
Chapter 3

Relativistic dynamics

A particle subject to forces will undergo non-inertial motion. According to Newton, there is a simple
relation between force and acceleration,

~f = m~a , (3.0.1)

and acceleration is the second time derivative of position,

~a =
d~v

dt
=
d2~x

dt2
. (3.0.2)

There is just one problem with these relations — they are wrong! Newtonian dynamics is a good
approximation when velocities are very small compared to c, but outside this regime the relation
(3.0.1) is simply incorrect. In particular, these relations are inconsistent with our relativity postu-
lates. To see this, it is sufficient to note that Newton’s equations (3.0.1) and (3.0.2) predict that a
particle subject to a constant force (and initially at rest) will acquire a velocity which can become
arbitrarily large,

~v(t) =
∫ t

0

d~v

dt′
dt′ =

~f

m
t −→∞ as t→∞ . (3.0.3)

This flatly contradicts the prediction of special relativity (and causality) that no signal can propagate
faster than c. Our task is to understand how to formulate the dynamics of non-inertial particles
in a manner which is consistent with our relativity postulates (and then verify that it matches
observation).

3.1 Proper time

The result of solving for the dynamics of some object subject to known forces should be a prediction
for its position as a function of time. But whose time? One can adopt a particular reference frame,
and then ask to find the spacetime position of the object as a function of coordinate time t in
the chosen frame, xµ(t), where as always, x0 ≡ c t. There is nothing wrong with this, but it is a
frame-dependent description of the object’s motion.

For many purposes, a more useful description of the object’s motion is provided by using a choice
of time which is directly associated with the object in a frame-independent manner. Simply imagine
that the object carries with it its own (good) clock. Time as measured by a clock whose worldline
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is the same as the worldline of the object of interest is called the proper time of the object. To
distinguish proper time from coordinate time in some inertial reference frame, proper time is usually
denoted as τ (instead of t).
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Figure 3.1: The worldline of a non-inertial particle, with tick
marks at constant intervals of proper time.

Imagine drawing ticks on the worldline of
the object at equal intervals of proper time,
as illustrated in Figure 3.1 . In the limit of
a very fine proper time spacing ∆τ , the in-
variant interval between neighboring ticks
is constant, s2 = −(c∆τ)2. In the figure,
note how the tick spacing, as measured by
the coordinate time x0, varies depending
on the instantaneous velocity of the parti-
cle. When the particle is nearly at rest (in
the chosen reference frame) then the proper
time clock runs at nearly the same rate as
coordinate time clocks, but when the par-
ticle is moving fast then its proper time
clock runs more slowly that coordinate time
clocks due to time dilation.

3.2 4-velocity

Using the proper time to label points on the spacetime trajectory of a particle means that its space-
time position is some function of proper time, x(τ). The time component of x (in a chosen reference
frame) gives the relation between coordinate time and proper time of events on the worldline,

c t = x0(τ) . (3.2.1)

The four-velocity of a particle is the derivative of its spacetime position with respect to proper time,

u ≡ dx(τ)
dτ

. (3.2.2)

Since x0 = ct, the time component of the 4-velocity gives the rate of change of coordinate time with
respect to proper time,

u0 = c
dt

dτ
. (3.2.3)

The spatial components of the 4-velocity give the rate of change of the spatial position with respect
to proper time, uk = dxk/dτ . This is not the same as the ordinary 3-velocity ~v, which is the rate of
change of position with respect to coordinate time, vk = dxk/dt. But we can relate the two using
calculus,

uk =
dxk

dτ
=
dt

dτ

dxk

dt
=
u0

c
vk . (3.2.4)

From our discussion of time dilation, we already know that moving clocks run slower than clocks at
rest in the chosen reference frame by a factor of γ. In other words, it must be the case that

u0

c
=
dt

dτ
= γ =

[
1− ~v 2

c2

]−1/2

. (3.2.5)
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Combined with Eq. (3.2.4), this shows that the spatial components of the 4-velocity equal the three-
velocity times a factor of γ,

uk = γ vk =
vk√

1− ~v 2/c2
. (3.2.6)

We can now use Eqs. (3.2.5) and (3.2.6) to evaluate the square of the 4-velocity,

u2 = −(u0)2 + (uk)2 = −γ2
(
c2 − ~v 2

)
= −c2 . (3.2.7)

So a four-velocity vector always squares to −c2, regardless of the value of the 3-velocity.

Let’s summarize what we’ve learned a bit more geometrically. The worldline x(τ) describes some
trajectory through spacetime. At every event along this worldline, the four-velocity u = dx/dτ is a
4-vector which is tangent to the worldline. When one uses proper time to parametrize the worldline,
the tangent vector u has a constant square, u2 = −c2. So you can think of u/c as a tangent vector
which has unit “length” everywhere along the worldline. The fact that u2 is negative shows that the
4-velocity is always a timelike vector.

Having picked a specific reference frame in which to evaluate the components of the four-velocity u,
Eqs. (3.2.5) and (3.2.6) show that the components of u are completely determined by the ordinary
3-velocity ~v, so the information contained in u is precisely the same as the information contained in
~v. You might then ask “why bother with 4-velocity?” The answer is that four-velocity u is a more
natural quantity to use — it has geometric meaning which is independent of any choice of reference
frame. Moreover, the components uµ of four-velocity transform linearly under a Lorentz boost in
exactly the same fashion as any other 4-vector. [See Eq. (2.7.5)]. In contrast, under a Lorentz boost
the components of 3-velocity transform in a somewhat messy fashion. (Example problem 3.10.1
below works out the precise form for the case of parallel velocities.)

3.3 4-momentum

The rest mass of any object, generally denoted m, is the mass of the object as measured in its rest
frame. The four-momentum of a particle (or any other object) with rest mass m is defined to be m
times the object’s four-velocity,

p = mu . (3.3.1)

For systems of interacting particles, this is the quantity to which conservation of momentum will
apply. Spatial momentum components (in a given reference frame) are just the spatial components of
the 4-momentum. The definition of momentum which you learned in introductory physics, ~p = m~v,
is wrong — this is a non-relativistic approximation which is only useful for slowly moving objects.
This is important, so let us repeat,

~p 6= m~v . (3.3.2)

Momentum is not mass times 3-velocity. Rather, momentum is mass times 4-velocity.1

1Many introductory relativity books introduce a velocity-dependent mass m(v) ≡ mγ, in order to write ~p = m(v)~v,
and thereby avoid introducing four-velocity, or any other 4-vector. This is pedagogically terrible and offers no benefit
whatsoever. If you have previously seen this use of a velocity-dependent mass, erase it from your memory!
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If the spatial components of the four-momentum are the (properly defined) spatial momentum, what
is the time component p0? There is only one possible answer — it must be related to energy.2 In
fact, the total energy E of an object equals the time component of its four-momentum times c, or

p0 = E/c . (3.3.3)

Using the relation (3.3.1) between 4-momentum and 4-velocity, plus the result (3.2.5) for u0, allows
one to express the the total energy E of an object in terms of its rest mass and its velocity,

E = c p0 = mcu0 = mc2γ =
mc2√

1− ~v 2/c2
= mc2 cosh η , (3.3.4)

where the last form uses the relation (2.6.2) between rapidity and γ. In other words, the relativistic
gamma factor of any object is equal to the ratio of its total energy to its rest energy,

γ =
E

mc2
. (3.3.5)

When the object is at rest, its kinetic energy (or energy due to motion) vanishes, but its rest energy,
given by Einstein’s famous expression mc2, remains. If the object is moving slowly (compared to c),
then it is appropriate to expand the relativistic energy (3.3.4) in powers of ~v 2/c2. This gives

E = mc2 + 1
2m~v

2 + · · · , (3.3.6)

and shows that for velocities small compared to c, the total energy E equals the rest energy mc2 plus
the usual non-relativistic kinetic energy, 1

2m~v
2, up to higher order corrections which, relative to the

kinetic energy, are suppressed by additional powers of ~v 2/c2. One can define a relativistic kinetic
energy K, as simply the difference between the total energy and the rest energy, K = E −mc2.

Combining the 4-momentum definition (3.3.1), and the relation (3.2.4) between three- and four-
velocity components, yields the relation between the spatial components of the relativistic momentum
and the 3-velocity,

~p = m~v γ =
m~v√

1− ~v 2/c2
= mv̂ sinh η , (3.3.7)

where the last form uses rapidity and a unit spatial vector v̂ pointing in the direction of the 3-velocity.
Expanding in powers of v/c shows that, for low velocities, the relativistic spatial momentum reduces
to the non-relativistic form,

~p = m~v + · · · , (3.3.8)

up to higher order corrections suppressed by powers of ~v 2/c2.

We saw above that four-velocities square to −c2. Because four-momentum is just mass times four-
velocity, the four-momentum of any object with mass m satisfies

p2 = −m2c2 . (3.3.9)

2To see why, recall from mechanics (quantum or classical) that translation invariance in space is related to the
existence of conserved spatial momentum, and translation invariance in time is related to the existence of a conserved
energy. We will discuss this in more detail later. Since Lorentz transformations mix space and time, it should be no
surprise that the four-momentum, which transforms linearly under Lorentz transformations, must characterize both
the energy and the spatial momentum.
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Since p2 = −(p0)2 + (pk)2, and p0 = E/c, this may rewritten (in any chosen inertial reference frame)
as

E2 = c2 ~p 2 + (mc2)2 , (3.3.10a)
or

E =
√
c2 ~p 2 + (mc2)2 . (3.3.10b)

So if you know the spatial momentum ~p and mass m of some object, you can directly compute its
energy E without first having to evaluate the object’s velocity.

But what if you want to find the ordinary 3-velocity? Return to the relation uk = γ vk [Eq. (3.2.6)]
between 3-velocity and 4-velocity, and multiply both sides by m to rewrite this result in terms of four-
momentum. Since spatial momentum pk = muk, and total energy E = mc2γ, we have pk = (E/c2) vk

or

vk =
pk

E/c2
. (3.3.11)

Three-velocity is not equal to momentum divided by mass — forget this falsehood! Rather, the
ordinary 3-velocity equals the spatial momentum divided by the total energy (over c2). And its
magnitude never exceeds c, no matter how large the momentum (and energy) become.

3.4 4-force

In the absence of any forces, the momentum of an object remains constant. In the presence of forces,
an object’s momentum will change. In fact, force is just the time rate of change of momentum. But
what time and what momentum? Newtonian (non-relativistic) dynamics says that d~p/dt = ~F along
with d~x/dt = ~p/m, where ~p is 3-momentum and t is coordinate time. This is wrong — inconsistent
with our relativity postulates. A frame-independent formulation of dynamics must involve quantities
which have intrinsic frame-independent meaning — such as four-momentum and proper time. The
appropriate generalization of Newtonian dynamics which is consistent with our relativity postulates
is

dx

dτ
=

p

m
, (3.4.1a)

dp

dτ
= f . (3.4.1b)

Eq. (3.4.1a) is just the definition (3.2.2) of 4-velocity rewritten in terms of 4-momentum, while
Eq. (3.4.1b) is the definition of force as a four-vector. The only difference in these equations, relative
to Newtonian dynamics, is the replacement of 3-vectors by 4-vectors and coordinate time by proper
time.

Equations (3.4.1) are written in a form which emphasizes the role of momentum. If you prefer,
you can work with 4-velocity instead of 4-momentum and rewrite these equations as dx/dτ = u
and du/dτ = f/m. Defining the four-acceleration a ≡ du/dτ = d2x/dτ2, this last equation is just
f = ma. This is the relativistic generalization of Newton’s ~f = m~a, with force and acceleration now
defined as spacetime vectors.3

3Eq. (3.4.1b) is equivalent to f = ma provided the mass m of the object is constant. For problems involving objects
whose mass can change, such as a rocket which loses mass as it burns fuel, these two equations are not equivalent and
one must use the more fundamental dp/dτ = f .
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In non-relativistic dynamics, if you know the initial position and velocity of a particle, and you know
the force ~f(t) which subsequently acts on the particle, you can integrate Newton’s equations to find
the trajectory ~x(t) of the particle. Initial conditions plus a three-vector ~f(t) completely determine
the resulting motion. To integrate the relativistic equations (3.4.1), you need initial conditions plus
a four-vector force f(τ). This would appear to be more information (four components instead of
three), and yet relativistic dynamics must reduce to non-relativistic dynamics when velocities are
small compared to c.

The resolution of this apparent puzzle is that the four-force cannot be a completely arbitrary four-
vector. We already know that for any object with mass m, its four-momentum must satisfy p2 =
−(mc)2 [Eq. (3.3.9)]. Take the derivative of both sides with respect to proper time. The right hand
side is constant in time (provided that the object in question is some stable entity with a fixed rest
mass), so its proper time derivative vanishes. The derivative of the left hand side gives twice the dot
product of p with f , and hence the four-force must always be orthogonal to the four-momentum,

p · f = 0 . (3.4.2)

Written out in components, this says that p0f0 = pkfk, or

f0 =
pkfk

p0
=
~v

c
· ~f , (3.4.3)

showing that the time component of the 4-force is completely determined by the spatial force com-
ponents (and the 3-velocity).

3.5 Constant acceleration

Let us put this formalism into action by examining the case of motion under the influence of a
constant force. But what is a “constant” force? We have just seen that the four-force must always
be orthogonal to the momentum. So it is impossible for the 4-force f(τ) to be a fixed four-vector,
independent of τ . However, it is possible for the force to have components which are constant when
viewed in a frame which is instantaneously co-moving with the accelerating object.

Suppose a particle begins at the spacetime origin with vanishing 3-velocity (or 3-momentum) at
proper time τ = 0, and a force of magnitude F , pointing in the x1 direction, acts on the particle.
So the components of the initial spacetime position, four-velocity, and four-force are xµ0 = (0, 0, 0, 0),
uµ0 = (c, 0, 0, 0), and fµ0 = (0, F, 0, 0), respectively. The four-velocity at later times may be written
as some time-dependent Lorentz boost acting on the initial four-velocity,

u(τ) = Λboost(τ)u0 . (3.5.1)

The condition that the force is constant in a co-moving frame amounts to the statement that the
same Lorentz boost relates the four-force at any time τ to the initial force,

f(τ) = Λboost(τ) f0 . (3.5.2)

At all times, u2 = −c2 (because u is a four-velocity), and f2 = F 2 because the magnitude of the
force is assumed to be constant.

Since the initial force points in the x1 direction, the particle will acquire some velocity in this
direction, but the x2 and x3 components of the velocity will always remain zero. Hence the boost

6



Particles and Symmetries CHAPTER 3. RELATIVISTIC DYNAMICS

Λboost(τ) will always be some boost in the x1 direction, and the force f(τ) will likewise always have
vanishing x2 and x3 components. In other words, the 4-velocity and 4-force will have the form

uµ(τ) =
(
u0(τ), u1(τ), 0, 0

)
, fµ(τ) =

(
f0(τ), f1(τ), 0, 0

)
, (3.5.3)

with u0(0) = c, u1(0) = 0 and f0(0) = 0, f1(0) = F . The dot product f · u = −f0u0 + f1u1 must
vanish, implying that f0/f1 = u1/u0. So the components of the force must be given by

fµ(τ) =
F

c

(
u1(τ), u0(τ), 0, 0

)
. (3.5.4)

We want to solve mdu/dτ = f(τ). Writing out the components explicitly (and dividing by m) gives

du0(τ)
dτ

=
F

mc
u1(τ) ,

du1(τ)
dτ

=
F

mc
u0(τ) . (3.5.5)

This is easy to solve if you remember that d
dz sinh z = cosh z and d

dz cosh z = sinh z. To satisfy
Eq. (3.5.5), and our initial conditions, we need

u0(τ) = c cosh
Fτ

mc
, u1(τ) = c sinh

Fτ

mc
. (3.5.6)

The ordinary velocity vk = uk (c/u0) [Eq. (3.2.4)], so the speed of this particle subject to a constant
force is

v(τ) = c tanh
Fτ

mc
. (3.5.7)

Since tanh z ∼ z for small values of the argument, the speed grows linearly with time at early times,
v(τ) ∼ (F/m) τ . This is precisely the expected non-relativistic behavior. But this approximation is
only valid when τ � mc/F and the speed is small compared to c. The argument of the tanh becomes
large compared to unity when τ � mc/F , and tanh z → 1 as z →∞. So the speed of the accelerating
particle asymptotically approaches, but never reaches, the speed of light. From the definition (2.6.1)
of rapidity, v/c = tanh η, one sees that the result (3.5.7) for the speed just corresponds to rapidity
growing linearly with proper time,

η(τ) =
Fτ

mc
. (3.5.8)

At this point, we have determined how the velocity of the particle grows with time, but we need to
integrate dx/dτ = u to find its spacetime position. The integrals are elementary,

x0(τ) =
∫ τ

0
dτ ′ u0(τ ′) = c

∫ τ

0
dτ ′ cosh

Fτ ′

mc
=
mc2

F
sinh

Fτ

mc
, (3.5.9a)

x1(τ) =
∫ τ

0
dτ ′ u1(τ ′) = c

∫ τ

0
dτ ′ sinh

Fτ ′

mc
=
mc2

F

[
cosh

Fτ

mc
− 1
]
. (3.5.9b)

Hyperbolic sines and cosines grow exponentially for large arguments, sinh z ∼ cosh z ∼ 1
2 e

z when
z � 1. Hence, when τ � mc/F the coordinates x0(τ) and x1(τ) both grow like eFτ/mc with
increasing proper time. But the accelerating particle becomes ever more time-dilated; the rate of
change of proper time with respect to coordinate time, dτ/dt = c/u0 = 1/ cosh Fτ

mc , behaves as
2 e−Fτ/mc ∼ mc/(Ft).
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3.6 Plane waves

Next, we want to discuss how waves (of any type) may be described using relativistic notation.
Consider some plane wave with spatial wave-vector ~k and (angular) frequency ω, as measured in some
inertial frame. The amplitude of the wave may be described by a complex exponential, A ei~k·~x−iωt,
with the usual understanding that it is the real part of this function which describes the physical
amplitude. Such a wave has a wavelength λ = 2π/|~k| and planar wave-fronts orthogonal to the
wave-vector which move at speed v = ω/|~k| in the direction of ~k.

As mentioned earlier (2.7.12), it is natural to combine ω and ~k into a spacetime wave-vector k with
components

kµ = (ω/c, k1, k2, k3) , (3.6.1)

so that ω = c k0 and the complex exponential ei~k·~x−iωt = eik·x only involves a spacetime dot product.
The virtue of this formulation is that it is frame-independent. The spacetime position x and wave-
vector k are geometric entities which you should think of as existing independent of any particular
choice of coordinates. The value of the amplitude, A eik·x, depends on the event x and the wave-
vector k, but one may use whatever reference frame is most convenient to evaluate the dot product
of these 4-vectors.

Just as surfaces of simultaneity are observer-dependent, so is the frequency of a wave. After all,
measuring the frequency of a wave involves counting the number of wave crests which pass some
detector (or observer) in a given length of time. The time component of the wave-vector gives (by
construction) the frequency of the wave as measured by observers who are at rest in the frame in
which the components kµ are defined. Such observers have 4-velocities whose components are just
(c, 0, 0, 0) (in that frame). Consequently, for these observers the frequency of the wave may be written
as a dot product of the observer’s 4-velocity and the wave-vector,

ωobs = −uobs · k . (3.6.2)

This expression is now written in a completely general fashion which is observer-dependent but
frame-independent. That is, the expression (3.6.2) depends explicitly on the observer’s 4-velocity
uobs, but is independent of the frame used to evaluate the dot product between uobs and k. Therefore,
the frequency which is measured by any observer will be given by (minus) the dot product of the
observer’s 4-velocity u and the wave-vector k. Once again, this dot product may be evaluated using
whatever reference frame is most convenient.

For light waves (in a vacuum), the wave speed v = c and ω = c|~k|. The resulting spacetime wavevector
(3.6.1) is automatically a lightlike 4-vector which squares to zero,

kµlight =
ω

c
(1, k̂) , k2

light = 0 . (3.6.3)
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Figure 3.2: Inside a rotating centrifuge, light is emitted at one point
and later received at another point. Is there a Doppler shift between the
frequencies of emission and reception?

A nice application of Eq. (3.6.2),
demonstrating the value of writing
physical quantities in frame inde-
pendent form, is illustrated in Fig-
ure 3.2 .4 Mounted on the inner
surface of a centrifuge, which is ro-
tating at angular frequency Ω, is an
emitter of light at one point, and a
receiver at a different point. Let φ
be the angle between emitter and
receiver, relative to the center of
the centrifuge, as measured in the
inertial lab frame. The (inner) ra-
dius of the centrifuge is R. The fre-
quency of the light as measured by
an observer who is instantaneously
at rest relative to the emitter is νe.
The frequency of the light as mea-
sured by an observer who is instan-
taneously at rest relative to the receiver is νr. What is the fractional difference (νr − νe)/νe? How
does this frequency shift depend on the angle φ and the rotation frequency Ω?

One approach for solving this problem would involve explicitly constructing the Lorentz transforma-
tions which relate the lab frame to the instantaneous rest frames of the emitter and receiver, and then
combining these two transformations to determine the net transformation which directly connects
emitter and receiver. Given the three-dimensional geometry involved, this is rather involved.

A much better approach is to choose a convenient single frame, namely the lab frame, in which to
evaluate the components of the four-vectors appearing in the frame-independent expression (3.6.2)
for the frequency. We need to compute

νr

νe
=
−ur · k
−ue · k

=
u0

r k
0 − ~ur · ~k

u0
e k

0 − ~ue · ~k
. (3.6.4)

Here ue is the four-velocity of the emitter at the moment it emits light, and ur is the four-velocity
of the receiver at the moment when it receives the light.

If θe denotes the angle between the spatial wavevector and the direction of motion of the emitter (at
the time of emission), and θr denotes the angle between ~k and receiver’s direction (at the time of
reception), then we can express the spatial dot products in terms of cosines of these angles,

νr

νe
=
u0

r k
0 − |~ur||~k| cos θr

u0
e k

0 − |~ue||~k| cos θe

. (3.6.5)

The speed of the inner surface of the centrifuge is constant, v = ΩR, and hence the speeds of
the emitter and receiver, as measured in the lab frame, are identical — even though their velocity
vectors are different. The time component of a 4-velocity, u0/c = (1 − v2/c2)−1/2, only depends on

4This discussion is an adaptation of an example in Gravitation by Misner, Thorne and Wheeler.
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the magnitude of the velocity ~v, and hence u0
r = u0

e . The equality of the emitter and receiver speeds
also implies that the magnitudes of the spatial parts of the 4-velocities coincide, |~ur| = |~ue|. So using
expression (3.6.5) for the frequency ratio, the only remaining question is how does θr compare to θe?

This just involves ordinary geometry. Looking at the figure, notice that θe and θr are the angles
between the path of the light, which is a chord of the circle, and tangents to the circle at the
endpoints of the chord. But the angle a chord makes with these tangents is the same at either end,
implying that θe = θr. And this means νr = νe — there is no Doppler shift no matter how fast the
centrifuge rotates!

3.7 Electromagnetism

As already seen in the discussion of lightcones, plane waves, and Doppler shifts, the techniques we
are developing are particularly useful for understanding the propagation of light. Unfortunately, we
do not have time for extensive explorations of other relativistic aspects of electromagnetism, which
will be left for later classes. But one aspect, how to represent the Lorentz force in the framework we
have been discussing, is natural to describe here.

As we have seen above, generalizations from non-relativistic to relativistic dynamics are mostly a
matter of replacing 3-vectors by 4-vectors (and coordinate time by proper time). But what about
electric and magnetic fields? Both are (apparently) 3-vectors, and there is no sensible way to turn
them into 4-vectors. It turns out that what is sensible (and natural) is to package the components
of ~E and ~B, together, into a 4× 4 matrix called the field strength tensor, whose components are5

‖Fµν‖ =


0 Ex Ey Ez
Ex 0 cBz −cBy
Ey −cBz 0 cBx
Ez cBy −cBx 0

 . (3.7.1)

With this repackaging of electric and magnetic fields, the Lorentz force (as a 4-vector) has a remark-
ably simple form,

fµLorentz =
q

c
Fµν u

ν . (3.7.2)

Verifying that this 4-force leads to exactly the same rate of change of energy and momentum as
does the traditional form of writing the Lorentz force, ~f = q ( ~E + ~v × ~B), is an instructive and
recommended exercise.

3.8 Scattering

When objects (elementary particles, molecules, automobiles, ...) collide, the results of the collision
can differ markedly from the initial objects. Composite objects can fall apart or change form.
Interestingly, dramatic changes during collisions can also occur for elementary particles. Studying

5The explicit form of the field strength tensor depends on the choice of units one uses for electric and magnetic
fields. Expression (3.7.1) is applicable with SI units, where | ~E| is measured in Newtons/Coulomb, and | ~B| in Tesla.
One can (and should) check that (3.7.1) is dimensionally consistent — using SI quantities, multiplying by c converts
the units for B into the units for E.

10



Particles and Symmetries CHAPTER 3. RELATIVISTIC DYNAMICS

the collisions of elementary particles is a primary method used to investigate fundamental interactions
(and is the reason for building large high-energy particle colliders such as the LHC).

A complete description of what emerges from a collision (or ‘scattering event’) depends on microscopic
details of the interaction between the incident objects. But certain general principles constrain
the possibilities, most importantly, the conservation of energy and momentum. As discussed in
section 3.3, the total energy E and spatial momentum ~p of any object may be combined to form the
four-momentum pµ = (E/c, ~p ). Consequently, conservation of energy plus conservation of (spatial)
momentum may be compactly rephrased as the conservation of four-momentum: in the absence of
any external forces, the total four-momentum ptot of any system cannot change,

d

dt
p tot(t) = 0 . (3.8.1)

In a scattering process two or more objects, initially far apart, come together and interact in some
manner (which may be very complicated), thereby producing some number of objects that sub-
sequently fly apart. When the incoming objects are far apart and not yet interacting, the total
four-momentum is just the sum of the four-momentum of each object,

p in =
Nin∑
a=1

pa , (3.8.2)

(where Nin is the number of incoming objects and the index a labels particles, not spacetime di-
rections). Similarly, when the outgoing objects are arbitrarily well separated they are no longer
interacting and the total four-momentum is the sum of the four-momenta of all outgoing objects,

p out =
Nout∑
b=1

pb . (3.8.3)

Hence, for any scattering processes, conservation of energy and momentum implies that the total
incident four-momentum equal the total outgoing four-momentum (regardless of the values of Nin

and Nout),
p in = p out . (3.8.4)

As with any four-vector equation, one may choose to write out the components of this equation in
whatever reference frame is most convenient. For analyzing scattering processes, sometimes it is
natural to work in the rest frame of one of the initial objects (the ‘target’); this is commonly called
the lab frame. Experiments of this variety are known as “fixed target” experiments; the rest-frame
of the actual laboratory is the target frame. Alternatively, one may choose to work in the reference
frame in which the total spatial momentum vanishes. In this frame, commonly called the CM frame,6

the components of the total four-momentum are

pµCM = (ECM/c, 0, 0, 0) , (3.8.5)

where ECM is the total energy of the system in the CM frame.

6CM means ‘center of mass’, but this historical name is really quite inappropriate for relativistic systems, which
may include massless particles that carry momentum but have no rest mass. The widely used ‘CM’ label should always
be understood as referring to the zero (spatial) momentum frame.

11
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As an application of these ideas, consider the scattering of protons of energy Ein = 1 TeV on protons
at rest (in ordinary matter). The proton rest energy mp c

2 is a bit less than 1 GeV. Using Eq. (3.3.5),
one sees that a proton with 1 TeV energy is ultrarelativistic, γ = Ein/(mp c

2) ≈ 103. When an
ultrarelativistic proton strikes a target proton at rest, both protons can be disrupted and new particles
may be created. Schematically,

p+ p→ X ,

where X stands for one or more outgoing particles. What is the largest mass of a particle which
could be produced in such a collision?

The total energy of the incident particles (in the rest frame of the target) is Etot = Ein + mpc
2 ≈

1.001 TeV. If all of this energy is converted into the rest energy of one or more outgoing particles,
then these collisions could produce particles with mass up to Etot/c

2 ≈ 103mp. This would be
consistent with conservation of energy. But this is wrong, as it completely ignores conservation of
momentum. In the rest frame of the target, the total spatial momentum ~ptot is non-zero (and equal
to the momentum ~pin of the projectile proton). If there is a single outgoing particle X, it cannot be
produced at rest — it must emerge from the collision with a non-zero spatial momentum equal to
~ptot. That means its energy will be greater than its rest energy.

To determine the largest mass of a particle which can be produced in this collision, one must simul-
taneously take into account conservation of both energy and momentum. That is, one must satisfy
the four-vector conservation equation (3.8.4). In the lab frame, if we orient coordinates so that the
z-axis is the collision axis, then

pin = pprojectile + ptarget =


Ein/c

0
0
pin

+


mp c

0
0
0

 . (3.8.6)

If a single particle X emerges, then its four-momentum is the total outgoing four-momentum,

pout = pX =


EX
p1
X

p2
X

p3
X

 . (3.8.7)

Demanding that pin coincide with pout determines ~pX = pin ê3 and EX = Ein + mpc
2. Eq. (3.3.10),

applied to the projectile proton (with known mass), may be used to relate the incident spatial
momentum and energy, p2

in = (Ein/c)2 +(mp c)2. The same relation (3.3.10), applied to the outgoing
particle X, connects its energy EX and momentum ~pX to the desired maximum mass mX , (mXc

2)2 =
E2
X − (c ~pX)2. Inserting numbers and computing EX , |~pX | = pin, and finally mX is straightforward.

But even less work is required if one recalls [from Eq. (3.3.9)] that the square of any four-momentum
directly gives the rest mass of the object, p2 = −m2c2. Hence

−m2
X c

2 = p2
X = p2

out = p2
in = (pprojectile + ptarget)2

= p2
projectile + p2

target + 2 pprojectile · ptarget

= −2m2
p c

2 − 2Einmp . (3.8.8)

Consequently, mX =
√

2mp(mp + Ein/c2) = mp

√
2 + 2Ein/(mpc2) ≈

√
2002mp ≈ 45mp. Even

though the projectile proton has an energy a thousand times greater than its rest energy, the max-
imum mass particle which can be created in this collision is only 45 times heavier than a proton.

12
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Most of the energy of the projectile is needed to provide the kinetic energy of the outgoing particle
X, which is necessarily associated with the conserved spatial momentum. More generally, the max-
imum mass grows (only) like the square root of the lab frame energy, mmax

X ∼
√

2Einmp/c2, when
Ein � mpc

2.

This illustrates why “colliders” in which two beams of particles are aimed at each other, so that the
lab and CM frames coincide, are more efficient when hunting for new heavy particles. If the colliding
particles have equal mass, then they will also have equal energy (Ein) when their spatial momenta
are equal and opposite. In this case, the total spatial momentum vanishes and the maximum mass
of a produced particle is limited only by the total energy, mmax

X = 2Ein/c
2, which grows linearly with

the beam energy Ein.

3.9 Units and sizes

It may be helpful at this point to say a few words about units and the size of things. For “dimen-
sionfull” quantities (i.e., quantities which are not pure numbers and whose measurement requires
some standard for comparison), the value of the quantity depends on one’s choice of units. It only
makes sense to say that a dimensionfull quantity is “large” or “small” in comparison to some other
quantity with the same units. For velocities, the universal value of the speed of light makes c the
natural standard for comparison; an object is moving slowly (and non-relativistic dynamics can be
a good approximation) if its speed is small compared to the speed of light, |v|/c � 1. Similarly,
classical mechanics can provide a good approximation when quantum interference effects produced
by a wave function such as (2.7.13) vary so rapidly that they become unresolvable. This is the case
when p · x is large compared to Planck’s constant ~.

In the SI (or MKS) system, there are three independent fundamental units, length (m), mass (kg),
and time (s). These units are convenient for describing many phenomena which occur on human
scales. But they are not convenient for describing atomic, nuclear, or particle physics phenomena.
For example, the mass of a proton is 1.67× 10−27 kg, and the spatial size of a proton is conveniently
measured in fermi, not meters. A fermi (fm) is shorthand for one femtometer, 1 fm = 1 femtometer =
10−15 m. Likewise, the lifetime of a typical particle that decays via the strong interactions (discussed
in the next chapter) is of order 10−23 s, roughly the time needed for light to travel across a distance
of 1 fm.

As most of the physics we will discuss in this course is both relativistic and quantum mechanical,
it will often be convenient to use units in which the speed of light and Planck’s constant ~ have
numerical values close to unity. In fact, one is free to choose “natural” units in which both c and ~
are exactly equal to unity. By declaring that

c = 2.99 792 458× 108 m/s = 1 , (3.9.1)

one is choosing to regard time and distance as having the same units; one second is the same as
2.99 · · · × 108 meters. As a measure of distance, one second means one “lightsecond,” the distance
light travels in a second. The speed of light, when expressed in m/s, is just a conversion factor
between two different units for distance, meters and seconds, in the same way that 1 = 2.54 cm/in
or 1 = 6 ft/fathom are conversion factors relating other measures of distance.

Similarly, by declaring that

~ = 1.05 457 148 · · · × 10−34 J s = 1 , (3.9.2)

13
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1 kg = 5.61× 1026 GeV [GeV/c2]
1 m = 5.07× 1015 GeV−1 [~c/GeV]
1 s = 1.52× 1024 GeV−1 [~c/GeV]

1 fm ≡ 10−15 m = 5.07 GeV−1 [~c/GeV]
(1 fm)2 = 10 mb = 10−30 m2 = 25.7 GeV−2 [(~c/GeV)2]

~c = 197 MeV fm
(~c)2 = 0.389 GeV2 mb

Table 3.1: Useful approximate conversion factors. The last column shows the appropriate units with ~ and c included.

one is choosing to regard energy and frequency (inverse time) as having the same units. Since
quantum states with energy E evolve in time with an amplitude e−iEt/~, one sees that their frequency
of oscillation is always directly related to their energy by a factor of Planck’s constant, ω = E/~.
This relation applies to photons, electrons, and any other particle. So it is natural to regard Planck’s
constant ~, expressed in J/s (or any other traditional units), as just a conversion factor between two
different measures for energy (or frequency).

With c set equal to unity, time has the same dimensions as distance. Moreover, mass, momentum
and energy all have the same units (since factors of c can convert one to the other). With ~ also set
equal to unity, mass and energy have the same units as 1/distance or 1/time. The net result is that
there is only one fundamental independent dimension, say energy, which requires a choice of unit.
We could use Joules, ergs, or any other measure of energy, but it will be most convenient to choose
a unit which is comparable to energy scales relevant for particle physics — such as the proton’s rest
energy, mp c

2. This is about 1.5 × 10−10 J, showing that Joules are not a very nice choice for our
purposes. It is preferable, and conventional, to instead use SI-prefixed (e.g., kilo-, mega-, giga-, ...)
electron volts, namely keV = 103 eV, MeV = 106 eV, GeV = 109 eV, TeV = 1012 eV, etc. As the
proton rest energy is very close to one GeV, mp c

2 = 0.938 GeV, giga-electron volts (GeV) will be
especially convenient.

As noted above, the fermi is a useful measure for lengths in particle physics applications. A convenient
conversion factor is 1 = 197 MeV fm, (or ~c = 197 MeV fm with ~ and c retained), so 1 fm ≈
1/(0.2 GeV). For measuring areas (e.g., cross sections for scattering), the “barn”, defined as 10−28m2,
is commonly used in nuclear physics. For particle physics applications, millibarn (mb = 10−31 m2),
microbarn (µb = 10−34 m2), or nanobarn (nb = 10−37 m2) are generally more convenient. One square
fermi is 10 millibarn. Table 3.1 lists a number of conversion factors relating traditional and natural
particle physics units. In these notes, we will initially retain explicit factors of c and ~, but you
should gradually become comfortable using natural units with c = ~ = 1.

As a final illustration of the relation between different units, Table 3.2 compares the sizes, in both
meters and GeV−1, of a wide variety of objects. Note the huge range of sizes that characterize our
universe. The last quantity listed, the Planck length, is the length scale, or inverse mass scale, where
quantum fluctuations in the geometry of spacetime (i.e., quantum gravity effects) are believed to
become significant.
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observable universe ∼ 1026 m ≈ 5× 1041 GeV−1 (∼ 1011 galaxies)
galaxy supercluster ∼ 1024 m ≈ 5× 1039 GeV−1

galaxy ∼ 1021 m ≈ 5× 1036 GeV−1 (∼ 1011 stars)
star ∼ 109 m ≈ 5× 1024 GeV−1

Earth ∼ 107 m ≈ 5× 1022 GeV−1

human ∼ 100 m ≈ 5× 1015 GeV−1

atom ∼ 10−10 m ≈ 5× 105 GeV−1

nucleus ∼ 10−14 m ≈ 5× 101 GeV−1

proton ∼ 10−15 m ≈ 5× 100 GeV−1

present observational limit ∼ 10−19 m ≈ 5× 10−4 GeV−1

Planck length ∼ 10−35 m ≈ 5× 10−20 GeV−1

Table 3.2: Characteristic sizes of various objects (to within factors of 2–3).

3.10 Example problems

3.10.1 Relativistic velocity addition

Q: Frame S′ moves in the x1 direction with velocity v0 relative to frame S. A point particle moves
with velocity v′ in the x1 direction as seen in frame S′. Find the 3-velocity of the particle in frame S.

A: In frame S′, the components of the 4-velocity of the particle are (u′)µ = (γv′ c, γv′ v′, 0, 0),
with γv′ = (1 − v′ 2/c2)−1/2. Since the S′ frame is moving, relative to frame S, by velocity v0 in
the x1 direction, 4-vector components in frame S are related to those in frame S′ by the Lorentz
transformation matrix

Λ(v0) =


γ0 γ0 (v0/c) 0 0

γ0 (v0/c) γ0 0 0
0 0 1 0
0 0 0 1

 ,

with γ0 = (1− v2
0/c

2)−1/2. Applying this matrix to the components (u′)µ yields the components uµ

of the particle’s 4-velocity in frame S,

u = Λ(v0)


γv′ c
γv′ v′

0
0

 =


c γ0 γv′ (1 + v0 v

′/c2)
γ0 γv′ (v0 + v′)

0
0

 .

The ordinary 3-velocity is related to the 4-velocity via the relation (3.2.4), or vk = uk/(u0/c).
Inserting the S frame components uµ yields a 3-velocity (pointing in the 1 direction),

v = v1 =
v0 + v′

1 + v0 v′/c2
, [v2 = v3 = 0] .

The numerator of this answer is the familiar Galilean result, but the denominator reflects relativistic
corrections. If either v0 or v′ are small compared to c, then the denominator is close to the 1 and
the Galilean result is approximately correct. But if either (or both) of the initial three-velocities
approach c, then the final velocity v also approaches, but never exceeds, c.

The reader is encouraged to: (a) verify that the result for u satisfies u2 = −c2, (b) show that the
results for u0 and v satisfy the usual relation u0 = γv c with γv = (1− v2/c2)−1/2, and (c) show that
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if velocities are described by equivalent rapidities, v0 = c tanh η0, v′ = c tanh η′, and v = c tanh η,
then η = η0 + η′. In other words, rapidities (of collinear boosts) add linearly, but 3-velocities do not.

3.10.2 Doppler shift

Q: Using Eqs. (3.6.2) and (3.6.3), derive the relativistic Doppler shift of light — find the frequency
seen by an observer moving away from a source of light with (ordinary) frequency ν0, as measured
in the rest frame of the source.

A: Take the observer to be moving in the x1 direction with velocity v. The most convenient ref-
erence frame is the rest frame of the source (since this is the frame in which we have information
about both the light and the observer). In the source frame, the observer’s 4-velocity has compo-
nents uµobs = c γ (1, v/c, 0, 0). The angular frequency of the light is ω0 = 2πν0, and the spacetime
wavevector (for the light moving in the x1 direction which reaches the observer) has components
kµ = (ω0/c) (1, 1, 0, 0). Using (3.6.2), we have

νobs

ν0
=
ωobs

ω0
= −uobs · k

ω0
= γ (1− v/c) =

√
1− v/c
1 + v/c

.

For v > 0, corresponding to the source and observer receding from each other, we have νobs/ν0 < 1,
so the light appears to be red-shifted. For an observer approaching the source, simply change the
sign of v; in this case νobs/ν0 > 1 and the light appears blue-shifted to a higher frequency.

3.10.3 Kinetic energy, speed, and momentum7

Q: A relativistic particle has kinetic energy equal to twice its rest energy. Find the speed of the
particle (relative to c) and its spatial momentum.

A: Total energy is kinetic energy plus rest energy, E = K+mc2 = 3mc2. Total energy is also γ times

rest energy, so γ ≡ (1−v2/c2)−1/2 = E/(mc2) = 3. Solving for v/c gives v/c =
√

1− 1
9 = 0.943. The

(magnitude of the) particle’s spatial momentum is p = γ mv = 3mc (v/c) = 2.83mc. This could also
be evaluated directly using Eq. (3.3.10), which may be rearranged as p =

√
(E/c)2 − (mc)2 =

√
8mc.

3.10.4 Light propulsion8

Q: The most fuel-efficient rocket exhaust is photons (i.e., light), as this has the fastest exit velocity
for any given energy. Suppose a rocket, emitting only light (in the backward direction), has initial
mass Mi and final mass Mf . Find its final velocity (in the frame in which it starts from rest).

A: The hard way to do this problem is to integrate the relativistic version of Newton’s equations
(3.4.1) with a time-dependent mass. It is much easier to just use conservation of total energy and
momentum. Working in the initial rest frame of the rocket, the total initial energy and spatial
momentum are Etot = Mi c

2 and ~ptot = 0, respectively, since the rocket is at rest. At the final time
the rocket, now with mass Mf , is moving in some direction (call it +x̂) with velocity ~v, and all the
emitted photons are moving in the opposite (−x̂) direction. Hence, the total energy at the final

7Adapted from Kogut problem 6-11.
8Adapted from Kogut problem 6-16.
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time is Etot = γMf c
2 + Ephotons, and the total final spatial momentum ~ptot = γMf ~v + ~pphotons =

(γMf v − Ephotons/c) x̂. (Note that |~pphoton| = Ephoton/c, since the 4-momentum of a photon is a
light-like vector.)

Requiring that the final total spatial momentum agree with the initial value of 0 implies that
Ephotons/c = γMf v, while demanding that the total initial and final energies agree implies that
Ephotons/c = Mi c− γMf c. Equating these two results for Ephotons/c gives

Mi = γMf
c+ v

c
= Mf

√
1 + v/c

1− v/c
.

Solving for v/c yields
v

c
=

(Mi/Mf )2 − 1
(Mi/Mf )2 + 1

=
M2
i −M2

f

M2
i +M2

f

.

So reaching a relativistic velocity, v ≈ c, requires that the final mass (including the payload) be very
much smaller than the initial mass (Mf � Mi), even with the most efficient idealized propulsion
imaginable.
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