
Chapter 2

Minkowski spacetime

2.1 Events

An event is some occurrence which takes place at some instant in time at some particular point in
space. Your birth was an event. JFK’s assassination was an event. Each downbeat of a butterfly’s
wingtip is an event. Every collision between air molecules is an event. Snap your fingers right now —
that was an event. The set of all possible events is called spacetime. A point particle, or any stable
object of negligible size, will follow some trajectory through spacetime which is called the worldline
of the object. The set of all spacetime trajectories of the points comprising an extended object will
fill some region of spacetime which is called the worldvolume of the object.

2.2 Reference frames
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Figure 2.1: An inertial reference frame. World-
lines w1 and w2 represent observers at rest in this
reference frame, w3 is the spacetime trajectory of
an inertial observer who is moving in this frame,
and w4 is the spacetime trajectory of a non-inertial
object whose velocity and acceleration fluctuates.

To label points in space, it is convenient to introduce
spatial coordinates so that every point is uniquely associ-
ated with some triplet of numbers (x1, x2, x3). Similarly,
to label events in spacetime, it is convenient to introduce
spacetime coordinates so that every event is uniquely
associated with a set of four numbers. The resulting
spacetime coordinate system is called a reference frame .
Particularly convenient are inertial reference frames, in
which coordinates have the form (t, x1, x2, x3) (where
the superscripts here are coordinate labels, not powers).
The set of events in which x1, x2, and x3 have arbi-
trary fixed (real) values while t ranges from −∞ to +∞
represent the worldline of a particle, or hypothetical ob-
server, which is subject to no external forces and is at
rest in this particular reference frame. This is illustrated
in Figure 2.1 . In general, the rest frame of an inertial
observer (or object) means the inertial frame in which
the specified observer (or object) is at rest.
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Figure 2.2: A family of inertial observers, all with
synchronized watches and mutually at rest, defines
an inertial reference frame.

As Figure 2.2 tries to suggest, one may view an inertial
reference frame as being defined by an infinite set of
inertial observers, one sitting at every point in space,
all of whom carry synchronized (ideal) clocks and all
of whom are at rest with respect to each other.1 You
can imagine every observer carrying a notebook and
recording the time, according to his clock, of events of
interest.
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Figure 2.3: A moving rod which passes by three inertial
observers who are at rest.

As an example, consider the statement a moving
rod “has length L”. Suppose that the worldline
of the left end of the rod intersects the worldline
of some observer A at the event labeled A∗ whose
time, according to observer A’s clock, is t1. The
worldline of the right end of the rod intersects the
worldline of observer B at the event labeled B∗

whose time (according to B) is also t1, and then
intersects the worldline of observer C at event C∗

at the later time t2 (according to C). The interior of
the rod sweeps out a flat two-dimensional surface
in spacetime — the shaded “ribbon” bounded by
the endpoint worldlines shown in Figure 2.3 .

The surface of simultaneity of event A∗, in the
reference frame in which observer A is at rest, is
the set of all events whose time coordinates in this
frame coincide with the time of event A∗. So event
B∗ is on the surface of simultaneity of event A∗

(in Fig. 2.3, B∗ is displaced precisely horizontally
from A∗), while event C∗ is not. The length of the
rod, in this reference frame, is the spatial distance between events A∗ and B∗, marking the endpoints
of the rods on a surface of simultaneity. This is the same as the distance between observers A and
B, who are mutually at rest. As usual, it is convenient to choose Cartesian spatial coordinates, so
that if observers A and B have spatial coordinates (x1

A, x
2
A, x

3
A) and (x1

B, x
2
B, x

3
B), then their relative

spatial separation is given by

dAB =
[
(x1
B−x1

A)2 + (x2
B−x2

A)2 + (x3
B−x3

A)2
]1/2

. (2.2.1)

One should stop and ask how the observers defining an inertial reference frame could, in principle,
test whether their clocks are synchronized, and whether they are all mutually at rest. The simplest
approach is to use the propagation of light. Suppose observer A flashes a light, momentarily, while
observer B holds a mirror which will reflect light coming from observer A back to its source. If the

1Achieving this synchronization can be a challenge in practice — as evident from the discussion of the OPERA
experiment in section 1.5.
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light is emitted at time tA, according to A’s clock, it will be reflected at time tB, according to B’s
clock, and the reflected pulse will then be detected by A at some time tA + ∆t. If A and B’s clocks
are synchronized, then the time tB at which B records the reflection must equal tA + 1

2∆t. Any
deviation from this indicates that the clocks are not synchronized. If this experiment is repeated,
then any drift in the value of ∆t indicates that the two observers are not mutually at rest (or that
their clocks are failing to remain synchronized).

2.3 Lightcones

Before proceeding further, it will be helpful to introduce a useful convention for spacetime coordi-
nates. When one does dimensional analysis, it is customary to regard time and space as having
different dimensions. If we define the spacetime coordinates of an event as the time and spatial coor-
dinates in a chosen inertial frame, (t, x1, x2, x3), then the differing dimensions of the time and space
coordinates will be a nuisance. Because the value of the speed of light, c, is universal — independent
of reference frame — we can use it as a simple conversion factor which relates units of time to units
of distance. Namely, we define the length

x0 ≡ c t , (2.3.1)

which is the distance light can travel in time t. Henceforth, we will use x0 in place of the time t as
the first entry in the spacetime coordinates of an event, (x0, x1, x2, x3).

x
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Figure 2.4: The “lightcone” of a flash of light emitted from the
origin.

Now consider a flash of light which is emit-
ted from the event with coordinates x0 =
x1 = x2 = x3 = 0 — i.e., the spacetime
origin in this coordinate system. The light
will propagate outward in a spherical shell
whose radius at time t equals ct, which is
x0. Therefore, the set of events which form
the entire history of this light flash are those
events for which

[
(x1)2 + (x2)2 + (x3)2

]1/2 =
x0. This set of events form a cone, illus-
trated in Figure 2.4 . The intersection of
this cone with the x0–x1 plane is the two
half-lines at ±45◦, for which x0 = ±x1 and
x0 > 0. These 45◦ lines describe the path of
light which is emitted from the origin trav-
eling in the ±x1 direction.

2.4 Simultaneity

Next, consider the reference frames of two different inertial observers, A and B, who are not at rest
with respect to each other. As viewed in A’s reference frame, suppose that observer B is moving
with speed v in the x1 direction, so that B’s position satisfies

x1 = vt = (v/c)x0 (in frame A) .
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Figure 2.5 depicts this situation graphically. (We have chosen the origin of time to be when A and
B are at the same point.) In reference frame A, the worldline of observer A is the vertical axis, since
this corresponds to all events with x1 = x2 = x3 = 0 and x0 arbitrary. The worldline of observer B
(in reference frame A) is a tilted line with a slope of c/v, since this corresponds to all events with
x0 = (c/v)x1 (and vanishing x2 and x3). Note that as v → 0 the slope diverges and the line becomes
vertical, coinciding with the worldline of A. As v → c, the slope approaches one and the worldline of
B approaches a 45◦ line lying on the lightcone.
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Figure 2.5: Worldline of two observers, and corresponding surfaces
of simultaneity. The dashed lines show the lightcone of the origin.

Surfaces of simultaneity for observer A
correspond to horizontal planes in this
diagram, because such planes represent
events with a common value of time (or
x0) according to A’s clock. But what
are surfaces of simultaneity for observer
B? In other words, what set of events
share a common value of time according
to B’s clock? These turn out to be tilted
planes with slope v/c (not c/v), and are
shown in the figure as thin red lines la-
beled x′ 0 = −1, 0, or 1.

One way to see that this must be the
case is to note that the 45◦ worldline of
a light ray traveling from the origin in
the +x1 direction (the dashed line with
unit slope in the figure) bisects the an-
gle between observer A’s worldline (the
x0 axis in the figure) and his surface of
simultaneity defined by x0 = 0. Exactly
the same statement must be true for ob-
server B — she will also describe the path of the light as bisecting the angle between her worldline
and her surface of simultaneity (the red x′ 0 = 0 line) which contains the origin. This is an application
of our second postulate (physics looks the same in all inertial reference frames). Hence, when plotted
in A’s reference frame, observer B’s worldline and surfaces of simultaneity must have complementary
slopes (c/v versus v/c) so that they form equal angles with the lightcone at 45◦.

The essential point, which is our most important result so far, is that the concept of simultaneity is
observer dependent. Events which one observer views as occurring simultaneously (but at different
locations) will not be simultaneous when viewed by a different observer moving at a non-zero relative
velocity.

Because this is a key point, it may be helpful to go through the logic leading to this conclusion in a
more explicit fashion. To do so, consider the experiment depicted in Figure 2.6 . Two flashes of light
(shown as black lines in the figure) are emitted at events R and S and meet at event T . In observer
B’s frame, shown on the left, the emission events are simultaneous and displaced by some distance
L′. The reception event T is necessarily equi-distant between R and S. Lines wB, wB′ , and wB′′

show the worldlines of observers who are at rest in this frame and who witness events R, T , and S,
respectively. (In other words, wB is the worldline of observer B, sitting at the origin in this frame,
wB′′ is the worldline of an observer sitting at rest a distance L′ away, and wB′ is the worldline of an
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Figure 2.6: Two flashes of light emitted at events R and S which meet at event T , as described in two different frames.

observer at rest halfway in between B and B′′.)

In observer A’s frame, shown in the right panel of Figure. 2.6 , the worldlines of observers at rest
in frame B are now tilted lines with slope c/v. But the paths of the light rays (propagating within
the plane shown) lie at ±45◦, because the speed of light is universal. The emission event S, which
lies on B’s surface of simultaneity, is the intersection between the leftward propagating light ray and
the worldline wB′′ of an observer who is at rest in B’s frame and twice as far from the origin as the
worldline, wB′ , which contains the reception event T . Since events R and S are simultaneous, as seen
in frame B, (and the distance L′ in this construction is arbitrary) the frame B surface of simultaneity
containing events R and S must, in frame A, appear as a straight line connecting these events. From
the geometry of the figure, one can see that the triangles RTU and RTS are similar, and hence the
angle between the simultaneity line RS and the the 45◦ lightcone is the same as the angle between
the worldline wB and the lightcone. This implies that the slope of the simultaneity line is the inverse
of the slope of worldline wB, as asserted above. (As an exercise, determine where event U lies in the
left panel, and show that in this panel triangles RTU and RTS are again similar.)

2.5 Lorentz transformations

Just as many problems in ordinary spatial geometry are easier when one introduces coordinates and
uses analytic geometry, spacetime geometry problems of the type just discussed are also simpler if
one introduces and uses analytic formulas relating coordinates in different reference frames. These
relations are referred to as Lorentz transformations.

Using the two frames discussed above, let (x0, x1, x2, x3) denote spacetime coordinates in the inertial
reference frame of observer A, and let (x′ 0, x′ 1, x′ 2, x′ 3) denote spacetime coordinates in the inertial
reference frame of observer B, who is moving in the x1 direction with velocity v relative to observer
A. How are these coordinates related?

5
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Assume, for simplicity, that the spacetime origins of both frames coincide. Then there must be some
linear transformation which relates coordinates in the two frames,

x0

x1

x2

x3

 = Λ


x′ 0

x′ 1

x′ 2

x′ 3

 , (2.5.1)

where Λ is some 4 × 4 matrix. Since the transformation Λ describes the effect of switching to a
moving frame, it is referred to as a Lorentz boost, or simply a ‘boost’.

If the spatial coordinates of frame B are not rotated with respect to the axes of frame A, so that
observer B describes observer A as moving in the −x′ 1 direction with velocity −v, then Lorentz
contraction will only affect lengths in the 1-direction, leaving the 2 and 3 directions unaffected.
Therefore, we should have

x2 = x′ 2 , x3 = x′ 3 (for boost along x1), (2.5.2)

implying that the boost matrix Λ has the block diagonal form

Λ =


M N 0 0
P Q 0 0
0 0 1 0
0 0 0 1

 , (2.5.3)

with an identity matrix in the lower 2 × 2 block, and some non-trivial 2 × 2 matrix in the upper
block which we need to determine.

Now the coordinates of events on the worldline of observer B, in frame B coordinates, satisfy x′ 1 =
x′ 2 = x′ 3 = 0 since observer B is sitting at the spatial origin of his coordinate system. Specializing
to this worldline, the transformation (2.5.1) gives

x0 = M x′ 0 , x1 = P x′ 0 , (2.5.4)

implying that x1 = (P/M)x0. But we already know that this worldline, in frame A coordinates,
should satisfy x1 = (v/c)x0 since observer B moves with velocity v in the 1-direction relative to
observer A. Therefore, we must have P/M = v/c. We also know that from observer A’s perspective,
clocks at rest in frame B run slower than clocks at rest in frame A by a factor of γ = 1/

√
1− (v/c)2.

In other words,

γ =
∆tA
∆tB

=
dx0

dx′ 0
= M . (2.5.5)

Combining this with the required value of P/M implies that P = γ (v/c). This determines the first
column of the Lorentz boost matrix (2.5.3) .

To fix the second column, consider the events comprising the x′ 1 axis in frame B, or those events
with x′ 0 = x′ 2 = x′ 3 = 0 and x′ 1 arbitrary. These events lie on the surface of simultaneity of the
spacetime origin in frame B. Above, we learned that this surface, as viewed in reference frame A, is
the tilted plane with slope v/c, whose events satisfy x0 = (v/c)x1. But applied to the x′ 1 axis in
frame B, the transformation (2.5.1) gives

x0 = N x′ 1 , x1 = Qx′ 1 , (2.5.6)

6
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or x0 = (N/Q)x1. Therefore, we must have N/Q = v/c. Finally, we can use the fact that events on
the path of a light ray emitted from the spacetime origin and moving in the 1-direction must satisfy
both x′ 1 = x′ 0 and x1 = x0, since observers in both frames will agree that the light moves with speed
c. But if x′ 1 = x′ 0, then the transformation (2.5.1) gives x0 = (M +N)x′ 0, and x1 = (P +Q)x′ 0.
Therefore, we must have M +N = P +Q. Inserting M = γ, P = (v/c) γ, N = (v/c)Q and solving
for Q yields Q = γ. Putting it all together, we have

Λ =


γ γ (v/c) 0 0

γ (v/c) γ 0 0
0 0 1 0
0 0 0 1

 , (2.5.7)

for a boost along the 1-direction with velocity v. With this matrix, multiplying out the transformation
(2.5.1) gives

x0 = γ
(
x′ 0 + v

c x
′ 1) , x2 = x′ 2 , (2.5.8a)

x1 = γ
(
v
c x
′ 0 + x′ 1

)
, x3 = x′ 3 . (2.5.8b)

With a little more work, one may show that the general Lorentz transformation matrix for a boost
with speed v in an arbitrary direction specified by a unit vector n̂ = (nx, ny, nz) is given by

Λ =


γ γ (v/c)nx γ (v/c)ny γ (v/c)nz

γ (v/c)nx 1 + (γ−1)n2
x (γ−1)nxny (γ−1)nxnz

γ (v/c)ny (γ−1)nxny 1 + (γ−1)n2
y (γ−1)nynz

γ (v/c)nz (γ−1)nxnz (γ−1)nynz 1 + (γ−1)n2
z

 . (2.5.9)

Finally, it is always possible for two inertial reference frames to differ by a spatial rotation, in addition
to a boost. The coordinate transformation corresponding to a spatial rotation may also be written
in the form (2.5.1), but with a transformation matrix which has the block-diagonal form

Λ =
(

1
R

)
(spatial rotation) , (2.5.10)

where R is some 3×3 rotation matrix (an orthogonal matrix with determinant one). In other words,
for such transformations the time coordinates are not affected, x0 = x′ 0, while the spatial coordinates
are transformed by the rotation matrix R. The most general Lorentz transformation is a product of
a rotation of the form (2.5.10) and a boost of the form (2.5.9),

Λ = Λboost × Λrotation . (2.5.11)

2.6 Rapidity

The mixing of time and space components of a four-vector generated by the Lorentz transformation
matrix (2.5.7) may seem reminiscent of the mixing of spatial components of a vector undergoing a
rotation. A closer connection is apparent if one introduces the “rapidity” η, which is monotonically
related to v/c via

tanh η = v/c . (2.6.1)

7
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The rapidity η ranges from −∞ to +∞ as v/c varies between −1 and +1. A short exercise (using
the hyperbolic identity 1− tanh2 z = 1/ cosh2 z) shows that

cosh η = γ , sinh η = γ (v/c) , (2.6.2)

so the non-trivial upper 2 × 2 block of the Lorentz transformation matrix (2.5.7) takes the form(
cosh η
sinh η

sinh η
cosh η

)
, with hyperbolic functions replacing the usual trigonometric functions appearing in

a rotation. Characterizing a boost by its rapidity (instead of v/c) is often convenient; rapidity is
commonly used when analyzing data from particle colliders such as the Large Hadron Collider (LHC)
near Geneva.

2.7 Spacetime vectors

In ordinary three-dimensional (Euclidean) space, if one designates some point O as the spatial origin
then one may associate every other point X with a vector which extends from O to X. One can, and
should, regard vectors as geometric objects, independent of any specific coordinate system. However,
it is very often convenient to introduce a set of basis vectors {ê1, ê2, ê3} (normally chosen to point
along coordinate axes), and then express arbitrary vectors as linear combinations of the chosen basis
vectors,

~v =
3∑
i=1

êi v
i . (2.7.1)

The components {vi} of the vector depend on the choice of basis vectors, but the geometric vector
~v itself does not.

In exactly the same fashion, once some event O in spacetime is designated as the spacetime origin, one
may associate every other event X with a spacetime vector which extends from O to X. Spacetime
vectors (also called “4-vectors”) are geometric objects, whose meaning is independent of any specific
reference frame. However, once one chooses a reference frame, one may introduce an associated set of
spacetime basis vectors, {ê0, ê1, ê2, ê3}, which point along the corresponding coordinate axes. And,
as in any vector space, one may then express an arbitrary spacetime vector v as a linear combination
of these basis vectors,

v =
3∑

µ=0

êµ v
µ . (2.7.2)

We will use Greek letters (most commonly α and β, or µ and ν) to represent spacetime indices which
run from 0 to 3. And sometimes we will use Latin letters i, j, k to represent spatial indices which run
from 1 to 3. We will often use an implied summation convention in which the sum sign is omitted,
but is implied by the presence of repeated indices:

êµ v
µ ≡

3∑
µ=0

êµ v
µ . (2.7.3)

We will generally not put vector signs over spacetime vectors, instead relying on the context to make
clear whether some object is a 4-vector. But we will put vector signs over three-dimensional spatial
vectors, to distinguish them from spacetime vectors.

8
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The spacetime coordinates of an event are the components of the spacetime vector x associated with
this event in the chosen reference frame,

x = êµ x
µ ≡ ê0 x

0 + ê1 x
1 + ê2 x

2 + ê3 x
3 . (2.7.4)

A different reference frame will have basis vectors which are linear combinations of the basis vectors
in the original frame. Consider a ‘primed’ frame whose coordinates {x′µ} are related to the coordi-
nates {xν} of the original frame via a Lorentz transformation (2.5.1). It is convenient to write the
components of the transformation matrix as Λµν (where the first index labels the row and the second
labels the column, as usual for matrix components). Then the linear transformation (2.5.1) may be
compactly rewritten as

xµ = Λµν x′ ν . (2.7.5)

The inverse transformation, expressing primed coordinates in terms of unprimed ones, is

x′µ = (Λ−1)µν x
ν , (2.7.6)

where (Λ−1)µν are the components of the inverse matrix Λ−1.2 The components of any 4-vector
transform in exactly the same fashion when one changes reference frames.

The Lorentz transformation matrix also relates the basis vectors in the two frames (note the order
of indices),

ê′ν = êµ Λµν . (2.7.7)

In other words, if you view the list (ê0, ê1, ê2, ê3) as a row-vector, then it is multiplied on the right
by a Lorentz transformation matrix Λ. The transformation of basis vectors must have precisely this
form so that the complete spacetime vector is frame independent, as initially asserted,

x = ê′µ x
′µ = êν x

ν . (2.7.8)

Recall that the dot product of two spatial vectors, ~a · ~b, may be defined geometrically, without
reference to any coordinate system, as the product of the length of each vector times the cosine of
the angle between them. One can then show that this is the same as the component-based definition,
~a ·~b =

∑
i a
i bi, for any choice of Cartesian coordinates. It is this frame (or rotation) independence

that ensures that the dot product of spatial vectors is a scalar.

What is the appropriate generalization of dot products for spacetime vectors? This should be some
operation which, given two 4-vectors a and b, produces a single number. The operation should be
symmetric, so that a · b = b · a, and linear, so that a · (b + c) = a · b + a · c. The result should be
independent of the choice of (inertial) reference frame one uses to specify the components of these
vectors. And it should reduce to the usual spatial dot product if both a and b lie within a common
surface of simultaneity. There is a unique solution to these requirements: given two spacetime vectors
a and b whose components in some inertial frame are aµ and bµ, the dot product of these vectors is

a · b ≡ −a0 b0 + a1 b1 + a2 b2 + a3 b3 , (2.7.9)

2For boost matrices of the form (2.5.7) or (2.5.9), changing the sign of v converts Λ into its inverse. Note that this
changes the sign of the off-diagonal components in the first row and column, leaving all other components unchanged.
For transformations which also include spatial rotations, to convert the transformation to its inverse one must transpose
the matrix in addition to flipping the sign of these “time-space” components.

9
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or with an implied summation on spatial indices, a · b = −a0 b0 + ai bi. This differs from the normal
definition of a dot product (in four dimensional Euclidean space) merely by the change in sign of the
time component term. This definition satisfies the required linearity and reduces to the usual spatial
dot product if the time components of both four vectors vanish.3

To see that the dot product definition (2.7.9) is frame-independent, and thus defines a scalar, it is
sufficient to check the effect of a boost of the form (2.5.7) (since we already know that a rotation
of coordinates does not affect the three-dimensional dot product). Transforming the components of
the 4-vectors a and b to a primed frame, as in Eq. (2.7.6), using the boost (2.5.7) gives

a′ 0 = γ
(
a0 − v

c a
1
)
, a′ 1 = γ

(
a1 − v

c a
0
)
, a′ 2 = a2 , a′ 3 = a3 , (2.7.10a)

b′ 0 = γ
(
b0 − v

c b
1
)
, b′ 1 = γ

(
b1 − v

c b
0
)
, b′ 2 = b2 , b′ 3 = b3 . (2.7.10b)

Hence

−a′ 0 b′ 0 + a′ 1 b′ 1 + a′ 2 b′ 2 + a′ 3 b′ 3

= γ2
[
−
(
a0 − v

c a
1
) (
b0 − v

c b
1
)

+
(
a1 − v

c a
0
) (
b1 − v

c b
0
)]

+ a2 b2 + a3 b3

= γ2
[
1− (v/c)2

] (
−a0b0 + a1b1

)
+ a2 b2 + a3 b3

= −a0b0 + a1b1 + a2 b2 + a3 b3 , (2.7.11)

where the last step used γ2 ≡ 1/[1 − (v/c)2]. Therefore, as claimed, the value of the dot product
(2.7.9) is independent of the specific inertial frame one uses to define the vector coefficients.

The spacetime dot product (2.7.9) is a useful construct in many applications. As a preview of things
to come, consider some plane wave (acoustic, electromagnetic, or any other type) propagating with
angular frequency ω and wave-vector ~k. One normally writes the complex amplitude for such a wave
as some overall coefficient times the complex exponential e−iωt+i~k·~x. Having already defined the
spacetime position vector x whose time component x0 ≡ ct, if we also define a spacetime wave-vector
k whose time component k0 ≡ ω/c then this ubiquitous phase factor may be written compactly as a
spacetime dot product,

e−iωt+i
~k·~x = eik·x . (2.7.12)

Similarly, in quantum mechanics the wave function of a particle with definite momentum ~p and energy
E moving in empty space is proportional to e−iEt/~+i~p·~x/~. If we define a spacetime momentum vector
p with time component p0 ≡ E/c, then this phase factor may also be written as a spacetime dot
product,

e−iEt/~+i~p·~x/~ = eip·x/~ . (2.7.13)

2.8 Minkowski spacetime

In Euclidean space, the dot product of a vector with itself gives the square of the norm (or length)
of the vector, ~v · ~v ≡ |~v|2. Proceeding by analogy, we will define the square of a spacetime vector

3Regrettably some physicists, and some textbooks, define the dot product of spacetime vectors with an overall minus

sign relative to (2.7.9), so that a · b bad≡
choice

a0 b0 − ai bi. This makes spacetime dot products reduce to minus the usual

three-dimensional dot product when time components vanish. As long as one uses a single convention consistently, no
physical result can depend on the choice. However, this author strongly recommends using, exclusively, the “mostly
plus” convention (2.7.9).

10
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using the dot product (2.7.9), so that

(a)2 ≡ a · a = −(a0)2 + (a1)2 + (a2)2 + (a3)2 . (2.8.1)

If ∆x is a spacetime vector representing the separation between two events, then the square of ∆x
is called the invariant interval separating these events. This is usually denoted by s2, so that

s2 ≡ −(∆x0)2 + (∆x1)2 + (∆x2)2 + (∆x3)2 . (2.8.2)

Spacetime in which the “distance” between events is defined by this expression is called Minkowski
spacetime.4 5 6

The definition of the invariant interval (2.8.2), or the square of a vector (2.8.1), differ from the usual
Euclidean space relations merely due to the minus sign in front of the time component terms. But
this is a fundamental change. Unlike Euclidean distance, the spacetime interval s2 can be positive,
negative, or zero. Let ∆x be the spacetime displacement from some event X to another event Y.
If the interval s2 = (∆x)2 vanishes, then the spatial separation between these events equals their
separation in time multiplied by c,

s2 = 0 =⇒ (∆~x)2 = (∆x0)2 = (c∆t)2 (lightlike separation). (2.8.3)

This means that light could propagate from X to Y (if ∆t > 0), or from Y to X (if ∆t < 0). In other
words, event Y is on the lightcone of X, or vice-versa. In this case, one says that the separation
between X and Y is lightlike.

If the interval s2 is negative, then the spatial separation is less than the time separation (times c),

s2 < 0 =⇒ (∆~x)2 < (∆x0)2 = (c∆t)2 (timelike separation). (2.8.4)

This means that some particle moving slower than light could propagate from X to Y (if ∆t > 0),
or from Y to X (if ∆t < 0). In other words, event Y is in the interior of the lightcone of X, or
vice-versa. In this case, one says that the separation between X and Y is timelike.

Finally, if the interval s2 is positive, then the spatial separation is greater than the time separation
(times c),

s2 > 0 =⇒ (∆~x)2 > (∆x0)2 = (c∆t)2 (spacelike separation). (2.8.5)

In other words, event Y is outside the lightcone of X, and vice-versa. In this case, one says that the
separation between X and Y is spacelike. These possibilities are shown pictorially in Figure 2.7 .

4Those authors who choose to define spacetime dot products with an overall minus sign (“mostly minus” convention),
as discussed in footnote 3 , also define the square of 4-vectors and the spacetime interval with an overall minus sign
relative to our definitions (2.8.1) and (2.8.2). Our sign conventions are more convenient — use them, but beware of
differing conventions in the literature.

5Minkowski spacetime is the domain of special relativity, in which gravity is neglected. Correctly describing grav-
itational dynamics leads to general relativity, in which spacetime can have curvature and the interval between two
arbitrary events need not have the simple form (2.8.2). We will largely ignore gravity.

6A further word about index conventions may be appropriate. It is standard in modern physics to write the
components of 4-vectors with superscripts, like aµ or xν , as we have been doing. Although we will not need this, it is
also conventional to define subscripted components which, in Minkowski space, differ merely by flipping the sign of the
time component, so that a0 ≡ −a0 for any 4-vector a. This allows one to write the dot product of two 4-vectors a and b
as aµb

µ (with the usual implied sum). More generally, in curved space one defines a metric tensor gµν via a differential
relation of the form ds2 = gµν dx

µ dxν , and then defines aµ ≡ gµν a
ν so that a · b = aµb

µ = aµbµ = gµν a
µ bν . In flat

Minkowski spacetime, the metric tensor is diagonal, ‖gµν‖ = diag(−1,+1,+1,+1).
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(ii)

(v)

(iii) (iii)X

(i)(ii)

(iv) (iv)

1

0x

x 2

x

Figure 2.7: The past and future lightcones of an event X separate spacetime into those events which are: (i) timelike
separated and in the future of X, (ii) lightlike separated and in the future of X, (iii) spacelike separated, (iv) lightlike
separated and in the past of X, and (v) timelike separated and in the past of X.

2.9 The pole and the barn

10 m

v = 0.866 c

Figure 2.8: A relativistic runner, carrying a long pole, ap-
proaches and passes through a barn. Does the pole fit within
the barn?

A classic puzzle illustrating basic aspects of
special relativity is the pole and the barn,
sketched in Figure 2.8 . You are standing
outside a barn whose front and back doors
are open. A (very fast!) runner carrying a
long horizontal pole is approaching the barn.
The length of the barn is 10 meters. The
length of the pole, when measured at rest,
is 20 meters. But the relativistic runner is
moving at a speed of

√
3

2 c ' 0.866 c, and
hence the pole (in your frame) is Lorentz
contracted by a factor of 1/γ =

√
1− (v/c)2 = 1/2. Consequently, the pole just fits within the barn;

when the front of the pole emerges from one end of the barn, the back of the pole will have entered
the barn through the other door.

But now consider the runner’s perspective. In his (or her) co-moving frame, the pole is 20 meters
long. The barn is coming toward the runner at a speed of −

√
3

2 c, and hence the barn which is 10
meters long in its rest frame is Lorentz contracted to a length of only 5 meters. The pole cannot
possibly fit within the barn!

Surely the pole either does, or does not, fit within the barn. Right? Which description is correct?

This puzzle, like most apparent paradoxes in special relativity, is most easily resolved by drawing a
spacetime diagram which clearly displays the relevant worldlines and events of interest. It is also often
helpful to draw contour lines on which the invariant interval s2 relative to some key event is constant.
For events within the x0–x1 plane, the invariant interval from the origin is just s2 = −(x0)2 + (x1)2.
Therefore, the set of events in the x0–x1 plane which are at some fixed interval s2 from the origin lie
on a hyperbola.7

7Recall that the equation x2 − y2 = s2 defines a hyperbola in the (x, y) plane whose asymptotes are the 45◦ lines
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Let us create a spacetime diagram for this puzzle working in the reference frame of the barn. (This
is an arbitrary choice. We could just as easily work in runner’s frame.) Try doing this yourself before
reading the following step-by-step description of Figure 2.9 .

Orient coordinates so that the ends of the barn are at x1 = 0 and x1 = 10 m. Therefore, the worldline
of the left end of the barn (wL) is a vertical line at x1 = 0, while the worldline of the right end of
the barn (wR) is a vertical line at x1 = 10 m. Since the pole is moving at velocity

√
3

2 c (in the x1

direction), the worldlines of the ends of the pole are straight lines in the x0–x1 plane with a slope
of c/v = 2/

√
3 ' 1.155. Call the moment when the back end of the pole passes into the barn time

zero. So the worldline of the back end of the pole (w′B) crosses the worldline of the left end of the
barn at event A with coordinates (x0, x1) = (0, 0). In the frame in which we’re working, the pole
is Lorentz contracted to a length of 10 meters. Hence, the worldline of the front end of the pole
(w′F) must cross the x1 axis at event B with coordinates (x0, x1) = (0, 10 m). This event lies on the
worldline wR of the right end of the barn, showing that in this reference frame, at time t = 0, the
Lorentz contracted pole just fits within the barn.

Now add to the diagram the surface of simultaneity of event A in the runner’s frame. From section
2.4 we know that this surface, in the frame in which we are a drawing our diagram, is tilted upward
so that its slope is v/c ' 0.866 (and the 45◦ lightcone of event A bisects the angle between this
surface and the worldline w′B). The worldline wR of the right end of the barn intersects this surface
of simultaneity at event C, while the worldline w′F of the front of the pole intersects this surface at
event D. This surface of simultaneity contains events which, in the runner’s frame, occur at the same
instant in time. From the diagram it is obvious that event C lies between events A and D. In other
words, in the runner’s frame, at the moment when the back end of the pole passes into the barn, the
front end of the pole is far outside the other end of the barn — the pole does not fit in the barn.

The essential point of this discussion, and the spacetime diagram in Figure 2.9 , is the distinction
between events which are simultaneous in the runner’s frame (events A, C, and D), and events which
are simultaneous in the barn’s frame (A and B). Both descriptions given initially were correct. The
only fallacy was thinking that it was meaningful to ask whether the pole does (or does not) fit within
the barn, without first specifying a reference frame.

To complete our discussion of this spacetime diagram, consider the invariant interval between event
A (which is our spacetime origin) and each of the events B, C, and D. Within the two-dimensional
plane of the figure, the invariant interval from the origin is s2 = −(x0)2 + (x1)2. We know that
event B has coordinates (x0, x1) = (0, 10 m) so it is immediate that s2

AB = (10 m)2. We could work
out the (x0, x1) coordinates of events C and D, and from those coordinates evaluate their interval
from event A. But this is not necessary since we can use the fact that events C and D lie on the
runner’s frame surface of simultaneity of event A. We are free to evaluate intervals from event A using
the runner’s frame coordinates, instead of barn frame coordinates. Within the plane of the figure,
s2 = −(x′ 0)2 + (x′ 1)2. Events A, C, and D are simultaneous in the runner’s frame, so all their x′ 0

coordinates vanish. And in this frame (the rest frame of the pole) we know that the pole’s length is
20 m, while the barn’s length is Lorentz contracted to 5m. Hence s2

AC = (5 m)2 and s2
AD = (20 m)2.

Therefore, event C must lie on the hyperbola whose intersection with the x1 axis is at 5 m, while
event D must lie on the hyperbola whose intersection with the x1 axis is at 20 m, as shown.

y = ±x. If s2 > 0 then one branch opens toward the right and the other opens toward the left. If s2 < 0 then one
branch opens upward and one opens downward.
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A B
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wRwL w’Fw’B
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Figure 2.9: A spacetime diagram of the pole and the barn, showing events in the rest frame of the barn. The red
vertical lines are the worldlines wL and wR of the left and right ends of the barn. The blue lines labeled w′F and w′B are
the worldlines of the front and back of the pole, respectively. The thin blue line passing through events A, C, and D is
a surface of simultaneity in the runner’s reference frame. The green hyperbola passing through event C shows events
at invariant interval s2 = (5 m)2 relative to event A. This hyperbola intercepts the x1 axis at 5 m. The other green
hyperbola passing through event D shows events at invariant interval s2 = (20 m)2 relative to event A. Note that this
hyperbola intercepts the x1 axis at 20 m.

14



Particles and Symmetries CHAPTER 2. MINKOWSKI SPACETIME

2.10 Causality

x   = 00

�������� B

x’   = 00

w’w

A ������

Figure 2.10: Two spacelike separated events A and B.
In the unprimed frame, B is in the future of A, but in
the primed frame B is in the past of A.

Consider any two spacetime events A and B which
are spacelike separated. A basic consequence of
the fact that surfaces of simultaneity are observer
dependent is that different observers can disagree
about the temporal ordering of spacelike separated
events. For example, in the unprimed reference
frame illustrated in Fig. 2.10 , event B lies in the
future of event A — its x0 coordinate is bigger.
But event B lies below the x′ 0 = 0 surface of si-
multaneity which passes through event A. This
means that event B lies in the past of event A in
the primed reference frame.

This should seem bizarre. If observers at rest in
the unprimed frame were to see some particle or
signal travel from event A to event B, then this
signal would be traveling backwards in time from
the perspective of observers at rest in the primed
frame. This is inconsistent with causality — the
fundamental idea that events in the past influence
the future, but not vice-versa.

An idealized view of the goal of physics is the prediction of future events based on knowledge of the
past state of a system. But if different observers disagree about what events are in the future and
what events are in the past, how can the laws of physics possibly take the same form in all reference
frames? Are our two relativity postulates fundamentally inconsistent?

If it is possible for some type of signal to travel between events A and B then, because these two
events are outside each others lightcones, this would be superluminal propagation of information.
The only way that our postulates can be consistent is if it is simply not possible for any signal to
travel between spacelike separated events. In other words, a necessary consequence of our postulates
is that no signal whatsoever can travel faster than light. For fans of science fiction this is a sad state
of affairs, but it is an inescapable conclusion.

2.11 Example problems

2.11.1 Proper time intervals8

The time interval between two events is called a proper time interval in some given inertial frame if
the two events occur at the same spatial location in that frame. Consider two frames of reference: the
rest frame (frame S) of the Earth and the rest frame (frame S′) of a spaceship moving with velocity
v = 0.6 c with respect to Earth. The spaceship skims the surface of the Earth at some instant —
call this event 1. Assume that coordinates and clocks are adjusted so that event 1 has coordinates

8Adapted from Kogut problem 2-1.

15



Particles and Symmetries CHAPTER 2. MINKOWSKI SPACETIME

t1 = 0, x1 = 0 in frame S, and t′1 = 0, x′1 = 0 in frame S′. Event 2 marks the emission of a pulse of
light from the Earth towards the spaceship at t2 = 10 minutes. Event 3 marks the detection of the
light pulse by observers in the spaceship. (Neglect the sizes of both the Earth and the spaceship.)

(a) Q: Is the time interval between events 1 and 2 a proper time interval in the spaceship frame? In
the Earth frame?

A: Events 1 and 2 occur at the same spatial location in frame S (i.e., on the Earth), but not at the
same location in frame S′ on the spaceship. Hence the time interval between events 1 and 2 is a
proper time interval in the Earth frame, but not in the spaceship frame.

(b) Q: Is the time interval between events 2 and 3 a proper time interval in the spaceship frame? In
the Earth frame?

A: Events 2 and 3 occur at different locations in both frames. Hence the time interval between
events 2 and 3 is not a proper time interval in either frame.

(c) Q: Is the time interval between events 1 and 3 a proper time interval in the spaceship frame? In
the Earth frame?

A: Events 1 and 3 occur at the same location on the spaceship (frame S′), but not at the same
point on the Earth. Hence the time interval between events 1 and 3 is a proper time interval in the
spaceship frame, but not in the Earth frame.

(d) Q: What is the time of event 2 as measured on the spaceship?

A: We want to determine the time t′2 of the light emission in frame S′. This time interval (from
event 1) is not a proper time interval and we must account for time dilation (with respect to the
proper time interval in frame S). We have γ = 1/

√
1− (v/c)2 = 1/

√
1− (0.6)2 = 1.25, and hence

t′2 = γ t2 = 1.25× 10 min = 12.5 min.

(e) Q: In the spaceship frame, how far away is the Earth when the light pulse is emitted?

A: We need to determine the distance to the Earth from the spaceship at the moment (in frame S′)
when the light is emitted. This is just the distance traveled at velocity v during the time interval
∆t′ = t′2 − t′1 (as measured in frame S′) between events 1 and 2. Using the value for t′2 from part
(d), and t′1 = 0, we have:

l′2 = v∆t′ = 0.6× (3.0× 108 m/s)× (12.5 min)× (60 s/min) = 1.35× 1011 m .

(f) Q: From your answers in parts (d) and (e), what does the spaceship clock read when the light pulse
arrives?

A: We need the time of event 3 in frame S′. We already know both the time and distance to the
Earth at the emission of the pulse, and we know that light travels at c in all frames. Thus, we
merely need to add the light travel time to the emission time (all in frame S′),

t′3 = t′2 + l′2/c = 12.5 min + (1.35× 1011 m)/(3× 108 m/s)× (1 min/60 s) = 20 min .

(g) Q: Analyzing everything in the Earth frame, find the time of event 3 according to Earth’s clock.

A: The light pulse is emitted (in frame S) at t2 = 10 min. At that moment the distance to the
spaceship, in Earth’s frame, is l2 = vt2 = 0.6× (3× 108 m/s)× 10 min× 60 s/min = 1.08× 1011 m.
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Between events 2 and 3, the light pulse moves away from Earth at speed c while the spaceship
continues to recede at speed v. The light reaches the spaceship when c (t3− t2) = l2 + v (t3− t2), so

t3 − t2 =
l2

c− v
=

1.08× 1011 m
1.2× 108 m/s

= 900 s = 15 min .

Finally, t3 = t2 + (t3 − t2) = 10 min + 15 min = 25 min.

(h) Q: Are your answers to parts (f) and (g) consistent with conclusions from parts (a), (b) and (c)?

A: We noted in (c) that the time interval between events 1 and 3 is a proper time interval in frame
S′. In frame S, it will appear that the spaceship clock is running slow, due to time dilation, so that

t3 = γ t′3 = 1.25× 20 min = 25 min .

Reassuringly, this agrees with our result from (g).

2.11.2 Passing in the night9

Two rockets, A and B, pass each other while moving in opposite directions. The rockets have identical
proper lengths (i.e., lengths in their respective rest frames) of 100 m. Consider two events: Event
1 is when the front of B passes the front end of A. Event 2 is when the front of B passes the back
end of A. In frame A (the rest frame of rocket A), the time interval ∆tA between the two events is
1.5× 10−6 s.

(a) Q: What is the relative velocity of the two rockets?

A: We know the length of rocket A in its rest frame, 100 m, and the time for the front of rocket B
to travel that distance (as measured in frame A). The distance/time ratio gives the velocity of B
as measured in frame A, and this is the relative velocity of the two rockets. Hence,

vrel =
100 m

1.5× 10−6 s
= 6.667× 107 m/s .

(b) Q: According to the clocks on rocket B, how long does the front end of A take to pass the entire
length of rocket B?

A: The passing of rocket A viewed from B will be exactly equivalent to the passing of B as viewed
from A. Hence, the time ∆tB for the front of A to pass the entire length of rocket B, as measured
in frame B, is again 1.5× 10−6 s.

(c) Q: According to the clocks on rocket B, how much time passes between events 1 and 2 (i.e., between
the passage of the front of B by the front of A, and the passage of the front of B by the rear of A)?
Does this agree with your answer to (b)? Should it?

A: In frame B, the length of rocket A is Lorentz contracted, LA in B = (100 m)/γ, with γ =
1/
√

1− (vrel/c)2 = 1.0257. So LA in B = 97.50 m, and

∆t =
LA in B

vrel
=

∆tB
γ

= 1.46× 10−6 s .

This results does not, and should not, agree with ∆tB.

9Adapted from Kogut problem 2-2.
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2.11.3 Emission and absorption10

Q: The emission and absorption of a light ray define two distinct spacetime events, which are sepa-
rated by a distance ` in the common rest frame of the emitter and the absorber. Find the spatial and
temporal separation of these events as observed in a boosted reference frame traveling with velocity
v parallel to the direction from the emitter to the absorber.

A: Three different methods for solving the problem, each of which are instructive, are presented:

Method #1: Thought-experiment

Choose the x1 direction to coincide with the direction of the light ray. In the original frame, the
light ray travels a distance ∆x1 = ` in a time ∆t = `/c. Now consider the emission and absorption
process in a frame moving with speed v along the x1 direction of the original frame. Without loss of
generality, assume that the origin of the boosted frame coincides with the emission event. As seen
in the boosted frame, the original frame is moving with velocity −v along the x′1 direction. Call the
time between emission and absorption events (in the boosted frame) ∆t′, so in this frame the light
ray travels a distance c∆t′. Since the distance between the emission and absorption locations equals
` in the original frame, that separation is now `/γ in the boosted frame due to Lorentz contraction.
But it is essential to realize that while the emission and absorption locations are fixed in the original
frame, they are moving in the boosted frame. In particular, the location of the absorption event
moves a distance −v∆t′ while the light is traveling, which must be added to `/γ to obtain the net
distance traveled by the light in this frame. Therefore, c∆t′ = `/γ − v∆t′. Solve for c∆t′:

c∆t′ =
`/γ

1 + v/c
= `

√
1− v/c
1 + v/c

.

This is the distance between emission and absorption events in the boosted frame; the time be-
tween these events (in the boosted frame) is just ∆t′ = `

c

√
1−v/c
1+v/c , since the speed of light is frame-

independent. Notice that this result is not just given by time dilation. For positive v, the time
interval between emission and absorption in the boosted frame is less than in the original frame,
while for negative v, the boosted frame time interval is greater.11

Method #2: Lorentz transformation

In the original frame, the emission event may be placed at the origin of the Minkowski diagram of
spacetime. The absorption event then has coordinates (x0, x1) = (`, `) which lies on the lightcone.
Under a boost, the origin is mapped to the origin so the emission event also occurs at the origin of

10Adapted from Kogut problem 2-6.
11This result allows us to make a nice connection with the discussion in Chapter 1. Suppose that the light ray,

instead of being absorbed, is reflected back and detected at the emitter. The total time interval between emission and
detection (in the original frame), ∆ttot = 2`/c , is just the time between ticks of the clock discussed in Chapter 1.
Taking into account the different direction of motion of the light after reflection, the total time interval as observed in
the moving frame (in the configuration of Figure 1.4) is

∆t′tot =
`

c

s
1− v/c
1 + v/c

+
`

c

s
1 + v/c

1− v/c =
2`

c

1p
1− (v/c)2

= γ∆t ,

in agreement with the original time dilation result.
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the boosted frame (since we assumed that this was the synchronizing event). The absorption event
coordinates, in the boosted frame, are given by(

x′ 0

x′ 1

)
=
(

γ −γ v
c

−γ v
c γ

)(
`
`

)
.

The spatial separation is given by x′ 1 = γ` (1−v/c), which simplifies to the same answer given above

for c∆t′, namely `
√

1−v/c
1+v/c . Since the events lie on the lightcone, the time separation (times c) and

spatial separation are identical.

Method #3: Spacetime diagram

A

E
l

l

x1

x0 x’

x’

0

1

line of sim
ultaneity

In the diagram we have drawn the lines of si-
multaneity for the boosted observer that in-
tersect the emission and absorption events,
labeled E and A, respectively. The upper
line of simultaneity is described by the equa-
tion (x0 − `)/(x1 − `) = v/c which, writ-
ten in more familiar slope-intercept form, is
x0 = (v/c)x1 + ` (1−v/c). The x0-intercept
is ` (1−v/c) and, as you can see from the
diagram, it gives the time between emission
and absorption events for the boosted ob-
server (times c). Well, almost. We must
realize that the orthogonal axes of the dia-
gram are drawn in the original frame, not
the boosted one. So the time we have just
extracted is the time measured by clocks in
the original frame, not those in the boosted
frame. But we already know how to convert
time intervals between frames in relative motion—use time dilation. A clock carried by the boosted
observer will run slower than that carried by the observer at rest. So we again obtain the same result
x′ 0 = γx0 = γ` (1−v/c) = `

√
(1− v/c)/(1 + v/c).

2.11.4 Changing frame (I)12

Q: An event has coordinates (x′)µ = (c× 9× 10−8 s, 100 m, 0, 0) in frame S′. Frame S′ moves with
velocity v/c = 4/5 along the x1 axis with respect to the S frame. Determine the location of the
event in frame S.

A: Assume, for convenience, that the spacetime origins of the two frames coincide. The boost factor
relating the frames is γ = 1/

√
1− (v/c)2 = 5/3, and hence the relevant Lorentz transformation is:

x = Λ(v)x′ =


5/3 4/3 0 0
4/3 5/3 0 0
0 0 1 0
0 0 0 1




27 m
100 m

0
0

 =


178.3 m
202.7 m

0
0

 =


c× 59.4× 10−8 s

202.7 m
0
0

 .

12Adapted from Kogut problem 4-3.
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2.11.5 Changing frame (II)13

Q: Two events have coordinates (x1)µ = (L, L, 0, 0) and (x2)µ = (L/2, 2L, 0, 0) in frame S. The
two events are simultaneous in frame S′. Find the velocity ~v of frame S′ as seen from frame S.
Assume the spacetime origins of both frames coincide. When do these events occur in frame S′?

A: We have ∆x0 = L/2 and ∆x1 = −L (with ∆x ≡ x1−x2). Coordinates in frame S′ will be related
to those in frame S by some boost in the x1 direction with velocity −~v = −v ê1, x′ = Λ(−v)x. (It is
Λ(−v) = Λ(v)−1 since we have interchanged x and x′ relative to Eq. 2.5.1.) Using the explicit form
(2.5.7), with v → −v, we have ∆x′0 = γ (∆x0 − v

c ∆x1) = γL(1
2 + v

c ). For this to vanish, we must
have v/c = −1/2, implying that frame S′ moves with velocity ~v = −(c/2) ê1 as seen in frame S. The
common time of the two events in the S′ frame is t′ = γ (ct1 − v

c x1)/c = 2√
3

(L + 1
2L)/c =

√
3L/c.

As a check, the same result is obtained using the second event’s coordinates.

13Adapted from Kogut problem 4-4.
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