
Chapter 7

Weak interactions

As already discussed, weak interactions are responsible for many processes which involve the trans-
formation of particles from one type to another. Weak interactions cause nuclear beta decay, as well
as the decays of muons, charged pions, kaons, and many other hadrons. All processes which involve
production or scattering of neutrinos, the conversion of quarks from one flavor to another, or the
conversion of leptons from one type to another, involve weak interactions.
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ū d

Figure 7.1: Depictions, at the level of quarks and leptons, of the weak decays µ+ → e+ + ν̄µ + νe, π
+ → µ+ + νµ, and

Λ → p+ π−.

Figures 7.1 and 7.2 depict, at the level of quarks and leptons, some of these weak interaction processes.
As these figures illustrate, every weak interaction vertex (the black dot in the figures) involves four
fermions (where here we are counting fermions and antifermions equally), either one fermion turning
into three (as in muon decay) or two incoming fermions scattering and producing two outgoing
fermions (as in neutrino scattering in Fig. 7.2). As the Λ baryon decay in Fig. 7.1 illustrates, there
can also be spectator quarks which are constituents of the hadrons involved but not direct participants
in the weak interaction process.

The complete Hamiltonian which describes particle interactions can be written as a sum of contri-
butions from strong, electromagnetic, and weak interactions,

H = Hstrong +HEM +Hweak . (7.0.1)
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Figure 7.2: Left: inelastic neutrino scattering, νµ+e− → νe+µ−. Right: elastic neutrino scattering, νe+e− → νe+e−.

Because weak interactions are truly weaker than strong or electromagnetic interactions, it is useful
to think of Hweak as a small perturbation to the dynamics generated by strong and electromagnetic
interactions.

7.1 Muon decay

Consider (anti)muon decay, µ+ → e+ + ν̄µ + νe, in Fig. 7.1. Let the ket |µ+(~p=0)〉 denote an initial
state containing a single µ+ at rest. Let the bra 〈e+(~pe) ν̄µ(~pν̄) νe(~pν)| denote a final state describing
a positron with spatial momentum ~pe, a muon antineutrino with momentum ~pν̄ , and an electron
neutrino with momentum ~pν . The existence of muon decay means that the time evolution of the
initial state |µ+(~p=0)〉 will have a non-zero projection onto the final state 〈e+(~pe) ν̄µ(~pν̄) νe(~pν)|. This
can only happen if the Hamiltonian, which generates time evolution, has a non-zero matrix element
connecting these states. And this can only be due to the weak interaction part of the Hamiltonian.
In other words, the existence of muon decay implies that the amplitude

M ≡
〈
e+(~pe) ν̄µ(~pν̄) νe(~pν)|Hweak|µ+(~p=0)

〉
, (7.1.1)

is non-zero. The rate of decay must be proportional to the square of this amplitude. Because there
are many different final states corresponding to different values of the final momenta pe, pν̄ and pν ,
the complete decay rate Γ will involve a sum over all possible final states. Schematically,

Γ ∼
∑

final states

|M |2 . (7.1.2)

The amplitude M , when properly defined (see footnote below), will include momentum conservation,
i.e., the constraint that ~pe + ~pν̄ + ~pν = 0. When momentum is conserved, pν̄ will equal −(pν + pe),
so M may be regarded as function of two independent momenta, pe and pν . This amplitude can,
in principle, depend in some complicated fashion on these two final momenta. But the simplest
possibility is for the amplitude to have minimal dependence on the outgoing momenta. Physically,
this corresponds to a point-like interaction, for which the spatial variation of wavefunctions (due to
their momentum) plays no role.
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This approximation (that the weak interaction occurs essentially at a point) turns out to work
remarkably well, and we will shortly discuss how we can understand this perhaps surprising result.
If the amplitude M is momentum independent then, with just a little calculation, one can perform
the sum over final states in Eq. (7.1.2) (strictly speaking, the 3-momenta are continuous variables
and the sum is really an integral) and predict the muon decay spectrum as a function of either the
positron energy or momentum. The spectrum is the fraction of decays in which the positron has
energy between E and E+dE, or momentum between p and p+dp with E =

√
p2 +m2

e. Figure 7.3
shows the comparison between experimental data for the decay spectrum versus momentum and the
result of this calculation. The agreement is excellent.

Figure 7.3: Energy spectrum of positrons emitted from decays of positively charged muons. The solid curve is the
theoretical prediction; data points are shown with error bars. [From M. Bardon et al., Phys. Rev. Lett. 14, 449
(1965) ].

To characterize the value of the amplitude M , it will be useful to begin with some dimensional
analysis. To make this as easy as possible, it will be convenient to use “natural units” in which
~ = c = 1 (recall the discussion in section 2.7). Since c has ordinary dimensions of [length/time],
setting c = 1 means that we are regarding length and time as having the same dimensions. Since ~
has dimensions of [energy × time], setting ~ = 1 means that we are regarding energy and frequency
(or inverse time) as having the same dimensions. Setting both ~ and c to unity means that we are
treating length and inverse energy as dimensionally equivalent. After using natural units in any
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calculation, one can always reinsert factors of ~ and c as needed to restore conventional dimensions.
In particular, the value ~c ' 197 MeV fm may be regarded as a conversion factor which allows one
to convert lengths measured in femtometers into lengths measured in MeV−1, 1 fm = 1

197 MeV−1.

The Hamiltonian is the operator which measures energy. Its eigenvalues are the energies of stationary
states. Therefore, the Hamiltonian must have dimensions of energy. If |Ψ〉 is any physical, normalized
state, then the matrix element 〈Ψ|H|Ψ〉 is the expectation value of the energy in state |Ψ〉. Hence,
matrix elements of the Hamiltonian, such as the muon decay amplitude M in Eq. (7.1.1), also
have dimensions of energy, provided the states appearing in the matrix element are appropriately
normalized as we will now discuss.

The wavefunction describing a particle with definite momentum ~p is proportional to the plane wave
ei~p·~x/~. To normalize such a state, it is convenient to imagine that space is not infinite, but rather
is limited to some finite, but arbitrarily large region V. The condition that a state is normalized
then becomes 1 =

∫
V d

3x |Ψ(~x)|2, where the integral only includes the interior of the region V.
For simplicity, suppose that this region is a cube whose edges have length L (and hence volume
L3). A normalized state describing a particle with momentum ~p will thus have a wavefunction
Ψ(~x) = ei~p·~x/~/L3/2. The absolute square of this wavefunction gives a constant probability density
of 1/L3 whose volume integral over the region V equals one, as desired.

Now consider the muon decay amplitude M . The initial muon, with zero spatial momentum, will
have a constant wavefunction, ψµ(~x) = 1/L3/2. The final positron, with momentum ~pe, will have
a plane-wave wavefunction ψe(~x) = ei~pe·~x/~/L3/2, and similarly the final neutrino and antineutrino
will have wavefunctions ψνe(~x) = ei~pν ·~x/~/L3/2 and ψν̄µ(~x) = ei~pν̄ ·~x/~/L3/2, respectively.

Since the point-like weak interaction event can occur at any point in space, the complete amplitude
will involve an integral over space with an integrand that is the product of the amplitude ψµ(~x) to
find the muon at some point ~x, times the product of conjugate wavefunctions ψe(~x)∗ ψνµ(~x)∗ ψν̄e(~x)∗,
giving the amplitudes for the created positron, neutrino, and antineutrino all to be at (the same)
point ~x, all times some overall constant which will control the rate of this process,

M =

[∫
V
d3x ψe(~x)∗ ψνµ(~x)∗ ψν̄e(~x)∗ ψµ(~x)

]
× (const.). (7.1.3)

For the weak interaction the overall constant is known as the Fermi constant, GF , divided by
√

2.
(Including this factor of

√
2 is merely a convention, but is required so that GF matches its historical

definition.) The integrand appearing in this matrix element is just a constant,

ψe(~x)∗ ψνµ(~x)∗ ψν̄e(~x)∗ ψµ(~x) =
e−i(~pe+~pν+~pν̄)·~x/~

(L3/2)4
= L−6 , (7.1.4)

provided the momenta satisfy conservation of 3-momentum, ~pe + ~pν + ~pν̄ = 0. 1 Integrating over the
region V thus simply yields a factor of the volume, L3, of this region. Hence, we find

M =
GF /
√

2

L3
. (7.1.5)

1The mathematically astute will recognize that the integral over all (3 dimensional) space of an expression like the
one in Eq. (7.1.4) produces precisely the Dirac delta function that ensures 3-momentum conservation, i.e., translational
invariance means integrating over all space means a delta function.
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We noted above that the decay amplitude M must have dimensions of energy. Since 1/L3 has
dimensions of energy cubed (having set ~ = c = 1), we learn that the Fermi constant GF must have
dimensions of 1/(energy)2.

The value of the Fermi constantGF may be fixed by demanding that the muon decay rate Γ calculated
from Eq. (7.1.2) agrees with the experimentally determined value. The decay rate is just the inverse of
the lifetime, so Γ = 1/τµ = 1/(2 µs). Performing the sum over final states in Eq. (7.1.2) involves inte-
grating over the final momenta subject to the constraints of energy and momentum conservation. De-
tails of this calculation, which is straightforward, will be omitted. One finds that Γ = G2

F m
5
µ/(192π3).

Note that the resulting natural units from G2
F m

5
µ = energy−4energy5 = energy = time−1, just what

we expect for a rate of decay. Equating this with the inverse of the experimentally measured decay
rate and solving for GF yields

GF = 1.16637(1)× 10−5 GeV−2 ' 1.2× 10−5 GeV−2 = 12 TeV−2 . (7.1.6)

7.2 Neutrino scattering

The significance of the determination of the Fermi constant described above comes from the fact that
a factor of GF will appear in every weak interaction amplitude. Consider, for example, the inelastic
neutrino scattering process,

νµ + e− → νe + µ− , (7.2.1)

depicted on the left in Fig. 7.2 in which the “flavor” of the charged lepton changes. With sufficient
experimental skill and resources, this is a measurable process. The cross section for this scattering
process equals the rate of scattering events divided by the incident flux of neutrinos and the density
of target electrons. For a neutrino beam with constant flux, the scattering rate is just the probability
of scattering in time ∆t, divided by ∆t. And the probability, as always in quantum mechanics, is the
absolute square of a probability amplitude which involves a matrix element of the weak interaction
Hamiltonian between the relevant incoming and outgoing states, M = 〈out|Hweak|in〉. This weak
interaction amplitude must also be proportional to GF , so that2

σ ∝ |M |2 ∝ G2
F . (7.2.2)

Now do some more dimensional analysis. A cross section is an area, with dimensions of length squared
or (in natural units) [energy]−2. The Fermi constant GF also has dimensions of [energy]−2, but GF
appears squared in the cross section. Therefore the cross section must equal G2

F times “something
else” with dimensions of [energy]2. What can this “something else” depend on? One possibility,
which is surely relevant, is the neutrino energy. But the energy of a particle is frame-dependent.
Since the cross section is an invariant concept (effectively the “size” transverse to the direction of the
beam, which is not changed by boosts along the beam), we must be able to express the cross section
in terms of Lorentz invariant quantities. A Lorentz invariant measure of the scattering energy is
s ≡ (pνµ + pe)

2 = (pνe + pµ)2 = E2
CM. At low energies, the value of the cross section will also depend

on the electron and muon masses. After all, if ECM < mµc
2, then the reaction νµ + e− → νe + µ−

2In fact, analytic continuation in the four-momenta relates the amplitude for inelastic neutrino scattering, νµ+e− →
νe + µ−, to the amplitude for µ+ decay. This relation, which involves replacing particles in the initial state by their
antiparticles in the final state (or vice-versa) is known as crossing symmetry.
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cannot possibly occur. So by “pure thought” we conclude that it must be possible to express the
cross section in the (dimensionally consistent and invariant!) form

σ = G2
F s× f

(me√
s
,
mµ√
s

)
, (7.2.3)

where f is some dimensionless function of the dimensionless ratios me/ECM and mµ/ECM. Further
we expect (by energy-momentum conservation) that this function will be non-vanishing only when
both arguments are less than one.

The simplest regime to consider is large energy relative to the muon mass, ECM � mµc
2. In this

domain, the ratios me/ECM and mµ/ECM are both tiny. Since the cross section can be expressed in
the form (7.2.3), understanding the behavior of the cross section when the energy is large is the same
problem as understanding the behavior of the cross section in a hypothetical world where the value
of the electron and muon masses are arbitrarily small (compared to some reference mass scale).

A crucial observation is that there is no reason to expect anything dramatic, or singular, to happen
in the limit of vanishingly small electron and muon mass (at fixed energy ECM). In the relativistic
relation between (total) energy and momentum, the zero mass limit is perfectly smooth, and just
leads to the energy-momentum relation of a massless particle,3

E(~p) =
√
~p 2 +m2 = |~p|+ 1

2

m2

|~p|
+ · · · −→

m/E→0
|~p| . (7.2.4)

Similarly, the massless limit of the function f(me√
s
,
mµ√
s
) appearing in the cross section (7.2.3) should

be expected to be finite and non-zero, so that A ≡ f(0, 0) is just some pure number like 2 or π. A
detailed calculation shows that, for the process (7.2.1), the number A is 1/π. Therefore, the inelastic
neutrino cross section is given by

σνµe−→νeµ− =
G2
F E

2
CM

π
, (7.2.5)

when ECM � mµc
2(� mec

2). This quadratic rise of the cross section with center-of-mass energy
(for energies above the relevant particle masses) also applies to other weak interaction scattering
processes, including neutrino scattering with nucleons and elastic neutrino-electron scattering. In
the latter example, the cross section is

σνee−→νee− = 0.551
G2
F E

2
CM

π
. (7.2.6)

Recall, as we have already mentioned and will discuss in more detail in the next section, the weak
interactions involve not only the exchange of the electrically chargedW bosons (the so-called “charged
current” weak interaction), as happens in the inelastic process of Eq. (7.2.5), but also the exchange of
the electrically neutral Z boson (the so-called “neutral current” weak interaction), which contributes
also to the elastic process in Eq. (7.2.6) (see the Feynman diagrams in Fig. 7.6). The differences in
the two processes (one being only W exchange and the other both W and Z) leads to the different
coefficient in Eq. (7.2.6) versus Eq. (7.2.5). The coefficient decreases by a factor of about 2 due to

3In contrast, the non-relativistic (kinetic) energy ENR(~p) = ~p 2/(2m) is not well-behaved if m→ 0 for fixed momen-
tum ~p.
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destructive interference between the W and Z exchanges (recall that quantum physics is all about
interference).

For completeness we should also note the elastic cross section for the related (by crossing) process
with antineutrinos,

σν̄ee−→ν̄ee− = 0.231
G2
F E

2
CM

π
. (7.2.7)

This cross section is smaller by approximately a factor of 3, which arises from the further fact (not
present in our original simple point model) that the W (but not the Z) couples only to fermions of
a definite spin projection. The W couples only to “left-handed” fermions (spin projection opposite
the direction of motion) and “right-handed” antifermions (spin projection along the direction of
motion). (Recall this is why the weak interactions violate both P , which transforms left-handed to
right-handed, and C, which transforms particle to antiparticle.) In particular, this means that for the
elastic neutrino-electron scattering process of Eq. (7.2.6) we have a left-handed neutrino scattering
from a left-handed electron. Thus, viewed in the CM frame, the two spins are oppositely oriented and
we have (total) J3 = 0 for both the initial and final states. Thus angular momentum conservation
imposes no constraints. In contrast, the anti-neutrino elastic scattering process of Eq. (7.2.7) involves
a right-handed antineutrino scattering from a left-handed electron. Hence we have (total) J3 = 1
along the direction of motion of the antineutrino in both the initial and final states. Hence “back”-
scattering of the antineutrino (and the electron) is not allowed by angular momentum conservation,
since it would require turning J3 = +1 into J3 = −1. In fact, compared to the neutrino process,
the scattering cross section of the antineutrino process is reduced at all scattering angles except
exactly forward (θ = 0). Thus the “handedness” in the weak dynamics explains both why the weak
interactions do not respect parity and the extra factor of about 1/3 in Eq. (7.2.7).

These predictions of neutrino cross sections increasing with increasing energy, which arise directly
from our simple picture of the weak interactions as a point interaction, have been confirmed exper-
imentally for energies in the multi-MeV to multi-GeV range.4 But the prediction of quadratically
rising cross sections raises an immediate puzzle: can cross sections really grow with increasing energy
forever? Or is there some point at which the behavior must change?

In fact, cross sections cannot become arbitrarily large. The number of scattering events in any
scattering experiment is proportional to the cross section. But ultimately, the number of scatterings
cannot be larger than the total number of projectiles! A quantum mechanical analysis shows that
for point-like (or so-called s-wave) scattering, the cross-section must satisfy the bound

σ <
λ2

4π
=

π

~p 2
, (7.2.8)

where λ = 2π~/|~p| is the de Broglie wavelength of the projectile in the center-of-mass frame. This is
referred to as a unitarity bound.

For an ultra-relativistic scattering, viewed in the center-of-mass frame, the energy of each particle
is almost the same as the magnitude of its momentum (times c), and hence ECM ' 2|~p |. Equating
expression (7.2.5) for the neutrino cross section with the unitarity bound (7.2.8), one finds that the

4See, for example, the plots of the (anti)neutrino-nucleon total cross section at the particle data group website (see
page 9) . Note that for neutrino scattering on a nucleus, the lab frame energy is proportional to the square of the
center-of-mass energy, Elab ∝ E2

CM, when Elab is large compared to the target mass. So the quadratic rise of the cross
section with ECM is equivalent to linear growth as a function of Elab, and a constant behavior for σ/Elab, as plotted.
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cross section (7.2.5) violates the unitarity bound when the center-of-mass energy exceeds

E∗ ≡
√

2π

GF
≈ 700 GeV . (7.2.9)

Therefore, at some energy below 700 GeV, something must dramatically change the behavior of weak
interaction cross sections to stop their quadratic rise with increasing energy. In fact, before we reach
this energy the weak interactions begin to exhibit the fact that they do not really correspond to a
point interaction, but rather to the exchange of the aforementioned W ’s and Z’s.

7.3 Weak gauge bosons

At energies somewhat below E∗, weak interaction cross sections become comparable to electromag-
netic cross sections. At this point, one might anticipate significant changes in the behavior of both
electromagnetic and weak interactions. This turns out to be true. Figure 7.4 shows the cross section
for electron-positron annihilation into hadrons as a function of

√
s = ECM. At energies below about

50 GeV, one sees that the cross section generally decreases with increasing energy (note the logarith-
mic scale). Since the electromagnetic coupling is dimensionless (unlike the weak interactions, there
is no symmetric breaking for EM and no mass scale), the same dimensional analysis we applied to
the weak interactions yields electromagnetic cross sections that behave like α2/s (instead of G2

F s)
and this is the general fall-off we see in the upper plot in Figure 7.4. The lower plot in Figure 7.4
shows the ratio between e+e− → hadrons and e+e− → µ+µ−, which cancels out the 1/s behavior.
In fact, the levels of the various “flat” sections in this plot are easily understood in terms of sum
over the squares of the electric charges of the quarks to which the photon couples, with the scale of
the charge e2 canceled out by the charge (squared) of the muon in the denominator. Thus at low
energies, where only u, d, s quarks are produced, the ratio is

Rlow =3

[(
2

3

)2

+

(
−1

3

)2

+

(
−1

3

)2
]

=3

[
4

9
+

1

9
+

1

9

]
= 2 . (7.3.1)

In this expression the preceding factor of 3 accounts for the fact that quarks come in 3 colors, which
contribute equally to the coupling to photons but are distinct and do not interfere (i.e., you square
the amplitude for each color first and then sum over colors). As the energy increases, quarks with
larger masses contribute and the value of R takes a step up at each threshold (to produce a new flavor
pair). At the c quark threshold (where we also see the cc̄ bound state resonances J/ψ and ψ(2S))
we add an additional 3× 4/9 and R increases to 10/3. At the b quark threshold (marked by the bb̄
Υ resonance) R is increased by 3 × 1/9 to 11/3. The fact that this simple picture of quarks with
the specified (if peculiar) fractional electric charges and in 3 colors is in such good agreement with
the data was an essential step in the general acceptance of the current Standard Model of particle
physics.

The other dramatic feature of Figure 7.4 is the appearance of the various spin one, parity odd
hadronic resonances — the broad ρ and ρ′, the narrower ω and φ, and the very narrow “spikes”
associated with cc̄ and bb̄ heavy quark states (already mentioned above). The J/ψ and ψ(2s) are cc̄
bound states with energies close to twice the charm quark mass, while the upsilon (Υ) states near
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6 40. Plots of cross sections and related quantities

σ and R in e+e− Collisions
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Figure 40.6: World data on the total cross section of e+e− → hadrons and the ratio R(s) = σ(e+e− → hadrons, s)/σ(e+e− → µ+µ−, s).
σ(e+e− → hadrons, s) is the experimental cross section corrected for initial state radiation and electron-positron vertex loops, σ(e+e− →
µ+µ−, s) = 4πα2(s)/3s. Data errors are total below 2 GeV and statistical above 2 GeV. The curves are an educative guide: the broken one
(green) is a naive quark-parton model prediction, and the solid one (red) is 3-loop pQCD prediction (see “Quantum Chromodynamics” section
of this Review, Eq. (9.12) or, for more details, K. G. Chetyrkin et al., Nucl. Phys. B586, 56 (2000) (Erratum ibid. B634, 413 (2002)).
Breit-Wigner parameterizations of J/ψ, ψ(2S), and Υ (nS), n = 1, 2, 3, 4 are also shown. The full list of references to the original data and the
details of the R ratio extraction from them can be found in [arXiv:hep-ph/0312114]. Corresponding computer-readable data files are available
at http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, August 2007. Corrections
by P. Janot (CERN) and M. Schmitt (Northwestern U.)) See full-color version on color pages at end of book.

Figure 7.4: Top: Cross section for e+e− annihilation to hadrons as a function of
√
s = Ec.m.. Bottom: Ratio of cross

sections for e+e− annihilation to hadrons versus annihilation to muon pairs, R = σe+e−→hadrons/σe+e−→µ+µ− . particle
data group website (see page 6) .]

2mb are bb̄ states. But then, at a much higher energy near 90 GeV, there is a very large resonance
which is something new and relevant to our current discussion. This is not a quark-antiquark bound
state, but rather a new type of particle which is called the Z boson. The same resonance appears
in neutrino scattering. There is also a closely related pair of charged particles known as the W+

and W−. These are not seen in Figure 7.4 because a single W+ or W− cannot result from e+e−

annihilation — this would violate charge conservation! However, the W bosons are present in those
interactions where a quark or lepton changes type (i.e., flavor) and they can be pair (W+ + W−)
produced in e+ + e− annihilation at energies above 2MW c

2, i.e., off the above plot to the right..

Together, the W± and Z are known as weak gauge bosons. 5 They are spin one particles with masses

5The word “gauge” appears here because the underlying (broken) SU(2) symmetry is of a type called a “gauge
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e− e−

γ

e− e−

e− e+

γ

µ+ µ−

Figure 7.5: Feynman diagrams for Coulomb scattering: e−e− → e−e− (left), and electron-positron annihilation to
muons: e+e− → µ+µ− (right).
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µ− νe

νe e−

Z

νe e−

+

νe e−
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e− νe

e− e+

Z

µ+ µ−

Figure 7.6: Feynman diagrams for inelastic neutrino scattering: νµ + e− → νe + µ− (left), elastic neutrino scattering:
νe + e− → νe + e− (middle), and the weak interaction contribution to e+e− → µ+µ− (right).

µ+

ν̄µ

W+

e+ νe

d̄ u︸ ︷︷ ︸
π+

W+

µ+ νµ

u d s︸ ︷︷ ︸
Λ

W−

p︷ ︸︸ ︷
u d u

π−︷ ︸︸ ︷
ū d

Figure 7.7: Depictions of the weak decays µ+ → e+ + ν̄µ + νe (left), π+ → µ+ + νµ (middle), and Λ → p+ π− (right),
showing the exchange of weak gauge bosons.
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mW = 80.385± 0.015 GeV , mZ = 91.1876± 0.0021 GeV . (7.3.2)

The simplest current picture is that these masses for the weak gauge bosons arise from the interaction
between the weak gauge bosons and the (apparently now found) Higgs boson, which itself is assumed
to have a nonzero “vacuum expectation value” or 〈0|h|0〉 6= 0. (The data from the LHC suggest
pretty clearly that a Higgs boson with the expected properties and a mass of about 125 GeV/c2

has been detected.) The weak gauge bosons mediate the weak interactions, in the same sense that
the photon is responsible for mediating electromagnetic interactions. Coulomb interactions may
be viewed as resulting from the exchange of photons between charged particles, and a process like
e+e− → µ+µ− may be regarded as occurring via the annihilation of the electron and positron into a
(virtual) photon, which lives only a very short time before converting into the final µ+ and µ−. The
diagrams of Figure 7.5 depict these electromagnetic processes.

In the same fashion, weak interactions may be regarded as arising from the exchange of W and Z
bosons. Figure 7.6 depicts the same weak interaction scattering processes illustrated in Figure 7.2,
plus the weak interaction contribution to e+e− → µ+µ−, explicitly showing the exchange of weak
gauge bosons. Figure 7.7 does the same for the weak decays of Figure 7.1 . These diagrams illustrate
the fact that the (lowest order) weak interactions are not really “point” interactions, but rather
localized to a small, but nonzero scale of order 1/MW ∼ 2×10−3 fermi. For particles with de Broglie
wavelengths short enough to probe this sort of distance (i.e., E � 100 GeV), the character of the
weak interactions is moderated and the cross section stops increasing quadratically with the (CM)
energy (and eventually decreases as 1/E2

CM). Note also that it is the difference between the left-hand
diagram and the middle diagram in Figure 7.6 that explains the difference between the cross sections
in Eqs. (7.2.6) and (7.2.5).

The diagrams of Figures 7.5–7.6 are examples of Feynman diagrams. They actually do more than
merely depict some process — these diagrams encode precise rules for how to calculate the quantum
mechanical amplitude associated with each process. But developing this in detail (e.g., in QFT) will
have to be left for a subsequent class.

With this brief sketch of the current understanding of weak interactions, we must conclude our
introduction to particles and symmetries. Hopefully it has whetted your appetite to learn more
about this subject.

symmetry”.
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