, —3) + \/g|1,0>|%, 3) or,

processes which can change baryon number (while conserving B—L). The rate of these processes is so small that baryon
number violation is (so far) completely unobservable.
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8% = ) 2l (571)

Thus, when a A1 decays (strongly), 1/3 of the time it decays to w7 n, while 2/3 of the time it decays
to 7’p. Note in particular that, in going from the amplitude with the Clebsch-Gordan coefficient
(with the square root) to the probability, which is the amplitude squared, we square the Clebsch-
Gordan coefficient. The second column in the second (funny shaped) box describes the case with
total isospin 1/2, which plays no role here as we are considering the strong decay of an isospin 3/2
particle and isospin is conserved by the strong interactions. Next we move down to the third (funny

shaped) box to learn that |%, —%> = @]1,0)]%, —%) + \/g\l, -1) %, %> or, in our case,

189 = 2+ el (572)

So a A% decays (strongly) 2/3 of the time to 7°n, while 1/3 of the time it decays to 7~ p. Finally the
last (funny shaped) box tells us that the A~ decays uniquely to m#~n, as we have noted above. Being
able to read the Table of Clebsch-Gordan coefficients is an extremely useful skill and we should all
practice it.

in our case,

Returning to the general discussion, we note that the lifetime of the A corresponds to a decay (or
resonance) width T'a = h/7 ~ 120 MeV, which is 10% of the rest energy of this baryon. (We can
think of the m — p scattering amplitude as having a pole in the complex energy plane at the mass
of the A, where the pole is off the real axis by the amount I'a.) While there is a potential issue
concerning how long a particle must live in order to be called a particle, we should rather focus on
the point that almost all the particles (states) we know about decay eventually (i.e., nearly all of
the poles are somewhat off the real axis). The real issue is the practical, experimental one. Does the
state live long enough to be detected in the detector before it decays. Or is the lifetime so short that
we see evidence of the state’s existence only from a bump in an interaction rate (i.e., we literally
detect the pole in the complex energy plane). This is essentially the distinction in the tables provided
by the PDG. In the former case, lifetimes are reported, while in the latter case the width (of the
peak) is reported. Thus the PDG reports what is actually measured.

The ¥* and Z* baryons also have very short lifetimes, on the order of a few times 10723 s. The ¥*
contains one strange quark. The ¥*’s mass of 1285 MeV /c? is larger than the 1116 MeV/c? mass of
the A, the lightest baryon containing a strange quark, by more than the mass of a pion. So strong
interactions can cause a X* to decay to a A plus a pion, which is the dominant observed decay.
Similarly, =* baryons, containing two strange quarks, can decay via strong interactions to a = (the
lightest doubly strange baryon) plus a pion.

Looking ahead to Chapter 6.9 on parity, it is worthwhile noting a characteristic feature of these
strong decays of members of the flavor decuplet (the flavor 10) into a member of the nucleon octet

3 1+
2 2

plus a 07. Thus naively neither the spin nor parity match, % =+ % 4+ 0 and + # + x —. But total
angular momentum is conserved by all interactions and so we conclude that there must be one unit
of orbital angular momentum in the final state, L = 1A (the proton and pion orbit about each other).
This now allows the final state to have total angular momentum %(: %—k 1) and adds an extra parity

factor of (—1)% = -1. Thus everything works for a strong decay.

(the flavor 8) plus a pion. In J¥ notation (spin and intrinsic parity) we have a * going into a
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The final member of the J = 3/2 decuplet, the Q= baryon, cannot decay via strong interactions to
a lighter baryon plus a pion, because there are no lighter baryons containing three strange quarks
(and strong interactions preserve the net number of strange quarks). It could, in principle, decay
via strong interactions to a = baryon (containing two strange quarks) and a K meson (containing
one strange quark) — but it doesn’t have enough energy. Its mass of 1672 MeV/c? is less than
the sum of = plus K masses. In fact, the Q= baryon cannot decay via any strong interaction
process. Nor can it decay via electromagnetic processes, which also preserve the net flavor. But
weak interactions are distinguished by the fact that they can change quarks of one flavor into a
different flavor. Consequently, the 2~ baryon can decay via weak interactions to a lighter baryon
plus a meson with only 2 strange quarks remaining. The dominant decays involve the conversion
of one strange quark into an up quark, leading to final states consisting of a A baryon plus a K~
meson, a ZY baryon plus a 7, or a £~ plus a 7°. The Q~ was, in some sense, easy to detect due to
its characteristic “cascade” decay (first seen in a bubble chamber photograph)

QO —2%~
N A0
\pm . (5.7.3)

So overall the process in Eq.(5.7.3) is Q= — p7~ 7~ 7". Note that these final states conserve baryon
number and electric charge, and are allowed by energy conservation. The 10710 s lifetime of the Q~
is much longer than a typical strong interaction decay time, and is indicative of a weak interaction
process.

Similar reasoning can be applied to the J = 1/2 baryons. The proton is (apparently) stable, while
all the other members of the octet decay via weak interactions — except for the X% which can decay
to a A plus a photon via electromagnetic interactions. Note that the 7 x 10720 s lifetime of the X is
much shorter than a weak interaction lifetime, but is longer than typical strong interaction lifetimes.
(In a very real sense the electromagnetic interactions are stronger than the weak interactions but
weaker the the strong interactions.) The lifetimes of the A, Z, and X% baryons are all around 10~'°
s, typical of weak interaction decays. The 900 second lifetime of the neutron is vastly longer than
a normal weak interaction lifetime. This reflects the fact that neutron decay is just barely allowed
by energy conservation. The mass of the final proton plus electron (and antineutrino) is so close to
the mass of the neutron that only about 8 MeV, or less than 0.1% of the rest energy of neutron, is
available to be converted into the kinetic energy of the decay products.

Before ending this discussion, we can test our newly acquired understanding of conserved quantum
numbers and decays by applying it to the case of mesons. Just like the spin 3/2 baryons tend to
have strong interaction (i.e., fast) decays into the spin 1/2 barons plus a pion, the vector mesons
of Table have strong decays into the corresponding scalar mesons (i.e., the states with the same
number of strange quarks) plus a pion. Note, in particular, that all of the lifetimes are of order 10~22
to 10724 seconds, typical strong (short) lifetimes. Again we should consider the correlation of spin
and parity for the decay of a 1~ meson into two 0~ mesons. As with the strong baryon decays above
we need 1 unit of orbital angular momentum to allow the conservation of total angular momentum,
1 =040+ 1, which is again just what we need to conserve parity, —1 = —1 x —1 x —1.

Also worthy of note is that the zero-strangeness, isoscalar state w decays into 3 pions, while the
similar zero-strangeness neutral member of the isovectors, the p°, decays into 2 pions. There is
a combined transformation of charge conjugation (C') plus an isospin rotation (historically called
“G-parity” and described in more detail in the next Chapter) under which pions and the w are odd
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(-1), while the p’s are even. Since the strong interactions respect this symmetry, the decay of the p"
must be into an even number of pions, while the w is into an odd number of pions. More generally a
qq state made of u and d quarks has the following eigenvalue under G, (—1)E+9+ which yields, as
noted above, (-1) for pions (L =5 =0, =1), (+1) for the p (L =0,5 =1 =1), and (-1) for the w
(L=1=0,5=1).

+2-111/15 173 3/5] A further detail (not shown explicitly in the table) is that the

1x11 2 +1 0(8/15 1/6-3/10 . .0 + -
+2[ 2 11 | o+1| 2/5 172 1710 two pion decay of the neutral p is p° — 77 + 7~ and not
[ :1 ;172 ;;; — - p® — 70 + 70 This is an interesting realization of the how
0+11/2-1/2] 0 0 © -1+11  two isovectors (the pions) combine to form another isovector
+g} ,g) ;;g 1/3 12} — (the p). It supplies another opportunity to look in detail at the
1 a1l/6-12 13l 1 | table of Clebsch-Gordan coefficients that appears at the end
o-1/1/2 1/2| 2|  of this Chapter. The appropriate subsection (middle left) of

Y, ™= (=1)my,m™ -1 0[1/2-1/2]-2

EEI the Table is shown to the left here. For the case of two vectors
combining to form another vector (1 x 1 — 1) where we want
to consider the neutral state of the final vector (M = 0), we focus on the middle column of the
middle (funny shaped) box. We see from the 0 at the center of this box that there is no coupling to
the neutral states of the original vectors (mj; = may = 0), i.e., p° » 7° + 7. Instead there are equal
couplings, up to the sign, to the 2 charged states,

1) = [y - ). (5.74)

ASIDE: Another way to look at the absence of this decay, p® - 7% + 7%, which illustrates again
the “beautiful” self-consistency of physics, is to consider the symmetry required for identical bosons
(see problem 11.1 in Das and Ferbel). We already noted that the two pion final state in p decay
must correspond to L = 1 in order to conserve both total angular momentum and parity. Further, a
two particle state with relative orbital angular momentum 1 is antisymmetric under the interchange
of the two particles. This is why it adds a factor of (-1) to the overall parity of the state. On the
other hand a two 7° state must be symmetric under the interchange of the 2 7¥’s, since they are
identical bosons. Hence there can be no L = 1 two 7¥ state and the decay cannot occur. For the
state composed of two oppositely charged pions both the isospin wave function of Eq. and
the L = 1 spatial wave function are antisymmetric under the interchange of the pions yielding the
required overall symmetric state.

For the scalar mesons of Table energy conservation rules out any strong decays. The (neutral)
7Y, n and 1’ all exhibit electromagnetic decays with photons in the final state and lifetimes of order
1072Y seconds (like the X.°). The kaons need to convert a strange quark into an up or down quark
and so decay weakly with a 107® second lifetime (except the Kg, which is still a weak decay but
slightly faster). Finally the charged pions decay weakly into leptons only with a similar 10~ second
lifetime.

To complete this discussion of decays we summarize in Table the various additive and multiplica-
tive quantum numbers and which interactions conserve them. We will discuss the related symmetries
in more detail in the next chapter.

You are encouraged to look at the much more extensive listing of information about known mesons
and baryons at the Particle Data Group website. Pick a few particles which have not been discussed
above, and see if you can predict the dominant decay modes using the ideas we have discussed in
this chapter.
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Conserved quantity Strong EM Weak

Additive

Energy-momentum Yes Yes Yes
Angular Momentum Yes Yes Yes
Electric Charge Yes Yes Yes
Baryon Number Yes Yes Yes
Lepton Number Yes Yes Yes
Quark Flavor Yes Yes No
Isospin Yes No No

Multiplicative
Partity - P Yes Yes No
Charge Conjugation - C Yes Yes No

Time Reversal - T' (or C'P) Yes Yes ~ 1073 viol

CPT Yes Yes Yes
G - parity Yes No No

Table 5.15: Conserved quantum numbers.

It is worthwhile emphasizing again what ”conserving” means in this context. Consider the decay
of one particle into 2 particles, A — B + C. For the scalar quantities like electric charge, baryon
number and lepton number (or 4-vectors like energy-momentum) conserving means that the value of
this quantity for particle A is equal to the simple sum of these quantities for particles B and C. For
more complex quantities like angular momentum, isospin and quark flavor (with nontrivial group
theory structure), we need to think a bit harder. Now conserving means that the "total” quantum
number like J? (i.e., defining the representation) and the simple additive quantities like J3 (i.e.,
defining the individual element of the representation) must match before and after the decay. Since
the total angular momentum before the decay is just the spin of A, this representation must match
one of the possible angular momentum representations that arise when we combine the spin of B
with the spin of C and any possible orbital angular momentum of the BC' pair. We have learned
about Young diagrams (Chapter 11 and the sample problems in this chapter) preciously so that we
can calculate which angular momentum representations can be present in the final state when we
combine the spins of B and C' and the orbital angular momentum (S? ® §¢ ® LPC). Likewise, if

we specify the spin polarization (Sg‘) in the initial state, it must be matched by that in the final
state. Here the arithmetic is simple addition, S§4 = Sf + Sf + Lfc. For isospin the calculation is
very similar to angular momentum, since it again involves only SU(2) representations (i.e., the same
equations have the same solutions). In fact, it is even simpler because there is no analogue of orbital
angular momentum in isospin space! The specific element of the isospin representation is specified
by I3, which satisfies I5 = I + I§. For the SU(3) of quark flavor (for the u, d and s quarks) we
must match representations of SU(3) before and after the decay. The additive conservation is now
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of 2 quantum numbers, typically I3 and strangeness (the number of strange quarks).

5.8 Sample calculations

At several points in this Chapter we used results for the combinations of multiplets of both SU(2)
and SU(3). The “slickest” technique for calculating these results is the method of Young diagrams
described in Chapter 11. Here we present a brief summary of those results and the reader is strongly
encouraged to read Chapter 11 now! This will allow you to understand the (somewhat peculiar)
notation used below.

Consider first combining 2 fundamental multiplets (representations) as in Eq. (11.2.7). In the Young
diagram language we have

D@Dsz@H. (5.8.1)

To proceed we put the appropriate integers in the boxes, evaluate and divide by the “hooks”, and
calculate. For the SU(2) case of adding 2 doublets (e.g., 2 spin 1/2 fermions) we have

-3 2.1

zez=[Zlo[Z=[2Blo = 0, =301 (5:52)

For combining 2 triplets of SU(3) (of color or flavor) we have

l\D

343

je3=[BeBl-BlAledl- ;e te

ZOO\

(5.8.3)

—_

Note the (symmetry) distinction here between 3 and 3 (H versus [] and the corresponding distinction
illustrated in Table [5.3] V versus A) that does not exist for the SU(2) 2 and 2, which are identical

(O versus ). This means that in the SU(3) case we can obtain something new and different from
combining a 3 and 3 (i.e., as distinct from combining two 3’s). We have

3
o T mra Bl sae 32
§®§—D®H— Sl e i SR LR (5.8.4)

Next consider combining three fundamental representations, where we must immediately distinguish
SU(2) and SU(3) (we cannot antisymmetrize 3 objects if there are only 2 different kinds). For SU(2)
(3 fermions) we have, as in Eq. (5.4.2)),

200
U=

Pe@e@-(eH) s0-[T e

3] 2-3-4_2.3-1 2

_ 23] ..[2 3.1
_@1 @L “32.193 119311

—4®202. (5.8.5)
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For the distinct case of three SU(3) triplets we have instead, as in Eq. (5.4.1), (note the differences
from the SU(2) case above)

Meme-((TeH) e0-Te[] e @@

(5.8.6)
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40. CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONICS,

AND dFUNCTIONS
J J
Note: A square-roct sign is to be understood over every coefficient, e.g., for —8/15 read —/8/15.  Notation: | . o
1/2x1/2] ! e M M2
+1] 1 © v =4/ cosé 5/2 "
[x1/2+1/2[ 1] 0o 0 ! 4 2x1/2 52| 572 372 my; m, | Coefficients
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[17272) 1 4 +1+172| 4/5-1/54+1/2 +1/2
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1x1/2 [372 e e 0+1/2| 3/5-2/5|-1/2-172
X +372] 372 1/2 15 0-1/2| 3/5 2/5| 5/2 3/2
a7  1la/zaz V= /g; sin 6 cosd ¢t - 1 +1/2| 2/5 -3/5|-3/2 -3/2
+1-1/2| 173 23| 3/2 172 i X —1-172(Failal 5/2
| 0+1/2| 2/3-1/3}-1/2-1/2 1 /5 ‘ 3/2x1/2 o7 |23172| 145 a5 572
V2 = 2, /22 sinZge?ie +3/2 +1/72] 1] +1 +1 I_z /2 1
0 1721023 1Al 321 "2 aYar +3/2 -1/2[1/4 3/4] 2
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+2 of1/3 23] 3 2 1 33,2 0 2/5 35| 572 372 172 —1/2-1/2[ 374 1/4] 2
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0+1/1/2-1/2| 0 © 0 1+1[1/5-1/2310] -1 1 -3/2+1[1/10 -2/5 1/2}3/2 372
+1-1|146 1/2 173 0-1| 2/5 12 1710 |—1/271 3/5 2/5| 5/2
0023 o013 2 -1 ofa/1s-1/6-3/10] 3 2 —3/2 0| 2/5 -3/5| 572
1116172 1731 1] -2+1[1/15-1/3 3/5] -2 -2 [z 1 1
o117z 12| 2 |-1 -1|273 18] 3
Y, " =(-ymy | ohiz-1z)2 -2 0|1/3-2/3|-3 {j14zmyma|j1 e d M)
o 4 2 _ d 4 .
Eo g = o yvemme 22 = (177178 {pgrmama | fagy T M)
: 241
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dgn’m_(fl)m mdinm’:dim—m 3/2x3/2 +3] 3 2 dl . =cosé 1/2 7cos€ dl :—1+CDS'9
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X 212 +32+172 172 12| 3 2 172 g sin #
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TS a5 +3/2-1/2 |1/5 1/2 3/10
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1 0| 37 1/5-1/14-3/10 0 -3/2| 27 1/5
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3/2 1+cosd . 6 g2 e (LCO8 -1 0| 3/7 -1/5-1/14 3/10] 4 3 2
d3/2,1/2:_\/§T n 52— 3 -2 +1(1/14-3/10 37 15| 2 -2 -2
= 1+4ecosé 0 -2[314 172 217
a¥ Zzﬁﬂmsﬁ 43, = ————"sin? 1 -1[a7 o3[ 7 3
3/2,-1/ 2 2 7 1+ , 2 0[sna_1/2 27| 3 3
372 _ 1-cosh 8 5 V6 42 CO8E o cosd — 1 |—1 —2[172 172] 4
dyrp g = "~ Sy diq =~ sin®é i=—3g ) 2 1 1I/z_1/z -4
3/2 _3@03971 7 5 _ 1—cosé 2 _ E . -2 -z 1
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Figure 40.1: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley (The
Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 1957),
and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif., 1974).
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