
Chapter 4

Relativistic dynamics

We have seen in the previous lectures that our relativity postulates suggest that the most efficient
(lazy but smart) approach to relativistic physics is in terms of 4-vectors, and that velocities never
exceed c in magnitude. In this chapter we will see how this 4-vector approach works for dynamics,
i.e., for the interplay between motion and forces.

A particle subject to forces will undergo non-inertial motion. According to Newton, there is a simple
(3-vector) relation between force and acceleration,

~f = m~a , (4.0.1)

where acceleration is the second time derivative of position,

~a =
d~v

dt
=
d2~x

dt2
. (4.0.2)

There is just one problem with these relations — they are wrong ! Newtonian dynamics is a good
approximation when velocities are very small compared to c, but outside of this regime the relation
(4.0.1) is simply incorrect. In particular, these relations are inconsistent with our relativity postu-
lates. To see this, it is sufficient to note that Newton’s equations (4.0.1) and (4.0.2) predict that a
particle subject to a constant force (and initially at rest) will acquire a velocity which can become
arbitrarily large,

~v(t) =

∫ t

0

d~v

dt′
dt′ =

~f

m
t→∞ as t→∞ . (4.0.3)

This flatly contradicts the prediction of special relativity (and causality) that no signal can propagate
faster than c. Our task is to understand how to formulate the dynamics of non-inertial particles in a
manner which is consistent with our relativity postulates (and then verify that it matches observation,
including in the non-relativistic regime).

4.1 Proper time

The result of solving for the dynamics of some object subject to known forces should be a prediction
for its position as a function of time. But whose time? One can adopt a particular reference frame,
and then ask to find the spacetime position of the object as a function of coordinate time t in
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the chosen frame, xµ(t), where, as always, x0 ≡ c t. There is nothing wrong with this, but it is a
frame-dependent description of the object’s motion.

For many purposes, a more useful description of the object’s motion is provided by using a choice
of time which is directly associated with the object in a frame-independent manner. Simply imagine
that the object carries with it its own (good) clock. Time as measured by a clock whose worldline
is the same as the worldline of the object of interest is called the proper time of the object. To
distinguish proper time from coordinate time in some inertial reference frame, proper time is usually
denoted as τ (instead of t).
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Figure 4.1: The worldline of a non-inertial particle, with tick
marks at constant intervals of proper time.

Imagine drawing ticks on the worldline of
the object at equal intervals of proper time,
as illustrated in Figure 4.1 . In the limit of
a very fine proper time spacing ∆τ , the in-
variant interval between neighboring ticks
is constant, s2 = (c∆τ)2. In the figure,
note how the tick spacing, as measured by
the coordinate time x0, varies depending
on the instantaneous velocity of the par-
ticle. When the particle is nearly at rest
in the chosen reference frame (i.e., when
the worldline is nearly vertical), then the
proper time clock runs at nearly the same
rate as coordinate time clocks, but when the
particle is moving fast then its proper time
clock runs more slowly that coordinate time
clocks due to time dilation.

4.2 4-velocity

Using the proper time to label points on the spacetime trajectory of a particle means that its space-
time position is some function of proper time, x(τ). The time component of x (in a chosen reference
frame) gives the relation between coordinate time and proper time of events on the worldline,

c t = x0(τ) . (4.2.1)

The corresponding four-velocity of a particle is the derivative of its spacetime position with respect
to proper time, (note that both u and x are 4-vectors)

u ≡ dx(τ)

dτ
. (4.2.2)

Since x0 = ct, the time component of the 4-velocity gives the rate of change of coordinate time with
respect to proper time,

u0 = c
dt

dτ
. (4.2.3)

The spatial components of the 4-velocity give the rate of change of the spatial position with respect
to proper time, uk = dxk/dτ . This is not the same as the ordinary 3-velocity ~v, which is the rate of
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change of position with respect to coordinate time, vk = dxk/dt. But we can relate the two using
calculus,

uk =
dxk

dτ
=
dt

dτ

dxk

dt
=
u0

c
vk . (4.2.4)

From our discussion of time dilation, we already know that moving clocks run slower than clocks at
rest in the chosen reference frame by a factor of γ. In other words, it must be the case that

u0

c
=
dt

dτ
= γ =

[
1− ~v 2

c2

]−1/2
. (4.2.5)

Combined with Eq. (4.2.4), this shows that the spatial components of the 4-velocity equal the 3-
velocity times a factor of γ,

uk = γ vk =
vk√

1− ~v 2/c2
. (4.2.6)

We can now use Eqs. (4.2.5) and (4.2.6) to evaluate the square of the 4-velocity,

u2 = (u0)2 − (uk)2 = γ2
(
c2 − ~v2

)
= c2 . (4.2.7)

So a 4-velocity vector always squares to +c2, regardless of the value of the 3-velocity. (Recall that
the plus sign here corresponds to our choice of metric; the East Coast metric yields u2 = −c2, but
still a constant.)

Let’s summarize what we’ve learned a bit more geometrically. The worldline x(τ) describes some
trajectory through spacetime. At every event along this worldline, the four-velocity u = dx/dτ is a
4-vector which is tangent to the worldline. When one uses proper time to parametrize the worldline,
the tangent vector u has a constant square, u2 = c2. So you can think of u/c as a tangent 4-vector
which has unit “length” everywhere along the worldline. The fact that u2 is positive (in our metric
choice) shows that the 4-velocity is always a timelike vector. (Note that it is a timelike vector in
both metrics, but with appropriately differing signs for the square.)

Having picked a specific reference frame in which to evaluate the components of the 4-velocity u,
Eqs. (4.2.5) and (4.2.6) show that the components of u are completely determined by the ordinary
3-velocity ~v, so the information contained in u is precisely the same as the information contained in
~v. You might then ask “why bother with 4-velocity?” The answer is that the 4-velocity u is a more
natural quantity to use — it has geometric meaning which is independent of any specific choice of
reference frame. Moreover, the components uµ of the 4-velocity transform linearly under a Lorentz
boost in exactly the same fashion as any other 4-vector. [See Eq. (3.6.5)]. In contrast, under a
Lorentz boost the components of the 3-velocity v transform in a somewhat messy fashion, but we
can use the four-velocity to analyze this question.

4.3 Relativistic Addition of Velocities

Consider a point particle moving with 3-velocity v′ in the x1 direction in the S′ frame (to match

our previous convention) such that (u′)T = (γv′c, γv′v
′, 0, 0), with γv′ = 1/

√
1− v′2/c2. Now view

the motion of this particle in the S frame, which is defined such that, in the S frame, the S′ frame
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is moving in the +x1 direction with velocity v0. Thus the boost between the two frames is (recall
Eq. (3.5.7))

Λ(v0) =


γ0 γ0 (v0/c) 0 0

γ0 (v0/c) γ0 0 0
0 0 1 0
0 0 0 1

 , γ0 =
1√

1− v20/c2
, (4.3.1)

so that

u = Λ(v0)u
′ =


cγ0γv′(1 + v′v0/c

2)
γ0γv′(v

′ + v0)
0
0

 . (4.3.2)

These results allow us to obtain the ordinary 3-velocity in the S frame from the 4-velocity via

v = |~v| = v1 = c
u1

u0
=

v0 + v′

1 + v0v′/c2
,
(
v2 = v3 = 0

)
. (4.3.3)

While the numerator is the familiar Galilean result for velocity addition (and reduces to this result
for velocities small compared to c), the denominator is new to the relativistic addition of 3-velocities.
(Note that the plus signs in the numerator and denominator correspond to the two 3-velocities
being in the same direction. The signs would be negative for velocities in opposite directions.)
This expression has the interesting feature, required by our relativistic Postulates, that, if either (or
both) of the initial three-velocities approach c, v also approaches but never exceeds c. The reader
is encouraged to complete this analysis and carry out the algebra necessary to obtain the following
results,

(u′)2 =u2 = c2,

γ0γv′(1 + v′v0/c
2) = γv =

1√
1− v2/c2

. (4.3.4)

The first equation confirms the Lorentz invariance of the four-velocity squared, while the second
equation confirms that, in the S frame, the four-velocity can be written in the standard from uT =
(γvc, γvv, 0, 0).

4.4 4-momentum

To discuss momentum we should first be explicit concerning what we mean by the symbol m. The
rest mass m of any object is the mass of the object as measured in its rest frame. The 4-momentum
of a particle (or any other object) with rest mass m is defined to be m times the object’s 4-velocity,

p = mu . (4.4.1)

For systems of interacting particles, this is the quantity to which conservation of momentum will
apply. Spatial momentum components (in a given reference frame) are just the spatial components
of the 4-momentum. The definition of 3-momentum which you learned in introductory physics,
~p = m~v, is, at best, a non-relativistic approximation. This is important, so let us repeat,

~p 6= m~v . (4.4.2)

4



Particles and Symmetries CHAPTER 4. RELATIVISTIC DYNAMICS

From now on do not think of momentum as mass times 3-velocity. Rather, think 4-dimensionally
with momentum as mass times 4-velocity.1

If the spatial components of the 4-momentum are the (properly defined) spatial momentum, what is
the time component p0? There is only one possible answer — it must be related to energy.2 In fact,
the total energy E of an object equals the time component of its four-momentum times c, or

p0 = E/c . (4.4.3)

Using the relation (4.4.1) between 4-momentum and 4-velocity, plus the result (4.2.5) for u0, allows
one to express the the total energy E of an object in terms of its rest mass and its velocity,

E = c p0 = mcu0 = mc2γ =
mc2√

1− ~v 2/c2
= mc2 cosh y . (4.4.4)

In other words, the relativistic gamma factor of any object is equal to the ratio of its total energy to
its rest energy (recall Eq. (3.5.8)),

γ =
E

mc2
= cosh y . (4.4.5)

When the object is at rest, its kinetic energy (or energy due to motion) vanishes, but its rest energy,
given by Einstein’s famous expression mc2, remains. If the object is moving slowly (compared to c),
then it is appropriate to expand the relativistic energy (4.4.4) in powers of ~v 2/c2. This gives

E = mc2 + 1
2m~v

2 + · · · . (4.4.6)

In other words, for velocities small compared to c, the total energy E equals the rest energy mc2

plus the usual non-relativistic kinetic energy, 1
2m~v

2, up to higher order corrections which, relative
to the non-relativistic kinetic energy, are suppressed by additional powers of ~v 2/c2. We can, of
course, define the relativistic kinetic energy via K = E −mc2 = mc2(γ − 1), which reduces to the
non-relativistic form 1

2m~v
2 for ~v 2/c2 � 1.

The corresponding spatial component of the four-momentum is then (recall Eqs. (4.4.2) and (3.5.8))

~p = m~vγ =
m~v√

1− ~v 2/c2
= mcv̂ sinh y , (4.4.7)

(where v̂ is the spatial unit vector in the direction of ~v) which, as advertised, approaches the non-
relativistic definition for v � c, γ → 1 and sinh y → v/c.

We saw above that (with our choice of metric) 4-velocities square to c2. Since 4-momentum is just
mass times 4-velocity, the 4-momentum of any object with (rest) mass m satisfies

p2 = m2c2
(
cosh2 y − sinh2 y

)
= m2c2 . (4.4.8)

1Many introductory relativity books introduce a velocity-dependent mass m(v) ≡ mγ, in order to write ~p = m(v)~v,
and thereby avoid ever introducing four-velocity (or any other 4-vector). This is pedagogically terrible and offers no
benefit whatsoever. If you have previously seen this use of a velocity-dependent mass, erase it from your memory
banks!

2To see why, recall from mechanics (quantum or classical) that translation invariance in space is related to the
existence of conserved spatial momentum, and translation invariance in time is related to the existence of a conserved
energy. We will discuss this in more detail later. Since Lorentz transformations mix space and time, it should be no
surprise that the four-momentum, which transforms linearly under Lorentz transformations, must characterize both
the energy and the spatial momentum.
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Since p2 = (p0)2 − (pk)2, and p0 = E/c, this may rewritten (in any chosen inertial reference frame)
as

E2 = c2 ~p 2 + (mc2)2 . (4.4.9)

So, if you know the spatial momentum ~p and mass m of some object, you can directly compute its
energy E without first having to evaluate the object’s velocity. Note, in particular, that Eq. (4.4.9)
is true for either choice of metric!

But what if you want to find the ordinary 3-velocity? Return to the relation uk = γ vk [Eq. (4.2.6)]
between 3-velocity and 4-velocity, and multiply both sides by m to rewrite this result in terms of four-
momentum. Since spatial momentum pk = muk, and total energy E = mc2γ, we have pk = (E/c2) vk

or

vk =
pk

E/c2
, |~v| = c tanh y . (4.4.10)

Three-velocity is not equal to momentum divided by mass. Rather, the ordinary 3-velocity equals
the spatial momentum divided by the total energy (over c2). And its magnitude never exceeds c.

4.5 4-force

In the absence of any forces, the momentum of an object remains constant. In the presence of forces,
an object’s momentum will change. In fact, force is just the time rate of change of momentum. But
what time and what momentum? Newtonian (non-relativistic) dynamics says that d~p/dt = ~F along
with d~x/dt = ~p/m, where ~p is 3-momentum and t is coordinate time. This is wrong — inconsistent
with our relativity postulates. A frame-independent formulation of dynamics must involve quantities
which have intrinsic frame-independent meaning — such as 4-momentum and proper time. The
appropriate generalization of Newtonian dynamics which is consistent with our relativity postulates
is

dx

dτ
=

p

m
, (4.5.1a)

dp

dτ
= f . (4.5.1b)

Eq. (4.5.1a) is just the definition (4.2.2) of 4-velocity rewritten in terms of 4-momentum, while
Eq. (4.5.1b) is the definition of force as a four-vector. The only difference in these equations, relative
to Newtonian dynamics, is the replacement of 3-vectors by 4-vectors and coordinate time by proper
time.

Equations (4.5.1) are written in a form which emphasizes the role of momentum. If you prefer, you
can work with 4-velocity instead of 4-momentum and rewrite these equations as dx/dτ = u and
du/dτ = f/m. Defining the 4-acceleration a ≡ du/dτ = d2x/dτ2, this last equation is just f = ma.
This is the relativistic generalization of Newton’s ~f = m~a, with force and acceleration now defined
as spacetime vectors.3

In non-relativistic dynamics, if you know the initial position and velocity of a particle, and you know
the force ~f(t) which subsequently acts on the particle, you can integrate Newton’s equations to find

3Eq. (4.5.1b) is equivalent to f = ma provided the mass m of the object is constant. For problems involving objects
whose mass can change, such as a rocket which loses mass as it burns fuel, these two equations are not equivalent and
one must use the more fundamental dp/dτ = f .
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the trajectory ~x(t) of the particle. Initial conditions plus a three-vector ~f(t) completely determine
the resulting motion. To integrate the relativistic equations (4.5.1), you need initial conditions plus
a four-vector force f(τ). This would appear to be more information (four components instead of
three), and yet relativistic dynamics must reduce to non-relativistic dynamics when velocities are
small compared to c.

The resolution of this apparent puzzle is that the four-force cannot be a completely arbitrary four-
vector. We already know that, for any object with mass m, its four-momentum must satisfy p2 =
(mc)2 [Eq. (4.4.8)]. Take the derivative of both sides with respect to proper time. The right hand
side is constant in time (provided that the object in question is some stable entity with a fixed rest
mass), so its proper time derivative vanishes. The derivative of the left hand side gives twice the dot
product of p with f , and hence the 4-force must always be orthogonal to the 4-momentum,

p · f = 0 . (4.5.2)

Written out in components, this says that p0f0 = pif i, or

f0 =
pif i

p0
=
~v

c
· ~f , (4.5.3)

showing that the time component of the force is just a particular linear combination of the spatial
components, i.e., the four components of the force cannot vary freely, but rather must satisfy this
constraint.

4.6 Constant acceleration

Let us put this formalism into action by examining the case of motion under the influence of a
constant force. But what is a “constant” force? We have just seen that the 4-force must always be
orthogonal to the 4-momentum. So it is impossible for the 4-force f(τ) to be a fixed four-vector in an
arbitrary frame, independent of τ . However, it is possible for the force to be constant when viewed
in a frame which is instantaneously co-moving with the accelerating object.

Suppose a particle begins at the spacetime origin with vanishing 3-velocity (or 3-momentum) at
proper time τ = 0, and a (3-)force of magnitude F , pointing in the x1 direction, acts on the
particle. Hence the components of the initial spacetime position, four-velocity, and four-force are
xµ0 = (0, 0, 0, 0), uµ0 = (c, 0, 0, 0), and fµ0 = (0, F, 0, 0), respectively. The 4-velocity at later times may
be written as some time-dependent Lorentz boost acting on the initial 4-velocity,

u(τ) = Λboost(τ)u0 . (4.6.1)

The condition that the force is constant (f0) in a co-moving frame amounts to the statement that
the same Lorentz boost (as in Eq. 4.6.1)) relates the 4-force at any time τ (in the frame where the
velocity is u(τ)) to the initial force,

f(τ) = Λboost(τ) f0 . (4.6.2)

At all times, u2 = c2 (because u is a 4-velocity), and f2 = −F 2, because the magnitude of the force
is assumed to be constant.

Since the initial force points in the x1 direction, the particle will acquire some velocity in this
direction, but the x2 and x3 components of the velocity will always remain zero. Hence the boost
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Λboost(τ) will always be some boost in the x1 direction, and the force f(τ) will likewise always have
vanishing x2 and x3 components. In other words, the 4-velocity and 4-force will have the form

uµ(τ) =
(
u0(τ), u1(τ), 0, 0

)
, fµ(τ) =

(
f0(τ), f1(τ), 0, 0

)
, (4.6.3)

with u0(0) = c, u1(0) = 0 and f0(0) = 0, f1(0) = F . From (4.5.2) the dot product f ·u = f0u0−f1u1
must vanish, implying that f0/f1 = u1/u0. So the components of the 4-force must be given by

fµ(τ) =
F

c

(
u1(τ), u0(τ), 0, 0

)
. (4.6.4)

(Do you see why? This is the only form for which f · u = 0 and f2 = −F 2.)

Now we want to solve mdu/dτ = f(τ). Writing out the components explicitly (and dividing by m)
gives

du0(τ)

dτ
=

F

mc
u1(τ) ,

du1(τ)

dτ
=

F

mc
u0(τ) . (4.6.5)

This is easy to solve if you remember some basic mathematical physics (from Chapter 1) - d
dz sinh z =

cosh z and d
dz cosh z = sinh z (recall Eq. (1.3.3)). To satisfy Eq. (4.6.5), and our initial conditions,

we simply choose

u0(τ) = c cosh
Fτ

mc
, u1(τ) = c sinh

Fτ

mc
. (4.6.6)

The ordinary velocity is given by vk = uk (c/u0) [Eq. (4.2.4)], so the speed of this particle subject to
a constant force is

v(τ) = c tanh
Fτ

mc
. (4.6.7)

Since tanh z ∼ z for small values of the argument (recall Eq. (1.3.10)), the speed grows linearly
with time at early times, v(τ) ∼ (F/m) τ . This is precisely the expected non-relativistic behavior.
But this approximation is only valid when τ � mc/F and the speed is small compared to c. The
argument of the tanh becomes large compared to unity when τ � mc/F , and tanh z → 1 as z →∞.
So the speed of the accelerating particle asymptotically approaches, but never reaches, the speed of
light. In fact, we see from our previous definitions of the 4-momentum in terms of the rapidity y
that it is the rapidity that grows linearly with τ in the case of “constant acceleration”,

tanh y =
v(τ)

c
= tanh

Fτ

mc
⇒ y =

Fτ

mc
. (4.6.8)

At this point, we have determined how the velocity of the particle grows with time, but we need to
integrate dx/dτ = u to find its spacetime position. Due to the properties of the hyperbolic functions
the integrals are elementary,

x0(τ) =

∫ τ

0
dτ ′ u0(τ ′) = c

∫ τ

0
dτ ′ cosh

Fτ ′

mc
=
mc2

F
sinh

Fτ

mc
, (4.6.9a)

x1(τ) =

∫ τ

0
dτ ′ u1(τ ′) = c

∫ τ

0
dτ ′ sinh

Fτ ′

mc
=
mc2

F

[
cosh

Fτ

mc
− 1

]
. (4.6.9b)

Note that the hyperbolic sines and cosines grow exponentially for large arguments, sinh z ∼ cosh z ∼
1
2 e

z when z � 1. Hence, when τ � mc/F the coordinates x0(τ) and x1(τ) both grow like eFτ/mc

with increasing proper time. But the accelerating particle becomes ever more time-dilated; the rate
of change of proper time with respect to coordinate time, dτ/dt = c/u0 = 1/ cosh Fτ

mc , behaves as

2 e−Fτ/mc ∼ mc/(Ft).
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4.7 Plane waves

Next we want to discuss the very important question of how waves are described in relativistic
notation. Consider some wave (any type of wave) with wave-vector ~k and frequency ω (3-vector
notation), as measured in some inertial frame. The amplitude of the wave is described by a complex

exponential, A ei~k·~x−iωt, with the usual understanding that it is the real part of this function which
describes the physical amplitude. Such a wave has a wavelength λ = 2π/|~k| and planar wave-fronts
orthogonal to the wave-vector that move at speed v = ω/|~k| in the direction of ~k.

As mentioned earlier (Eq. (3.6.12)), it is natural to combine ω and ~k into a spacetime wave-vector
(i.e., 4-vector) k with components

kµ = (ω/c, k1, k2, k3) , (4.7.1)

so that ω = c k0 and we have simply ei
~k·~x−iωt = e−ik·x (with our choice of metric).

The virtue of this formulation is that it is frame-independent. The spacetime position x and wave-
vector k are geometric entities which you should think of as existing independent of any particular
choice of coordinates. The value of the amplitude, A e−ik·x, depends on the position x and the wave-
vector k, but one may use whatever reference frame is most convenient to evaluate the dot product
of these 4-vectors since k ·x is the same in all frames. (This fact gives us the opportunity to be both
lazy and smart, and is the real power of the 4-vector notation.)

Just as surfaces of simultaneity are observer-dependent, so is the frequency of a wave. After all,
measuring the frequency of a wave involves counting the number of wave crests which pass some
detector (or observer) in a given length of time. The time component of the wave-vector gives (by
construction) the frequency of the wave as measured by observers who are at rest in the frame in
which the components kµ are defined. Such observers have 4-velocities whose components are just
(c, 0, 0, 0) (in that frame, i.e., in their rest frame). Consequently, for these observers the frequency
of the wave may be written as a dot product of the observer’s 4-velocity and the wave-vector,

ωobs = uobs · k . (4.7.2)

This expression is now written in a completely general fashion that is observer-dependent but frame-
independent. That is, the expression (4.7.2) depends explicitly on the observer’s 4-velocity u, but is
independent of the frame used to evaluate the dot product between u and k (i.e., the dot product
must be the same in every frame). Therefore, the frequency which is measured by any observer will
be given by the dot product of the observer’s 4-velocity u and the wave-vector k. The dot product
can be evaluated in any convenient (lazy but smart) frame, but, of course, u and k must both be
evaluated in that same frame.

As we will discuss a bit more below, it should be no surprise that this approach is particularly useful
for the discussion of light waves, where v = c, ω = c|~k| and

kµlight =
ω

c

(
1, k̂
)
, k2light = 0 . (4.7.3)

As a simple first application of Eqs. (4.7.2) and (4.7.3) we can derive the basic form of the relativistic
Doppler shift of light. Consider a source of plane wave light, which emits light with frequency
ν0 = ω0/2π as measured in the rest frame of the source (note that ω has units of radians per second,
while ν is measured in cycles per second - NOT the same units!). Further we take the light waves
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to be moving in the x1 direction (k̂ = ê1). Consider an observer moving away from the source (the
receding case) also in the x1 direction with velocity v, as measured in the source rest frame. Clearly
the lazy but smart choice of frame is the source frame, where we have

kµ =
ω0

c
(1, 1, 0, 0) , uobs =

c√
1− v2/c2

(1, v/c, 0, 0) , (4.7.4a)

νobs
ν0

=
ωobs

ω0
=
uobs · k
ω0

=

√
1− v/c
1 + v/c

≤ 1 [receding] . (4.7.4b)

In this case (see Eq. (3.3.7) in Kogut), with the source and observer receding from each other,
the observer sees a smaller frequency than the source emits (the light is red-shifted, νobs/ν0 =√

(1− v/c)/(1 + v/c) ≤ 1). For an observer approaching a source, we simply change the sign of v in
Eq. (4.7.4) and the light is blue-shifted to a larger frequency,4

νobs
ν0

=
ωobs

ω0
=
uobs · k
ω0

=

√
1 + v/c

1− v/c
≥ 1 [approaching] . (4.7.5)
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Figure 4.2: Inside a rotating centrifuge, light is emitted at one point
and later received at another point. Is there a Doppler shift between the
frequencies of emission and reception?

A more sophisticated application of
Eq. (4.7.2), demonstrating the value
of writing physical quantities in frame
independent form, is illustrated in
Figure 4.2.5 Mounted on the inner
surface of a centrifuge, which is ro-
tating at angular frequency Ω, is an
emitter of light at one point, and a
receiver at a different point. Let φ
be the angle between emitter and
receiver, relative to the center of
the centrifuge, as measured in the
inertial lab frame. The (inner) ra-
dius of the centrifuge is R. The fre-
quency of the light as measured by
an observer who is instantaneously
at rest relative to the emitter is νe.
The frequency of the light as mea-
sured by an observer who is instan-
taneously at rest relative to the receiver is νr. What is the fractional difference (νr − νe)/νe? How
does this frequency shift depend on the angle φ and the rotation frequency Ω?

One approach for solving this problem would involve explicitly constructing the Lorentz transforma-
tions which relate the lab frame to the instantaneous rest frames of the emitter and receiver, and then
combining these two transformations to determine the net transformation which directly connects

4A familiar application of this result in the context of astronomy and cosmology is the the redshift z, defined as the
fractional change in the frequency (or wavelength). For a radially expanding (receding) universe (with radial velocity
v), this leads to the relation 1 + z =

√
(1 + v/c)/(1− v/c).

5This discussion is an adaptation of an example in Gravitation by Misner, Thorne and Wheeler.
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emitter and receiver. Given the three-dimensional geometry involved, this is rather involved (and
would not correspond to the lazy but smart approach).

A much better approach is to choose a convenient single frame, namely the lab frame, in which to
evaluate the components of the four-vectors appearing in the frame-independent expression (4.7.2)
for the frequency. We need to compute

νr
νe

=
ur · k
ue · k

=
u0r k

0 − ~ur · ~k
u0e k

0 − ~ue · ~k
. (4.7.6)

Here ue is the four-velocity of the emitter at the moment it emits light, and ur is the four-velocity
of the receiver at the moment when it receives the light.

If θe denotes the angle between the spatial wavevector and the direction of motion of the emitter (at
the time of emission), and θr denotes the angle between ~k and receiver’s direction (at the time of
reception) (all as indicated in Figure 4.2), then we can express the spatial dot products in terms of
cosines of these angles,

νr
νe

=
u0r k

0 − |~ur||~k| cos θr

u0e k
0 − |~ue||~k| cos θe

. (4.7.7)

The speed of the inner surface of the centrifuge is constant, v = ΩR, and hence the speeds of
the emitter and receiver, as measured in the lab frame, are identical — even though their velocity
vectors are different. The time component of a 4-velocity, u0/c = (1 − v2/c2)−1/2, only depends on
the magnitude of the velocity ~v, and hence u0r = u0e . The equality of the emitter and receiver speeds
also implies that the magnitudes of the spatial parts of the 4-velocities coincide, |~ur| = |~ue|. So using
expression (4.7.7) for the frequency ratio, the only remaining question is how does θr compare to θe?

This just involves ordinary geometry. Looking at the figure, notice that θe and θr are the angles
between the path of the light, which is a chord of the circle, and tangents to the circle at the
endpoints of the chord. But the angle a chord makes with these tangents is the same at either end,
implying that θe = θr. And this means νr = νe — there is no Doppler shift no matter how fast the
centrifuge rotates (or what the values of φ, θe or R are)! (Try obtaining this result directly using
boosts and more complex trigonometry.)

4.8 Electromagnetism

As noted earlier, it should be no surprise that the technology we are developing is especially useful
for “objects” that travel at the speed of light, such as light itself. Unfortunately we do not have time
here for an extensive explorations of the relativistic aspects of electromagnetism, which will be left
for other classes. But one aspect, how to represent the Lorentz force in the framework we have been
discussing, is natural to describe here.

As we have seen above, generalizations from non-relativistic to relativistic dynamics are mostly a
matter of replacing 3-vectors by 4-vectors (and coordinate time by proper time). But what about
electric and magnetic fields? Both are (apparently) 3-vectors, and there is no sensible way to turn
them into 4-vectors. Recall that ~E is an ordinary “polar” 3-vector, which changes sign under reflec-
tion, while ~B is an “axial” 3-vector, which does not change sign under reflection. It turns out that
what is sensible (and natural) is to package the components of ~E and ~B together into a 4× 4 matrix

11
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(a 4-tensor) called the field strength tensor, whose components are

‖Fµν‖ =


0 Ex Ey Ez
Ex 0 cBz −cBy
Ey −cBz 0 cBx
Ez cBy −cBx 0

 . (4.8.1)

It is important to realize that this explicit form for the field strength tensor (i.e., the explicit signs
and factors of c) corresponds to our specific choices of units (here SI, with E measured in New-
tons/Coulomb and B in Tesla) and the choice to write down the form with one superscript and one
subscript.6 Different choices for these details yield slightly different expressions.

With this repackaging of electric and magnetic fields, the Lorentz force (as a 4-vector) has a remark-
ably simple form,

fµLorentz =
q

c
Fµν u

ν . (4.8.2)

Verifying that this 4-force leads to exactly the same rate of change of energy and momentum as
does the traditional form of writing the Lorentz force, ~f = q ( ~E + ~v × ~B), is an instructive and
recommended exercise.

4.9 Scattering

When objects (elementary particles, molecules, automobiles, ...) collide, the results of the collision
can differ markedly from the initial objects. Composite objects can fall apart or change form (leading
to large insurance premiums). Interestingly, dramatic changes during collisions can also occur for
elementary particles. In fact, studying the collisions of elementary particles is a primary method used
to investigate fundamental interactions and explains the existence of large energy particle colliders
like the LHC. These machines are really just (large!) microscopes with very fine resolution and with
the capability to produce particles, like the Higgs boson, that we do not observe in everyday life.

A complete description of what emerges from a collision (or ‘scattering event’) depends on microscopic
details of the interaction between the incident objects. But certain general principles constrain the
possibilities, most importantly, the conservation of energy and momentum. As discussed in section
4.4, the total energy E and spatial momentum ~p of any object may be combined to form the 4-
momentum pµ = (E/c, ~p ). Consequently, energy and momentum conservation may be rephrased as
the conservation of 4-momentum: in the absence of any external forces, the total 4-momentum of
any system cannot change,

d

dt
p tot(t) = 0 . (4.9.1)

6To appreciate the field strength tensor in its full 4-glory, we recognize that it is defined in terms of a 4-vector
potential, Aµ = (φ, c ~A), where φ is the usual electric scalar potential (in volts) and ~A is the usual 3-vector potential,
which you may have seen in previous courses. Then the field strength tensor is the 4-curl, Fµν = ∂µAν − ∂νAµ, with
∂µ = ∂/∂xµ = (∂t/c,−~∇) and ∂µ = ∂/∂xµ = (∂t/c, ~∇) (in our metric). Finally we need the 3-vector definitions
~E = −∂ ~A/∂t − ~∇φ and ~B = ~∇ × ~A, where this cross product explains why ~B is an axial or pseudo-vector. The
interested reader is encouraged to work out the terms is Eq. (4.8.1) using these definitions. Note that with both indices
either up or down the resulting tensor is fully anti-symmetric instead of the mixed symmetry (metric independent)
form in Eq. (4.8.1).
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In a scattering process two or more objects, initially far apart, come together and interact in some
manner (which may be very complicated), thereby producing some number of objects that sub-
sequently fly apart. When the incoming objects are far apart and not yet interacting, the total
4-momentum is just the sum of the 4-momentum of each object,

p in =

Nin∑
a=1

pa , (4.9.2)

where Nin is the number of incoming objects (and the index a labels particles, not spacetime di-
rections). Similarly, when the outgoing objects are arbitrarily well separated, they are no longer
interacting and the total 4-momentum is (again) the sum of the individual 4-momenta of all of the
outgoing objects,

p out =

Nout∑
b=1

pb . (4.9.3)

Hence, for any scattering processes, conservation of energy and momentum implies that the total
incident 4-momentum equals the total outgoing 4-momentum (independent of the values of Nin and
Nout),

p in = p out . (4.9.4)

As with any 4-vector equation, one may choose to write out the components of this equation in
whatever reference frame is most convenient (as long as we use the same frame for both p in and
p out). For analyzing scattering processes, sometimes it is natural to work in the rest frame of one of
the initial objects (the ‘target’); this is commonly called the lab frame and experiments of this variety
are called “fixed target” experiments (the frame of the actual lab is the target frame). Alternatively,
one may choose to work in the reference frame in which the total spatial momentum vanishes. In
this frame, commonly called the CM frame,7 the components of the total 4-momentum are

pµCM = (ECM/c, 0, 0, 0) , (4.9.5)

where ECM is the total energy of the system in the CM frame. In the early days of particle physics,
where only a single beam of accelerated particles was available, fixed target experiments were the
norm and the CM frame was an intellectual construct. For the kinematic reasons we are about to
discuss, it became clear that moving the actual lab to the CM frame would provide an enormous
increase in efficiency for particle production. As a result, we now live in the era of particle collid-
ers, where two beams of accelerated particles, moving in opposite directions, are caused to collide
essentially head-on.

As an application of these ideas, consider first the scattering of protons of energy Ein = 1 TeV on
protons at rest (in ordinary matter). The proton rest energy mp c

2 is a bit less than 1 GeV. Using
Eq. (4.4.5), one sees that a proton with 1 TeV energy is ultrarelativistic, γ = Ein/(mp c

2) ≈ 103.
When an ultrarelativistic proton strikes a target proton at rest, both protons can be disrupted and
new particles may be created. Schematically,

p+ p→ X ,

7‘CM’ means ‘center of mass’, but this historical name is really quite inappropriate for relativistic systems, which
may include massless particles that carry momentum but have no rest mass. The widely used ‘CM’ label should always
be understood as referring to the zero (spatial) momentum frame.
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where X stands for one or more outgoing particles. What is the largest mass of a particle which
could be produced in such a collision?

The total energy of the incident particles (in the rest frame of the target) is Etot = Ein + mpc
2 ≈

1.001 TeV. If all of this energy is converted into the rest energy of one or more outgoing particles, then
you might conclude that these collisions could produce particles with mass up to Etot/c

2 ≈ 103mp.
This would be consistent with conservation of energy. But this is wrong, as it completely ignores
conservation of 3-momentum. In the rest frame of the target, the total spatial momentum ~ptot is
non-zero (and equal to the momentum ~pin of the projectile proton). If there is a single outgoing
particle X, it cannot be produced at rest — it must emerge from the collision with a non-zero spatial
momentum equal to ~ptot. That means its energy will be greater than its rest energy.

To determine the largest mass of a particle which can be produced in this collision, one must simul-
taneously take into account conservation of both energy and momentum. That is, one must satisfy
the 4-vector conservation equation (4.9.4). In the lab frame, if we orient coordinates so that the
3-axis is the collision axis, then

pin = pprojectile + ptarget =


Ein/c

0
0
pin

+


mp c

0
0
0

 . (4.9.6)

If a single particle X emerges, then its four-momentum is the total outgoing four-momentum,

pout = pX =


EX
p1X
p2X
p3X

 . (4.9.7)

Demanding that pin coincide with pout determines ~pX = pin ê3 and EX = Ein + mpc
2. Eq. (4.4.9),

applied to the projectile proton (with known mass), may be used to relate the incident spatial
momentum and energy, ~p2in = (Ein/c)

2 − (mp c)
2. The same relation (4.4.9), applied to the outgoing

particle X, connects its energy EX and momentum ~pX to the desired maximum mass mX , (mXc
2)2 =

E2
X − (c ~pX)2. Inserting numbers and computing EX , |~pX | = pin, and finally mX is straightforward.

But even less work is required if one recalls [from Eq. (4.4.8)] that the square of any four-momentum
directly gives the rest mass of the object, p2 = m2c2. Hence

m2
X c

2 = p2X = p2out = p2in = (pprojectile + ptarget)
2

= p2projectile + p2target + 2 pprojectile · ptarget
= 2m2

p c
2 + 2Einmp . (4.9.8)

Consequently, mX =
√

2mp(mp + Ein/c2) = mp

√
2 + 2Ein/(mpc2) ≈

√
2002mp ≈ 45mp. Even

though the projectile proton has an energy a thousand times greater than its rest energy, the maxi-
mum mass particle which can be created in this collision is only 45 times heavier than a proton. The
rest of the energy most provide the kinetic energy associated with the conserved spatial momentum.
More generally, the maximum mass that can be produced grows (only) like the square root of the
lab frame energy, mX ∼

√
2Einmp/c2, when Ein � mpc

2. This is why “colliders”, where the lab
and CM frames coincide with both the “beam” and “target” particles racing towards each other, are
most efficient when hunting for new particles. In particular, if we collide two particles with the same
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mass (e.g., either identical particles or particle and antiparticle), the same energy (Ein) but opposite
momenta, the largest rest mass (particle) we can produce is mX = 2Ein, which in this case increases
linearly with the beam energy Ein.

4.10 Example Problems

Kogut 4-3

In the S′ frame we have an event at the 4-vector point x′ =
(
c× 9× 10−8 s, 100 m, 0, 0

)
. We want to

determine the location of this event in the S frame, where the S′ frame moves with velocity v/c = 4/5
along the x axis with respect to the S frame and, for convenience (we are free to be lazy but smart),
we assume that the origins (in space and time) of the 2 frames are synchronized. The boost factor
between the two frames is γ = 1/

√
1− (v/c)2 = 5/3. Thus the corresponding Lorentz boost gives us

x = Λ(v)x′ =


5/3 4/3 0 0
4/3 5/3 0 0
0 0 1 0
0 0 0 1




27 m
100 m

0
0

 =


178.33 m
202.67 m

0
0

 =


c× 59.44× 10−8 s

202.67 m
0
0

 .

Kogut 4-4

In frame S we are given two events defined by the 4-vectors x1 = (L,L, 0, 0) and x2 = (L/2, 2L, 0, 0),
or ∆x0 = L/2 and ∆x1 = −L. We want to boost to a frame S′ where the events (appear to) occur
at the same time. Thus we want to solve (note v is the velocity of S′ in S so using Λ−1 or Λ(−v)

∆x′0 = γ
(
∆x0 + (−v/c)∆x1

)
= 0⇒ L/2 + (−v/c)(−L) = 0⇒ v/c = −1/2,

corresponding to the S′ frame moving towards negative x values. So we find the common time in
the S′ frame is

t′ = γ (ct1 + (−v/c)x1) /c =
(

2/
√

3
)

(L+ (1/2)L) /c =
√

3L/c .

As a check, note that we obtain the same result if we use instead t2 and x2.

Kogut 6-11

Consider a relativistic particle whose (relativistic) kinetic energy is twice its rest energy, i.e., its total
energy is three times its rest energy. Thus we have

K = 2mc2 ⇒ E = 3mc2 ⇒ γ = 3⇒ v

c
=

√
1− 1

9
= 0.943 .

Thus the magnitude of this particle’s momentum is

p = γmv = 3(v/c)mc = 2.83mc .

If the kinetic energy is 5mc2, we have instead

γ = 6⇒ v

c
=

√
1− 1

36
= 0.986 , p = 5.92mc .
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Kogut 6-16

Here we have the opportunity to consider the most fuel-efficient rocket exhaust - photons (the fastest
exit velocity for any given energy) in a problem with an explicitly time dependent mass for the rocket.
We are given only the rocket’s initial and final masses, Mi and Mf , and want to calculate its final
velocity (starting at rest). Being smart but lazy we do NOT integrate Newton’s law! Instead we
simply use 4-momentum (energy-momentum) conservation. We image that a certain fraction of the
initial mass of the rocket, ∆M = Mi −Mf , is instantaneously converted into a photon (or several
collinear photons). To conserve momentum the rocket must recoil in the direction opposite to the
photon(s). We have (in the initial rest frame of the rocket)

Ef =Ei ⇒Mic
2 = Ephoton(s) +Mfγc

2 ,

~ptotal = 0⇒Mfvγ = pphoton(s) = Ephoton(s)/c = Mic−Mfcγ ⇒Mi = Mfγ
c+ v

c
(4.10.1)

⇒ Mi

Mf
= γ(1 + v/c) =

√
1 + v/c

1− v/c
or

v

c
=

(Mi/Mf )2 − 1

(Mi/Mf )2 + 1
. (4.10.2)

So the price of going very fast, v → c, is that the final mass (including the astronaut) must be very
much smaller than the initial mass (Mf � Mi), i.e., accelerating rockets to near light-speed is an
expensive activity (as has always been known to NASA).
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