
Chapter 5

Quarks and hadrons

Every atom has its ground state — the lowest energy state of its electrons in the presence of the
atomic nucleus — as well as many excited states which can decay to the ground state via emission of
photons. Nuclei composed of multiple protons and neutrons also have their ground state plus various
excited nuclear energy levels, which typically also decay via emission of photons (or in some cases,
α or β radiation). But what about individual protons or neutrons?

It was asserted earlier that individual nucleons are also composite objects, and may be viewed as
bound states of quarks. And just as atoms and nuclei have excited states, so do individual nucleons.

The force which binds quarks together into bound states is known as the strong interaction, and the
theory which describes strong interactions is called quantum chromodynamics, often abbreviated as
QCD. We will have more to say about QCD as we progress. But the justification for the validity
of the following qualitative description of quarks and their bound states lies in the success of QCD.
Using this theory, one can do detailed quantitative calculations of the masses and other properties
of bound states of quarks and compare with experimental results. The theory works.

5.1 Quark flavor and color

Quarks are spin-1/2 particles (fermions) which come in various species, referred to as flavors. Dif-
ferent quark flavors have been given somewhat whimsical names, as shown in Table 5.1 . In addition
to the curious names, two other things in Table 5.1 should strike you as odd: the enormous disparity
of masses of different quarks, spanning five orders of magnitude, and the fact that quarks have frac-
tional charge (in units of |e|). The quark masses listed in this table must be interpreted with some
care, as isolated quarks are never observed experimentally. The mass, or rest energy, of observed
particles which are bound states of quarks (like the proton) largely reflects the binding energy of the
quarks, and is not just the sum of the intrinsic quark masses. Nevertheless, it is remarkable that
quark masses vary over such a wide range, from a few MeV to hundreds of GeV. The three lightest
quark flavors, denoted u, d and s, have masses which are small relative to the proton mass; the three
heavy flavors, c, b and t, have masses which are comparable or large relative to the proton mass.

Along with quarks, there are also antiquarks, denoted ū, d̄, s̄, etc., with the same masses but opposite
electric charge as their partner. (So, for example, the ū antiquark has charge −2/3 and the d̄ has
charge +1/3.)
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flavor symbol mass charge

up u ≈ 2 MeV/c2 2
3 |e|

down d ≈ 5 MeV/c2 −1
3 |e|

strange s ≈ 95 MeV/c2 −1
3 |e|

charm c ≈ 1.3 GeV/c2 2
3 |e|

bottom b ≈ 4.2 GeV/c2 −1
3 |e|

top t ≈ 173 GeV/c2 2
3 |e|

Table 5.1: Known quark flavors

Quarks have an additional attribute, analogous to but different from electric charge, which is termed
color charge. The color charge of a quark can have three possible values which may be denoted as
‘red’, ‘green’, or ‘blue’. These names are simply labels for different quantum states of the quark.1

Antiquarks carry opposite electric and color charge as the corresponding quarks; color states of
antiquarks can be called ‘anti-red’, ‘anti-green’ or ‘anti-blue’.

Since quarks (and antiquarks) have spin 1/2, so they can also be labeled by their spin projection,
↑ or ↓, along any chosen spin quantization axis. Hence, for each quark flavor, there are really six
different types of quark, distinguished by the color (red, blue, green) and spin projection (up, down).

5.2 Hadrons

No (reproducible) experiments have detected any evidence for free (i.e., isolated) quarks. Moreover,
there is no evidence for the existence of any isolated charged particle whose electric charge is not
an integer multiple of the electron charge. This is referred to as charge quantization. Consistent
with these observational facts, the theory of strong interactions predicts that quarks will always be
trapped inside bound states with other quarks and antiquarks.2 Bound states produced by the strong
interactions are called hadrons (hadros is Greek for ‘strong’).

Quantum chromodynamics predicts that only certain types of bound states of quarks can exist,
namely those which are “colorless”. (This can be phrased in a mathematically precise fashion in
terms of the symmetries of the theory. More on this later.) Recall that to make white light, one
mixes together red, blue, and green light. Similarly, to make a colorless bound state of quarks one
sticks together three quarks, one red, one blue, and one green. But this is not the only way. Just as

1These names are purely conventional — one could just as well label the different “color” states as 1, 2, and 3. But
the historical choice of names explains why the theory of strong interactions is called quantum chromodynamics: a
quantum theory of the dynamics of “color” — although this color has nothing to do with human vision!

2Except at sufficiently high temperatures. Above a temperature of Tc ≈ 2 × 1012 K (or kT ≈ 170 MeV), hadrons
“melt” or “vaporize” and quarks are liberated. This is important in the physics of the early universe, since temperatures
are believed to have exceeded this value in the earliest moments of the big bang. Temperatures above Tc can also be
produced, briefly, in heavy ion collisions. A nice overview of heavy ion collisions and quark gluon plasma may be found
at www.bnl.gov/rhic/heavy ion.htm . There is an ongoing program studying heavy ion collisions both at the RHIC
accelerator on Long Island, and at the LHC where some running time is devoted to colliding heavy nuclei rather than
protons.
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antiquarks have electric charges which are opposite to their partner quarks, they also have “opposite”
color: anti-red, anti-blue, or anti-green. Another way to make a colorless bound state is to combine
three antiquarks, one anti-red, one anti-blue, and one anti-green. A final way to make a colorless
bound state is to combine a quark and an antiquark (in the quantum superposition rr̄ + gḡ + bb̄ of
correlated color states which is overall colorless).

Bound states of three quarks are called baryons, bound states of three antiquarks are called an-
tibaryons, and quark-antiquark bound states are called mesons. Baryons and antibaryons, as bound
states of three spin-1/2 quarks, necessarily have half-integer values of spin, and are fermions. Mesons,
as bound states of two spin-1/2 constituents, have integer values of spin, and are bosons.

Strong interactions are effectively flavor-blind; except for the difference in mass, quarks of different
flavors have identical strong interactions. Strong interaction processes cannot change the net number
of quarks of a given flavor (e.g., the number of up quarks minus up antiquarks, etc).3

How these rules emerge from QCD will be described in a bit more detail later. For now, let’s just
look at some of the consequences. The prescription that hadrons must be colorless bound states says
nothing about the flavors of the constituent quarks and antiquarks. Since quarks come in multiple
flavors, listed in Table 5.1, one can (and we will) enumerate the various possibilities.

The rest energy of a hadron (like any bound state) may be regarded as the sum of the rest energies of
its constituents plus a binding energy. For some hadrons, including nucleons, we will see that most of
their total energy comes from binding energy. But the masses of quarks also play a part. Looking at
the quark masses listed in Table 5.1 , it is apparent that u, d and s quarks are quite light compared
to the mass (≈ 1 GeV/c2) of a nucleon, while the other quark flavors are considerably heavier. So
it should not be surprising that the lightest hadrons will be those which are bound states of u and
d quarks. Substituting a strange quark for a u or d quark should be expected to raise the mass of
the resulting bound by roughly 100 MeV. And hadrons containing the other quark flavors (c, b, or
t) should be substantially heavier.

When enumerating possible combinations of quarks which could form hadrons, one must also think
about spin and electric charge. Combining electric charge is easy: the charge of a hadron is just the
sum of the charges of its constituent quarks. Combining the angular momentum of two spin 1/2
particles can yield either spin 1 or 0 (depending on whether the spin wavefunction is symmetric or
antisymmetric). Three spin 1/2 particles can combine to form either spin 3/2 or 1/2.4 In addition
to the combined total spin ~S of the constituents, the total angular momentum ~J of a multi-particle
bound state can also receive a contribution from the orbital angular momentum ~L which arises due
to the internal motion of the constituents. So, in general, ~J = ~L+ ~S. For the lowest mass hadrons, of
a given spin and flavor content, one may regard the quarks as nearly at rest (within the constraints
imposed by quantum mechanics) with vanishing orbital angular momentum, ~L = 0.

3In contrast, weak interactions (whose details will be discussed further in a later chapter) can change a quark of
one flavor into a quark of a different flavor. Hence weak interactions need not conserve the net number of quarks of a
given flavor.

4More generally, recall that when a system with spin S1 is combined with a system with spin S2, the result can
have a total spin which ranges from a minimum of |S1−S2| to a maximum of S1 + S2 in unit steps (when all spins are
measured in units of ~). For any system with spin S, there are 2S + 1 possible values for the projection ~S · n̂ of the
spin vector along some chosen spin quantization axis n̂ ranging from −S to +S in unit steps.
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5.3 Mesons

Let us start with mesons and (for the moment) consider just the three lightest quark flavors, u, d,
and s. Since a meson is a bound state of a quark and antiquark, there are nine different possible
flavor combinations. Table 5.2 displays these possibilities arranged according to the resulting electric
charge Q as well as the number of strange (or antistrange) quarks. For each combination, there will
be one spin zero state, and one spin one state. Reassuringly, the lightest observed mesons are either
spin zero or spin one. Table 5.3 lists the light spin zero mesons, along with their dominant decay
modes, while Table 5.4 does the same for light spin one mesons.5 These are the lightest mesons.

As Tables 5.3 and 5.4 show, the numbers and charges of the lightest spin zero and spin one mesons
precisely match what is expected based on the possible combinations of a quark and antiquark. In
general, mesons containing strange quarks are heavier than those without. But among the neutral
mesons, it is noteworthy that it is certain linear combinations of the Q = 0 quark combinations
listed in Table 5.2 which correspond to distinct particles. This reflects the possibility of quantum
mechanical mixing among states with identical quantum numbers. In other words, eigenstates of the
Hamiltonian can be linear combinations of basis states which have simple quark content. The form
of this mixing will be discussed in more detail later, but the important conclusion here is that the
basic description of mesons as bound states of quarks works.

5.4 Baryons

One can go through a similar exercise for baryons. Instead of dealing with two constituents, one is now
dealing with three. Combining three spin 1/2 objects can yield either spin 1/2 or 3/2. The lightest
observed baryons are, in fact, either spin 1/2 or spin 3/2. Tables 5.5 and 5.6 list the lightest spin 1/2
and spin 3/2 baryons, respectively. As Table 5.6 shows, the ten light J = 3/2 baryons precisely match
the ten possible choices of triples of quark flavors. From the masses listed in Table 5.6 one sees that
the Σ∗ baryons, which contain one strange quark, are heavier than the ∆ baryons, which contain only
u and d quarks, by about 150 MeV. The Ξ∗ baryons, which contain two strange quarks are heavier
than the Σ∗ by an additional ≈ 150 MeV, and the Ω− baryon, containing three strange quarks, is
yet heavier by about the same increment. This is consistent with our expectations that substituting
heavier quarks for lighter quarks should increase the mass of bound states, as the binding dynamics
due to the color interactions are independent of the quark flavors involved. The ten baryons shown
in Table 5.6 are referred to as the spin 3/2 baryon decuplet.

As Table 5.5 shows, there are only eight light J = 1/2 baryons, which are referred to as the spin 1/2
baryon octet. This difference between J = 3/2 and J = 1/2 bound states may be understood as a
consequence of the Pauli exclusion principle. Quarks, being fermions, must obey the Pauli exclusion
principle. Wavefunctions of multi-quark states must be antisymmetric under the interchange of
identical quarks. To see how this leads to the difference between the J = 3/2 decuplet and the
J = 1/2 octet, we must examine baryon wavefunctions in more detail.

5Tables 5.3 and 5.4 list parity odd mesons, as this is the parity of quark-antiquark bound states with no orbital
excitation. We will discuss parity assignments in the next chapter. Note that the mass values listed in these and
subsequent tables should really have units of MeV/c2 (or the column should be labeled “rest energy” instead of
“mass”). We will become increasingly sloppy about this distinction, since one can always insert a factor of c2, as
needed, to convert mass to energy or vice-versa.
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(#s) + (#s̄) Q = 1 Q = 0 Q = −1

0 ud̄ uū, dd̄ dū

1 us̄ sd̄, ds̄ sū

2 ss̄

Table 5.2: Possible light quark-antiquark combinations

meson mass lifetime dominant decays quark content

π0 135.0 MeV 8× 10−17 s γγ 1√
2
(uū− dd̄)

π+ 139.6 MeV 2.6× 10−8 s µ+νµ ud̄

π− 139.6 MeV 2.6× 10−8 s µ−ν̄µ dū

K+ 493.7 MeV 1.2× 10−8 s µ+νµ, π+π0 us̄

K− 493.7 MeV 1.2× 10−8 s µ−ν̄µ, π−π0 sū

K0
S 497.7 MeV 8.9× 10−11 s π+π−, π0π0 1√

2
(ds̄− sd̄)

K0
L 497.7 MeV 5.1× 10−8 s π±e∓νe, π±µ∓νµ 1√

2
(ds̄+ sd̄)

η 547.5 MeV 5× 10−19 s γγ, π+π−π0, π0π0π0 ≈ 1√
6
(uū+ dd̄− 2ss̄)

η′ 957.8 MeV 3× 10−21 s π+π−η, ρ0γ, π0π0η ≈ 1√
3
(uū+ dd̄+ ss̄)

Table 5.3: Light spin zero, parity odd mesons.

meson mass lifetime dominant decays quark content

ρ+, ρ0, ρ− 775.5 MeV 4× 10−24 s ππ ud̄, 1√
2
(uū− dd̄), dū

ω 782.7 MeV 8× 10−23 s π+π−π0 ≈ 1√
2
(uū+ dd̄)

K∗+,K∗− 891.7 MeV 1.3× 10−23 s Kπ us̄, sū

K∗0, K̄∗0 896.0 MeV 1.3× 10−23 s Kπ ds̄, sd̄

φ 1019.5 MeV 2× 10−22 s K+K−, K0
LK

0
S, πππ ≈ ss̄

Table 5.4: Light spin one, parity odd mesons.
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baryon mass lifetime dominant decays quark content

p 938.3 MeV stable — uud

n 939.6 MeV 9× 102 s pe−ν̄e udd

Λ 1116 MeV 2.6× 10−10 s pπ−, nπ0 uds

Σ+ 1189 MeV 0.8× 10−10 s pπ0, nπ+ uus

Σ0 1193 MeV 7× 10−20 s Λγ uds

Σ− 1197 MeV 1.5× 10−10 s nπ− dds

Ξ0 1315 MeV 2.9× 10−10 s Λπ0 uss

Ξ− 1321 MeV 1.6× 10−10 s Λπ− dss

Table 5.5: Light spin 1/2, parity even baryons.

baryon mass lifetime dominant decays quark content

∆++,∆+,∆0,∆− 1232 MeV 6× 10−24 s pπ, nπ uuu, uud, udd, ddd

Σ∗+,Σ∗0,Σ∗− 1385 MeV 2× 10−23 s Λπ uus, uds, dds

Ξ∗0,Ξ∗− 1530 MeV 7× 10−23 s Ξπ uss, dss

Ω− 1672 MeV 0.8× 10−10 s ΛK−, Ξπ sss

Table 5.6: Light spin 3/2, parity even baryons.

5.5 Baryon wavefunctions

To understand how the fermionic nature of quarks produces the observed pattern of spin and flavor for
baryons, we must first return to the earlier assertion that only colorless bound states of quarks exist.
What does this really mean? Just as you can think of a spin 1/2 particle as having a wavefunction
which is a two-component complex vector,(

ψ↑
ψ↓

)
=
(
〈↑|ψ〉
〈↓|ψ〉

)
, (5.5.1)

the wavefunction of a quark (of definite flavor and spin) is a three-component vector in “color” space,

~Ψ ≡

ψr

ψg

ψb

 =

 〈red|ψ〉
〈green|ψ〉
〈blue|ψ〉

 . (5.5.2)

The component ψr gives the amplitude for the quark color to be red, ψg is the amplitude to be green,
etc. The assertion that hadrons must be “colorless” really means that the multi-quark wavefunction
must not depend on the choice of basis in three-dimensional color space. Since the quark (color)
wavefunction is a three-component vector, to build a colorless state from three quarks, A, B and C,
one must combine the three color vectors describing the individual quarks, ~ψA, ~ψB, and ~ψC , in such
a way that the result is basis independent.
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This may sound peculiar, but the mathematical problem is the same as asking how to build a
rotationally-invariant scalar from three spatial vectors ~A, ~B and ~C, in such a way that the result is
a linear function of each of the vectors. You already know the (essentially unique) answer, namely
the triple-product of the three vectors, ~A · ( ~B × ~C). This triple product may be expressed in several
equivalent ways involving the determinant of components,

~A · ( ~B × ~C) = det

∣∣∣∣∣∣
A1 B1 C1

A2 B2 C2

A3 B3 C3

∣∣∣∣∣∣ = εijk AiBj Ck . (5.5.3)

In the last form, εijl is the totally antisymmetric tensor which equals +1 when (ijk) is any cyclic
permutation of (123), −1 when (ijk) is any cyclic permutation of (321), and zero otherwise.6 Recall
that a determinant changes sign if any two columns (or rows) are interchanged; this is also encoded
in the antisymmetry of the εijk symbol. Consequently, the triple product is antisymmetric under any
interchange of two of the vectors. The triple product (5.5.3) defines a rotationally invariant scalar,
independent of the basis used to define vector components — and this is exactly the property we
need when combining color wavefunctions of three quarks to produce a colorless result. Thus, the
color part of the wavefunction for three quarks has the form

Ψcolor = εijk ψ
q1
i ψq2j ψq3k , (5.5.4)

where ψq1i is the i’th component of the color wavefunction (5.5.2) for quark 1, etc.

The complete wavefunction describing three quarks in a bound state must characterize not only the
color of the quarks, but also their flavor, spin, and spatial location. To a good approximation, the
wavefunction will be a product of a spatial wavefunction (depending only on the quark positions), a
color wavefunction (depending only on the color vectors), and a flavor & spin wavefunction,

Ψ = Ψspace ×Ψcolor ×Ψspin+flavor . (5.5.5)

The essential point of the above discussion about triple products is that the color wavefunction for
three quarks is antisymmetric under any interchange of the color vectors of any two quarks. The
lightest hadrons which can be built from a given set of quark flavors will have a spatial wavefunction
which is symmetric under interchange of quark positions. If this is not true then the wavefunction
will have nodes across which it changes sign, and this increases the kinetic energy of the state. (In
particular, this means the lightest hadrons will have no orbital angular momentum.) Because quarks
are fermions, the total wavefunction must be antisymmetric under interchange of any two quarks —
which means simultaneous interchange of the positions, spins, flavors, and colors of the two quarks.
Since the color part of the wavefunction must be antisymmetric, while the spatial part should be
symmetric, this means that the flavor and spin part must also be symmetric under permutations.7

For a spin 3/2 baryon, such as the ∆++, the flavor structure of the wavefunction is trivial, and
totally symmetric, since all three quarks are the same type, namely uuu. For the Sz = 3/2 state,

6The geometric definition of a cross product only makes sense for real vectors, but the expressions (5.5.3) involving
components of the vectors are equally well-defined for complex vectors.

7This was a significant puzzle in the early days of the quark model (circa 1970), when quarks had been postulated
as constitutents of baryons, but the role of a color quantum number was not yet understood. The spatial, flavor and
spin wavefunctions that matched observed baryons were clearly symmetric, but quarks had spin 1/2 and hence were
fermions. Was Pauli wrong? The additional attribute of color saved the spin-statistics theorem, and paved the way to
the formulation of a microscopic theory of strong interactions, namely QCD.
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the spin structure is also trivial, and totally symmetric, since all three quarks must individually
have Sz = 1/2 if the total spin projection is 3/2.8 Therefore the combined spin+flavor part of the
wavefunction,

Ψ∆++

spin+flavor ∼ (uuu)× (↑↑↑) , (5.5.6)

satisfies the above condition of symmetry under permutation of quark spins and flavors. Analogous
spin+flavor wavefunctions may be constructed for all baryons (with any spin projection) in the spin
3/2 decuplet. Just like the example (5.5.6), these wavefunctions are simple products of a flavor part
and a spin part, and are independently symmetric under permutations of quark spins, or permutations
of quark flavors.

For J = 1/2 baryons, the situation is more complicated. To produce a spin 1/2 state from three
spin 1/2 constituents, the spins of two constituents can be combined in a manner which produces
spin zero (not spin one), so that adding the third constituent spin results in total spin 1/2. But
building a spin zero state out of two spin 1/2 objects involves a spin wavefunction, ↑↓ − ↓↑, which is
antisymmetric under interchange of the two spins. Consequently, the spin wavefunction (alone) for
a spin 1/2 baryon cannot be totally symmetric under permutations of the spins. If we are to build
a spin+flavor wavefunction which is symmetric under combined permutations of flavors and spins
of quarks, then the flavor part of the wavefunction must also not be totally symmetric, and must
compensate for the antisymmetry in the spin part of the wavefunction.

If all three quarks have the same flavor, this is not possible — like it or not, a flavor wavefunction
such as uuu is totally symmetric. This explains why there are no light spin 1/2 baryons composed of
three up (or three down, or three strange) quarks, in contrast to the case for spin 3/2 baryons. But if
there are at least two distinct quark flavors involved, then it is possible to build a flavor wavefunction
with the required symmetry. As an example, let us build a spin+flavor wavefunction for the proton.
We need two u quarks and one d quark. A spin wavefunction of the form (↑↓ − ↓↑) ↑ describes a
state in which the first two quarks have their spins combined to form an S = 0 state, so that adding
the third spin yields a total spin of 1/2, as desired. Since this spin wavefunction is antisymmetric
under interchange of the first two spins, we need a flavor wavefunction which is also antisymmetric
under interchange of the first two quark flavors, namely (ud− du)u. If we multiply these, we have a
spin+flavor wavefunction,

[ (ud− du)u ]× [ (↑↓ − ↓↑) ↑ ] = (udu− duu) (↑↓↑ − ↓↑↑) , (5.5.7)

which is symmetric under combined spin and flavor exchange of the first two quarks. But we need
a wavefunction which is symmetric under interchange of any pair of quark spins and flavors. This
can be accomplished by adding terms which are related to the above by cyclic permutations (or in
another words by repeating the above construction when it is the second and third, or first and third
quarks which are combined to form spin zero). The result for a spin-up proton, which is unique up
to an overall normalization factor, is

Ψproton
spin+flavor = (udu− duu) (↑↓↑ − ↓↑↑) + (uud− udu) (↑↑↓ − ↑↓↑) + (uud− duu) (↑↑↓ − ↓↑↑) .

(5.5.8)

8This ignores the possibility of further constituents in the baryon in addition to the three up quarks. Using an
improved description of the structure of baryons does not change the essential conclusions of the following discussion.
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One may write this wavefunction more explicitly with the various terms multiplied out,

Ψproton
spin+flavor =

[
2u ↑ u ↑ d ↓ − u ↓ u ↑ d ↑ − u ↑ u ↓ d ↑

+ 2u ↑ d ↓ u ↑ − u ↓ d ↑ u ↑ − u ↑ d ↑ u ↓
+ 2 d ↓ u ↑ u ↑ − d ↑ u ↓ u ↑ − d ↑ u ↑ u ↓

]
/
√

18 , (5.5.9)

(where we have also normalized the result). You can, and should, check that this does satisfy the
required condition of symmetry under interchange of spins and flavors of any pair of quarks. Similar
constructions can be performed for all the other members of the spin 1/2 baryon octet.

One notable feature of the set of octet baryons, shown in Table 5.5 , is the presence of two different
baryons whose quark content is uds, specifically the Λ and the Σ0. This is not inconsistent. When
three distinct flavors are involved, instead of just two, there are more possibilities for constructing
a spin+flavor wavefunction with the required symmetry. A careful examination (left as a problem)
shows that there are two independent possibilities, completely consistent with the observed list of
spin 1/2 baryons.

The mass values in Table 5.5 show that for spin 1/2 baryons, just as for spin 3/2 baryons, baryons
with strange quarks are heavier than those with only up and down quarks; each substitution of a
strange quark for an up or down raises the energy of the baryon by roughly 120–170 MeV.

5.6 Baryon number

Baryon number, denoted B, is defined as the total number of baryons minus the number of an-
tibaryons, similar to the definition (4.7.1) of lepton number L. Since baryons are bound states of
three quarks, and antibaryons are bound states of three antiquarks, baryon number is the same as
the number of quarks minus antiquarks, up to a factor of three,

B = (# baryons)− (# antibaryons) = 1
3

[
(# quarks)− (# antiquarks)

]
. (5.6.1)

All known interactions conserve baryon number.9 High energy scattering processes can change the
number of baryons, and the number of antibaryons, but not the net baryon number. For example, in
proton-proton scattering, the reaction p+p→ p+p+n+ n̄ can occur, but not p+p→ p+p+n+n.

5.7 Hadronic decays

Turning to the decays of the various hadrons listed in Tables 5.3–5.6 , it is remarkable how much
can be explained using a basic understanding of the quark content of the different hadrons together
with considerations of energy and momentum conservation. As an example, consider the baryons in
the spin 3/2 decuplet. The rest energy of the ∆ baryons is larger than that of a nucleon by nearly
300 MeV. This is more than the ≈ 140 MeV rest energy of pions, which are the lightest mesons.
Consequently, a ∆ baryon can decay to a nucleon plus a pion via strong interactions, which do not
change the number of quarks minus antiquarks of each quark flavor. (Specifically, a ∆++ can decay

9This is not quite true. As with lepton number, the current theory of weak interactions predicts that there are
processes which can change baryon number (while conserving B−L). The rate of these processes is so small that baryon
number violation is (so far) completely unobservable.
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to pπ+, a ∆+ can decay to either pπ0 or nπ+, a ∆0 can decay to pπ− or nπ0, and a ∆− can decay
to nπ−.) These are the (overwhelmingly) dominant decay modes observed. The short lifetime of ∆
baryons, τ ' 6 × 10−24 s or cτ ' 1.8 fm, is also indicative of a decay via strong interactions. (You
can think of “strong” interactions as meaning rapid interactions.) This lifetime corresponds to a
decay (or resonance) width Γ∆ = ~/τ ≈ 120 MeV, which is 10% of the rest energy of a ∆. Since
light takes about 3× 10−24 s to travel one fermi, a ∆ baryon barely has time to “figure out” that it
exists before it decays.10

The Σ∗ and Ξ∗ baryons also have very short lifetimes, on the order of a few times 10−23 s. The Σ∗

contains one strange quark. The Σ∗ mass of 1385 MeV/c2 is larger than the 1116 MeV/c2 mass of
the Λ, the lightest baryon containing a strange quark, by more than the mass of a pion. So strong
interactions can cause a Σ∗ to decay to a Λ plus a pion, which is the dominant observed decay.
Similarly, Ξ∗ baryons, containing two strange quarks, can decay via strong interactions to a Ξ (the
lightest doubly strange baryon) plus a pion.

The final member of the J = 3/2 decuplet, the Ω− baryon, cannot decay via strong interactions to
a lighter baryon plus a pion, because there are no lighter baryons containing three strange quarks
(and strong interactions preserve the net number of strange quarks). It could, in principle, decay
via strong interactions to a Ξ baryon (containing two strange quarks) and a K meson (containing
one strange quark) — but it doesn’t have enough energy. Its mass of 1672 MeV/c2 is less than the
sum of Ξ plus K masses. In fact, the Ω− baryon cannot decay via any strong interaction process.
Nor can it decay via electromagnetic processes, which also preserve the net quark flavor. But weak
interactions are distinguished by the fact that they can change quarks of one flavor into a different
flavor. Consequently, the Ω− baryon can decay via weak interactions to a lighter baryon plus a
meson. The dominant decays involve the conversion of one strange quark into an up or down quark,
leading to final states consisting of a Λ baryon plus K− meson, a Ξ0 baryon plus π0, or a Ξ− plus
π+. The Ω− was first seen in bubble chamber photographs, and was relatively easy to discover due
to its distinctive “cascade” decay,

Ω− −→ Ξ0 + π−

|−→ Λ0 + π0

|−→ p+ π− .

So the overall process is Ω− → p π− π− π0 (with the pions eventually decaying to leptons and pho-
tons). Note that all final states of Ω− decay conserve baryon number and electric charge, and
are allowed by energy conservation. The 10−10 s lifetime of the Ω− is much longer than a strong
interaction decay, and is indicative of a weak interaction process.

Similar reasoning can be applied to the J = 1/2 baryons. The proton is stable (so far as we know),
while all the other members of the octet decay via weak interactions — except for the Σ0 which can
decay to a Λ plus a photon via electromagnetic interactions. Note that the 7 × 10−20 s lifetime of
the Σ0 is much shorter than a weak interaction lifetime, but is longer than typical strong interaction

10One might ask, “how long must some ‘particle’ live to justify calling it a particle?” With a lifetime under 10−23 s, a
∆ baryon produced in some particle collision will never fly away from the interaction point and reach a particle detector,
located some macroscopic distance away, before decaying. For such unstable particles, what is eventually detected are
the decay products of the ∆ baryon. Measuring the interaction rate as a function of energy in pion-nucleon scattering
experiments, for example, one finds a resonance peak at the energy corresponding to production of ∆ baryons. Because
the ∆ width is only 10% of its energy, this resonance peak is very recognizable.
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lifetimes. (In a very real sense, electromagnetic interactions are stronger than weak interactions, but
weaker than strong interactions.) The lifetimes of Λ, Ξ, and Σ± baryons are all around 10−10 s,
typical of weak interaction decays. The 900 second lifetime of the neutron is vastly longer than a
normal weak interaction lifetime. This reflects the fact that neutron decay is just barely allowed
by energy conservation. The mass of the final proton plus electron (and antineutrino) is so close to
the mass of the neutron that only about 8 MeV, or less than 0.1% of the rest energy of neutron, is
available to be converted into kinetic energy of the decay products.

Similar observations apply to the decays of mesons. Just as most spin 3/2 baryons have strong
interaction (i.e., fast) decays into a spin 1/2 baryon plus a pion, the spin 1 (or “vector”) mesons
of Table 5.4 all have strong decays into spin 0 (“scalar”) mesons with the same strange quark
content, plus a pion. Lifetimes of these vector mesons are short, 10−22 – 10−24 s, indicative of strong
interactions. Some aspects of these decays invite questions which we will consider in the next chapter.
For example, the ρ0 and ω are both neutral vector mesons with no strange quarks; why does the ω
decay to three pions while the ρ0 decays to just two pions? And in decays of ρ0, the actual two pion
final state is π+π−, not π0π0. Why is that?

For the scalar mesons of Table 5.3 , energy conservation rules out any strong interaction decays.
The neutral π0, η and η′ mesons all have electromagnetic decays with photons in the final state and
lifetimes of order 10−20 s (similar to the Σ0 lifetime). The K mesons (or “kaons”) can only decay
via weak processes which turn a strange quark into an up or down quark (or s̄ into ū or d̄). And the
charged pions can only decay, via weak interactions, into leptons. All these weak decay lifetimes are
in the 10−8 – 10−10 s range (a little slower or comparable to the Ω− lifetime).

You are encouraged to look at the much more extensive listing of information about known mesons
and baryons at the Particle Data Group website . Pick a few particles which have not been discussed
above, and see if you can predict the dominant decay modes.

5.8 Example problems

5.8.1 Neutron spin+flavor

Q: Find the spin+flavor wavefunction for a neutron.

A: This is most easily done by looking at the answer (5.5.8) for a proton, and just interchanging u
and d quarks. So for a spin up neutron,

Ψneutron
spin+flavor = (dud− udd) (↑↓↑ − ↓↑↑) + (ddu− dud) (↑↑↓ − ↑↓↑) + (ddu− udd) (↑↑↓ − ↓↑↑) .

This, as required for baryons, is symmetric under the combined interchange of spin and flavor of any
pair of quarks.

5.8.2 Λ and Σ0 spin+flavor

Q: Find two (mutually orthogonal) spin+flavor wavefunctions for J = 1/2 baryons with quark content
uds. Can you deduce (or guess) which wavefunction represents the Σ0, and which represents the Λ?

A: One J = 1/2 uds wavefunction can be found using exactly the same logic which works for
the proton. Start with two quarks, say u and d, in the state (ud − du) × (↑↓ − ↓↑) which is
symmetric under combined interchange of spins and flavors, and has the spins combined to form
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S = 0. Add the strange quark with spin, say, chosen to be up, to obtain the J = 1/2 three quark
state [(ud − du)s] × [(↑↓ − ↓↑) ↑] = (uds− dus) (↑↓↑ − ↓↑↑). To make this fully symmetric under
combined interchange of spin and flavor of any pair of quarks, we need to add analogous terms related
by cyclic permutations of the three quarks. This produces our first answer,

ΨA
spin+flavor = (uds− dus) (↑↓↑ − ↓↑↑) + (sud− sdu) (↑↑↓ − ↑↓↑) + (usd− dsu) (↑↑↓ − ↓↑↑) .

To find a second orthogonal answer, one can start with a ud two quark in which the quark spins are
combined to form S = 1 (instead of S = 0), and then add the third s quark in such a way that the
resulting final spin is S = 1/2, not S = 3/2. This is a little bit trickier. The two spin wavefunction
↑↑ has spin projection Sz = 1 and (necessarily) total spin S = 1. The two spin wavefunction ↑↓ + ↓↑
has spin projection Sz = 0 but also has total spin S = 1. Either of these spin wavefunctions can
be combined with the flavor wavefunction ud + du to obtain a two quark spin+flavor wavefunction
which is symmetric under combined interchange of spin and flavor. To each of these two quark
states one may now add a strange quark, with its spin chosen in such a way that the resulting
three quark state has Sz = 1/2, yielding (uds + dus) × (↑↑↓) or (uds + dus) × (↑↓↑ + ↓↑↑). By
construction, each of these states has total Sz = +1/2, but neither state has definite total spin —
each wavefunction describes a mixture of S = 3/2 and S = 1/2 states. We need to find the linear
combination which describes a pure S = 1/2 state. The correct answer must be orthogonal to the
wavefunction which describes three spins combined to form S = 3/2 with Sz = 1/2. That spin
wavefunction is ↑↑↓ + ↑↓↑ + ↓↑↑, and is completely symmetric under interchange of spins (just like
the ↑↑↑ spin state describing S = 3/2, Sz = 3/2). The linear combination of ↑↑↓ and (↑↓↑ + ↓↑↑)
which is orthogonal to this S = 3/2, Sz = 3/2 state is 2 ↑↑↓ − (↑↓↑ + ↓↑↑), up to an arbitrary overall
normalization factor.

Therefore, the three quark uds spin+flavor wavefunction which is symmetric under combined inter-
change of spin and flavor of the first two quarks, has those quark spins combined to form S = 1, but
then has all three quark spins combined in such a way that the result is pure S = 1/2, Sz = 1/2, is

(uds+ dus)× [ 2 ↑↑↓ − ↑↓↑ − ↓↑↑ ] .

To make the result symmetric under combined interchange of spin and flavor of any pair of quarks
we must, as before, add circular permutations. The result is our second answer,

ΨB
spin+flavor = (uds+ dus) [ 2 ↑↑↓ − ↑↓↑ − ↓↑↑ ]

+ (sud+ sdu) [ 2 ↓↑↑ − ↑↑↓ − ↑↓↑ ]
+ (dsu+ usd) [ 2 ↑↓↑ − ↓↑↑ − ↑↑↓ ] .

The state ΨA
spin+flavor desribes the spin+flavor structure of the Λ, while state ΨB

spin+flavor desribes the
spin+flavor structure of the Σ0. To see (or at least motivate) why, notice that under interchange
of just the flavors of the two non-strange quarks, ΨA

spin+flavor is antisymmetric while ΨB
spinf lavor is

symmetric. Contrast these behaviors with that of the wavefunction of a Σ+ baryon: which looks just
like the result (5.5.8) for the proton but with d everywhere replaced by s. The Σ+ wavefunction,
having two u quarks, is necessarily (and trivially) symmetric under interchange of just the flavors
of the non-strange quarks. The Σ0 differs from the Σ+ just by replacing one up quark with a down
quark. Up and down quarks have nearly identical masses and (reflecting this) so do the Σ0 and Σ+.
Therefore, it must be ΨB

spin+flavor which describes the Σ0, as this state has the non-strange flavor
interchange symmetry which matches the result for Σ+.
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