
Chapter 5

QM and Angular Momentum

5.1 Angular Momentum Operators

In your Introductory Quantum Mechanics (QM) course you learned about the basic properties of
low spin systems. Here we want to review that knowledge and indicate in more detail how it arises
from the basic principles of QM, i.e., that we work with operators, in particular with Hermitian
operators, and those operators obey simple commutation relations. To illustrate these ideas let us
review the formalism of eigenstates of definite (total) angular momentum. The following analysis
applies as well to the spin operator S and, except in one detail noted at the end, to orbital angular
momentum L. (Of course, these operators are related via J = L+ S.) If you have not seen this sort
of analysis before, consider it as an introduction to the power of symmetries as expressed in terms
of quantum mechanical operators and states. The analysis involves a large number of steps, but, in
a very real sense, each of those steps is quite small.

Also be aware of the larger picture, as discussed in Chapter 10, that we are actually discussing
the properties of representations of the rotation group, SO(3) (for integer angular momentum) and
SU(2) (for half-integer angular momentum). The different states in the representation are what
you see when you perform rotations on the reference frame. The apparently different states are, in
some sense, the same given the underlying symmetry, i.e., we are simply labeling them differently
as we change (rotate) the directions of the “axes”. Note, in particular, that the possible states of
the system must always appear in complete representations of the underlying symmetries. So our
understanding of symmetries and the associated representations will provide tools to organize our
description of physical systems, e.g., the particles of the Standard Model.

We want to work with the (hopefully) familiar (3-vector) total angular momentum operator ~J with
three components J1, J2 and J3 (or Jx, Jy and Jz, see, for example, Chapters 7 and 11 in McIntyre).

We take all 3 to be Hermitian operators (J†k = Jk, where † =∗T , i.e., take complex conjugate and
transpose) and thus to have real eigenvalues. An essential feature of the operator nature of J (and
of QM) is the fact that these three operators obey the nontrivial commutation relation (i.e., the
algebra corresponding to SO(3) and SU(2)))

[Jk, Jl] ≡ JkJl − JlJk = i~εklmJm [k, l,m = 1, 2, 3] , (5.1.1)

where εklm is the unique 3× 3× 3 anti-symmetric tensor.
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ASIDE The algebra serves to completely define the properties of the group elements, the transfor-
mations, near the identity - no change - operator. However, there may still be ambiguity about the
properties of the elements “far” from the identity operator, and this point is related to the difference
between SO(3) and SU(2) - see Chapter 10.

Next we define J2, the total angular momentum squared operator,

J2 = J2
1 + J2

2 + J3
3 , (5.1.2)

which is also a Hermitian operator (J2† = J2) again with real eigenvalues. Actually, since the
operators on the RHS of Eq. (5.1.2) are all the squares of Hermitian operators, the corresponding
eigenvalues are all positive semi-definite (≥ 0), i.e., the squares of real numbers. By the same token
the related operator expression

J2 − J2
3 = J2

1 + J2
2 (5.1.3)

tells us that the eigenvalues of J2 − J2
3 are also positive semi-definite, or that the eigenvalues of J2

are greater than or equal to the eigenvalues of J2
3 . (Actually, as we will see shortly, equality will only

occur for the special case of zero total angular momentum.)

The next essential fact, following from Eq. (5.1.1), is that J2 commutes with the individual Jk. For
example, we have1

[J2, J3] = [J2
1 , J3] + [J2

2 , J3] + [J2
3 , J3]

= [J1, J3]J1 + J1[J1, J3] + [J2, J3]J2 + J2[J2, j3] + 0

=−i~J2J1 − i~J1J2 + i~J1J2 + i~J2J1 = 0 . (5.1.4)

Clearly a similar result holds for [J2, J1] and [J2, J2].

Finally we make the conventional choice that our basis states be the simultaneousness eigenstates of
of J2 and J3 (possible because they commute), |j,m〉, with eigenvalues, j,m, and defined by

J2|j,m〉 ≡ (J2
1 + J2

2 + J2
3 )|j,m〉 = j(j + 1)~2|j,m〉, J3|j,m〉 = m~|j,m〉 , (5.1.5)

where we take these eigenstates to be normalized

〈j.m|j,m〉 = 1.0 . (5.1.6)

We are encouraged to think of j as labeling the total angular momentum of the state independent
of any choice of reference frame, while m labels the component of the angular momentum along the
3-axis in a specific choice of reference frame. As we will see in detail below, when we rotate the
reference frame (or the state), the value of m changes, but j does not. Thus the states corresponding
to a given j value and the possible m values, −j ≤ m ≤ j comprise a representation of the rotation
group, i.e., these states are transformed into each other in a specific fashion by the rotations. In
Group Theory language (see Chapter 10) the operator J2 is formally labeled a Casimir operator. It
is not an element of the algebra or the group, but does commute with the generators (and thus the
group elements) and, as noted, its eigenvalues serve to label the specific representation of the group,
while m labels the specific element of the 2j + 1 elements in the representation.

These results are presumably familiar from your QM course, including the fact that the allowed
values of j are either integer or half-integer and the allowed values of m are the 2j + 1 values in the

1The signs in Eq. (5.1.4) follow from the definition of εklm, i.e., ε132 = −1 while ε231 = +1.
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range m = −j,−j + 1...j − 1, j. Here we will see how these results follow from the basic properties
of the operators noted above (and the following will serve as an introduction if this was not covered
in your 225 class). To that end let us for now define the eigenvalues instead by

J2|j,m〉 ≡ N2(j)~2|j,m〉, J3|j,m〉 = m~|j,m〉 , (5.1.7)

where we will derive below the specific form of N2(j) and the constraints on the possible values of
m.

From the standpoint of the underlying Group theory, we label the Jk as the generators of the unitary
rotation group (SO(3) and SU(2)) in the sense that they “generate“ an infinitesimal rotation. Since
we want a rotation through a finite angle to be a unitary transformation (i.e., it should conserve

probability), the generators are necessarily Hermitian operators, J†k = Jk (so that the group elements
arising from their exponentiation are Unitary). As already mentioned in Chapter 1 and described in
some detail in Chapter 10, the finite rotation corresponds to exponentiating these generators times
a continuous parameter (i times the rotation angle over ~). For example, eiJ3θ/~ corresponds to a
rotation around the 3-axis by an angle θ and is a member of the rotation group. Note that, since(

eiJ3θ/~
)†

= e−iJ
†
3θ/~ = e−iJ3θ/~ =

(
eiJ3θ/~

)−1
, (5.1.8)

the operator eiJ3θ/~ is Unitary (i.e., the Hermitian conjugate is the inverse) if (and only if) J3 is
Hermitian.

At this point we can also demonstrate that the eigenstates in Eq. (5.1.5) are orthogonal as desired
(for different m values). We have (recall that 1 = ei0 = e−iJ3θ/~e+iJ3θ/~)

〈j,m′|j,m〉 = 〈j,m′|e−iJ3θ/~e+iJ3θ/~|j,m〉 = ei(m−m
′)θ/~〈j,m′|j,m〉 . (5.1.9)

There are two ways to satisfy this equation. Either the exponential factor is unity because m = m′

and these are really both the same state, or they are different states and the matrix element vanishes,

〈j,m′|j,m〉 = 0, m′ 6= m. (5.1.10)

To proceed we want to make use of the two remaining generators (J1 and J2) that do not define our
basis eigenstates, and will change the states when they operate. This is the part of the analysis that
may not be familiar (it appears in Chapter 11 of McIntyre’s QM text), but it is illustrative of how
we can prove useful results using only the properties of the operators. In particular, we can define
the so-called “ladder” (or raising and lowering) operators by

J± ≡ J1 ± iJ2 . (5.1.11)

Since the Jk are Hermitian, it follows that

J†± = J†1 ∓ iJ
†
2 = J1 ∓ iJ2 = J∓ . (5.1.12)

Using Eqs. (5.1.1) and (5.1.11), and some straightforward algebra, we can evaluate the new commu-
tators

[J+, J−] = [J1, J1] + [J1,−iJ2] + [iJ2, J1] + [iJ2,−iJ2]
= 0− i(iJ3~) + i(−iJ3~) + 0 = 2~J3 (5.1.13)
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and

[J3, J±] = [J3, J1] + [J3,±iJ2] = i~J2 + (±i)(−i~J1)
= ~(iJ2 ± J1) = ±~J± . (5.1.14)

With a little more algebra we can demonstrate (and you should try this at home) that, since the
total spin operator J2 commutes with each of the components (recall Eq. (5.1.4)), it also commutes
with the ladder operators,

[J2, Jk] = 0⇒ [J2, J±] = 0 . (5.1.15)

Since we eventually want to be able to evaluate the result of operating on the eigenstates with the
ladder operators, we want to first evaluate the products in terms of the eigen-operators J2 and J3.
This may seem unmotivated at first, but the usefulness of this step will be clear shortly. By explicit
calculation it follows that

J+J− = (J1 + iJ2)(J1 − iJ2) = J2
1 + J2

2 − i[J1, J2] = J2 − J2
3 + ~J3 , (5.1.16)

and
J−J+ = (J1 − iJ2)(J1 + iJ2) = J2

1 + J2
2 + i[J1, J2] = J2 − J2

3 − ~J3 , (5.1.17)

Note that the difference between these two equations is 2~J3 as expected from Eq. (5.1.13). The
content of these relations is that the ladder operators move us around in a given representation of
SO(3) or SU(2) (hence the label), but do not change the representation, i.e., do not change the
eigenvalue of J2 (recall Eq. (5.1.2)). To see this explicitly we first note the operator relation (recall
Eq. (5.1.14))

J3J± = J±J3 + [J3, J±] = J±J3 ± ~J± . (5.1.18)

Thus, when we apply this operator to an eigenstate, we obtain

J3J±|j,m〉 = J±J3|j,m〉+ [J3, J±]|j,m〉 = m~J±|j,m〉 ± ~J±|j,m〉 = (m± 1)~J±|j,m〉 , (5.1.19)

clearly indicating that the operator J± raises/lowers the J3 eigenvalue by one (explaining the “ladder”
label),

J±|j,m〉 ∝ |j,m± 1〉 , (5.1.20)

or, including an explicit coefficient,

J±|j,m〉 ≡ A±(j,m± 1)|j,m± 1〉 . (5.1.21)

We will determine the coefficient A±(j,m± 1) shortly. From Eqs. (5.1.15) and (5.1.7) we have

J2J±|j,m〉 = J±J
2|j,m〉 = N2(j)~2J±|j,m〉 = N2(j)~2A±(j,m± 1)|j,m± 1〉 , (5.1.22)

confirming that J± does not change the J2 eigenvalue.

So, as already noted, these last equations tell us to interpret the operator J± as stepping us through
the 1-D representation labeled by total angular momentum j.

To determine the coefficient A±(j,m) we perform the following manipulations, which follow from the
definitions above. First, from the definition of the coefficient in Eq. (5.1.21) and the unit normaliza-
tion of the eigenstates, we have

〈j,m|J+J−|j,m〉 = 〈j,m|J†−J−|j,m〉 = |A−(j,m−1)|2〈j,m−1|j,m−1〉 = |A−(j,m−1)|2 , (5.1.23)
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and

〈j,m|J−J+|j,m〉 = 〈j,m|J†+J+|j,m〉 = |A+(j,m+1)|2〈j,m+1|j,m+1〉 = |A+(j,m+1)|2 . (5.1.24)

Now we can use Eqs. (5.1.16) and (5.1.17) to explicitly evaluate these matrix elements and find

〈j,m|J+J−|j,m〉= 〈j,m|J2 − J2
3 + ~J3 |j,m〉 = N2(j)~2 −m2~2 +m~2

= ~2(N2(j)−m2 +m) = |A−(j,m− 1)|2 , (5.1.25)

and

〈j,m|J−J+|j,m〉= 〈j,m|J2 − J2
3 − ~J3 |j,m〉 = N2(j)~2 −m2~2 −m~2

= ~2(N2(j)−m2 −m) = |A+(j,m+ 1)|2 . (5.1.26)

We can choose the phases of the eigenstates so that both coefficients are positive, real (without any
impact on the quantum physics) and define the coefficients in the operation of the ladder operators
to be (keeping the still to be evaluated parameter N2(j))

A±(j,m± 1) = ~
√
N2(j)−m2 ∓m, (5.1.27)

Now we return to the discussion surrounding Eq. (5.1.3). We have seen that the ladder operators
raise and lower the eigenvalue m without changing the eigenvalue N2(j). However, Eq. (5.1.3) tells
us that N2(j)−m2 ≥ 0 for all allowed values of N2(j) (i.e., allowed values of j) and m. These two
results can both be true if and only if the raising and lowering process truncates, since otherwise
we will eventually obtain an m2 value greater than any (fixed) N2(j) value. Thus there must be
maximum and minimum values of m, mmax and mmin, such that

J+|j,mmax〉 = 0, J−|j,mmin〉 = 0 . (5.1.28)

These results can be rewritten as the statements that

A+(j,mmax + 1) = 0, A−(j,mmin − 1) = 0 . (5.1.29)

Combining with Eq. (5.1.27) we have

N2(j)−m2
max −mmax = 0 , N2(j)−m2

min +mmin = 0 . (5.1.30)

Since the raising and lowering is always by a unit step (of ~, this is QM after all), we know that
mmax −mmin = an integer, which we label n. Using the difference of the two results in Eq. (5.1.30)
to eliminate N2(j) and substituting mmax = mmin + n, we find

mmin = −n
2
, mmax =

n

2
. (5.1.31)

Returning to Eq. (5.1.30) we find also that

N2(j) =
n

2

(n
2

+ 1
)
. (5.1.32)

So now we can make the standard identification for the eigenvalue j,

j ≡ n

2
⇒ −j ≤ m ≤ j

N2(j) = j(j + 1) . (5.1.33)
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Substituting in Eq. (5.1.27) we have

A±(j,m± 1) = ~
√
j(j + 1)−m(m± 1) = ~

√
(j ∓m)(j ±m+ 1) , (5.1.34)

These expressions for the coefficients explicitly verify the truncation results of Eq. (5.1.29), i.e.,
A+(j,mmax + 1 = j + 1) = 0 and A−(j,mmin − 1 = −j − 1) = 0.

Since n is an integer, there are two possibilities corresponding to odd or even n. If n is an odd
integer, then the “total angular momentum” eigenvalue j = n/2 is half-integer, while if n is an even
integer, then j = n/2 is integer. In either case the number of distinct values of m is the familiar
2j + 1 corresponding to the values m = −j to m = j.2 Since the same arithmetic applies to the spin
of an individual particle, we see that both integer spin particles, i.e., bosons, and half-integer spin
particles, i.e., fermions, are possible. On the other hand, orbital angular momentum arises from the
~L = (~r × ~p) operator (with a clear classical connection) and assumes only integer values.

To recap, we have used only the facts that the 3 components of the total angular momentum op-
erator are Hermitian operators (and so have real eigenvalues) and that these operators satisfy the
commutation relation of Eq. (5.1.1), to derive that the possible eigenvalues of J2 and J3 are specified
by a single parameter j. Further this parameter is either half-integer (1/2, 3/2, ...) or integer (0, 1,
2 ...). The eigenvalue of J2 is given by j(j + 1)~2 corresponding to the 2j + 1 m values in the range
−j ≤ m ≤ j with J3 eigenvalues m~ in the range −j~ to +j~. Note that only for the “trivial” case
j = 0 is the eigenvalue of J2 equal to the eigenvalue of J3 (both are 0). For j greater than 0 we have
j(j+ 1) greater m2, as we should expect for QMical systems where the other components besides J3,
which do not commute with J3, will exhibit nonzero, if indeterminate, values in an eigenstate of J3.

5.2 Spin 1/2 in Vector/Matrix Notation

Here we will study a spin 1/2 system as an example of a 2-state system as you studied in your QM
class. We represent the corresponding states as

|1
2
,
1

2
〉 = | ↑〉 =

(
1
0

)
, |1

2
,−1

2
〉 = | ↓〉 =

(
0
1

)
, (5.2.1)

where the up and down arrow notation is specific to the spin 1/2 interpretation and corresponds to
the component of spin along the 3 axis. In this basis we can use the so-called Pauli matrices, which
you likely learned about in Physics 225 or 227 as a basis set of 2× 2 matrices. They are defined by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (5.2.2)

and obey the commutation relation (note the factors of 1/2)[σj
2
,
σk
2

]
= iεjkl

σl
2
. (5.2.3)

2The underlying physics point here is the quantization of angular momentum in units of ~, i.e., changes in angular
momentum (spin) can only occur in integer steps with magnitude ~. We don’t notice this in ordinary life because a
typical (classical) angular momentum has magnitude of order kg m2/s or Joule * second. In units of ~ this is of order
1034 ~ and changes in the angular momentum of magnitude ~ will appear to be continuous changes.
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Thus we can define the representation of the spin operator for our spin 1/2 system as (recall
Eqs. (1.5.4) and (1.5.5))

Sk = ~
σk
2
, [Sj , Sk] = iεjkl~Sl . (5.2.4)

Note, in particular, that

S3 =
~
2

(
1 0
0 −1

)
, (5.2.5)

as is appropriate for basis states that are eigenstates of S3 with eigenvalues ±~/2. It follows that

S3|
1

2
,
1

2
〉 =

~
2
|1
2
,
1

2
〉 , S3|

1

2
,−1

2
〉 = −~

2
|1
2
,
1

2
〉 , S2|1

2
,±1

2
〉 =

3

4
~2|1

2
,±1

2
〉 . (5.2.6)

Now consider the raising and lowering (ladder) operators. The representations for the raising and
lowering operators are

S+ = S1 + iS2 = ~
(

0 1
0 0

)
, S− = S1 − iS2 = ~

(
0 0
1 0

)
, (5.2.7)

which clearly perform the following transformations

S+| ↑〉 = 0 , S−| ↑〉 = ~| ↓〉 , S+| ↓〉 = ~| ↑〉 , S−| ↓〉 = 0 . (5.2.8)

This checks with Eq. (5.1.34) that yields for the spin 1/2 coefficients

A+

(
1

2
,
3

2

)
= ~

√
1

2

(
3

2

)
− 1

2

(
3

2

)
= 0 ,

A−

(
1

2
,−1

2

)
= ~

√
1

2

(
3

2

)
− 1

2

(
−1

2

)
= ~ ,

A+

(
1

2
,
1

2

)
= ~

√
1

2

(
3

2

)
−
(
−1

2

)
1

2
= ~ ,

A−

(
1

2
,−3

2

)
= ~

√
1

2

(
3

2

)
−
(
−1

2

)(
−3

2

)
= 0 . (5.2.9)

(Be certain to verify that you understand how these results arise.) The raising and lowering operators
are simply flipping the spin component along the 3 axis, or producing zero if this spin component
cannot be raised or lowered further.

Next we look at finite transformations in the underlying (Unitary Group) SU(2). We proceed much
as we did when we studied the group of rotations in 3-D in Chapter 1 (i.e., the group SO(3)). To
proceed it is useful to have the analogue of Eq. (1.5.8) for the Pauli matrices,

σ2nk =

(
1 0
0 1

)
= 1, σ2n+1

k = σk . (5.2.10)

ASIDE This result allows us to easily verify the last result in Eq. (5.2.6),

S2
k =

~2

4

(
1 0
0 1

)
, S2 = S2

1 + S2
2 + S2

3 =
3~2

4

(
1 0
0 1

)
. (5.2.11)
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Proceeding as we did in Chapter 1, we find results similar to, but simpler than Eqs. (1.5.9) and
(1.5.10) (see also Chapter 10). For the finite transformation generated by S3 or σ3 we have

T3(α)≡ eiαS3/~ = eiσ3α/2 = 1 +
∞∑
n=1

(iασ3)
n

2nn!

= 1

∞∑
n=0

(−1)n(α)2n

22n(2n)!
+ iσ3

∞∑
n=0

(−1)n(α)2n+1

22n+1(2n+ 1)!
. (5.2.12)

Using what we know about the sinusoidal functions, especially Eqs. (1.3.2) and (1.3.3), we can write
this transformation in the compact form

T3(α) =

(
cos α2 + i sin α

2 0
0 cos α2 − i sin α

2

)
=

(
eiα/2 0

0 e−iα/2

)
(5.2.13)

(see also Eq. (10.3.23)). This SU(2) transformation generated by S3 or σ3 in the basis of eigenstates
of S3 is simply a change of phase by ±α/2 where the sign depends on the sign of the eigenvalue. In
particular, the transformation is diagonal and does not involve any mixing of the two eigenstates. In
fact, since our basis states are eigenstates of S3, we could have evaluated this transformation directly,

T3(α)|1
2
,m〉 = eiαS3/~|1

2
,m〉 = eiαm|1

2
,m〉 , (5.2.14)

where m = ±1/2. This is the same result as the matrix form in Eq. (5.2.13).

5.3 Spin 1 in Vector/Matrix Notation

To further strengthen our understanding of spin systems, we want to consider a spin 1 system3 where
again we use the simultaneous eigenstates of S2 and S3 as the basis states. The possible eigenvalues
of S3 are now +1, 0− 1. So our vectors will have 3 components similar to the discussion of ordinary
rotations, SO(3), in Chapter 1, but is important to remember that here we are talking about SU(2)
Unitary transformations of a 3 state QMical system (where phases can matter) and not ordinary
location vectors in 3 dimensions. For this case the basis states are

|s.m〉 = |1, 1〉 =

1
0
0

 , |1, 0〉 =

0
1
0

 , |1,−1〉 =

0
0
1

 . (5.3.1)

Next we want representations of S1, S2 and S3 in this basis. As just noted, this is not the same basis
as in Chapter 1.5 (i.e., not ordinary location 3-vectors) and we do not expect the same representation
as in Eq. (1.5.5). In particular, in the basis of its own eigenstates, S3 should be represented by

S3 = ~

1 0 0
0 0 0
0 0 −1

 , (5.3.2)

3In the individual particle language we will use shortly spin 1 particles are labeled vector particles in an obvious
reference to the more familiar, but distinct, 3-component location vectors in 3-D space.
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so that
S3|1, 1〉 = ~|1, 1〉 , S3|1, 0〉 = 0 , S3|1,−1〉 = −~|1,−1〉 . (5.3.3)

A little algebra (or a good book) yields the corresponding representations of S1 and S2 to be

S1 =
~√
2

0 1 0
1 0 1
0 1 0

 , S2 =
~√
2

0 −i 0
i 0 −i
0 i 0

 . (5.3.4)

The reader is strongly encouraged to verify that this set of representations (matrices) are Hermitian
and satisfy the required commutator,

[Sj , Sk] = iεjkl~Sl . (5.3.5)

With a little more algebra we find that

S2
1 =

~2

2

1 0 1
0 2 0
1 0 1

 , S2
2 =

~2

2

 1 0 −1
0 2 0
−1 0 1

 , S2
3 = ~2

1 0 0
0 0 0
0 0 1

 , (5.3.6)

so that

S2 = S2
1 + S2

2 + S2
3 = 2~2

1 0 0
0 1 0
0 0 1

 , (5.3.7)

So we have confirmed that in a spin s = 1 system the shared eigenvalue of S2 is ~2s(s+ 1) = 2~2.
Finally with this representation we can construct the corresponding raising and lowering operators,

S+ =S1 + iS2 =
~√
2

0 2 0
0 0 2
0 0 0

 =
√

2~

0 1 0
0 0 1
0 0 0

 ,

S−=S1 − iS2 =
~√
2

0 0 0
2 0 0
0 2 0

 =
√

2~

0 0 0
1 0 0
0 1 0

 . (5.3.8)

These matrices perform the expected transformations,

S+|1, 1〉= 0 , S+|1, 0〉 =
√

2~|1, 1〉 , S+|1,−1〉 =
√

2~|1, 0〉
S−|1, 1〉=

√
2~|1, 0〉 , S−|1, 0〉 =

√
2~|1,−1〉 , S−|1,−1〉 = 0 . (5.3.9)

Recall from Eq. (5.1.34) that
√

2~ is the expected nonzero coefficient.

5.4 Examples

To practice using the techniques described above let us consider the form of the SU(2) transformation
generated by S1 and S2 when operating on the eigenstates of S3 as the basis states. Since the structure
of Eq. (5.2.3) still obtains, the procedure follows much as it did for S3. For S1 we have

T1(α)≡ eiαS1/~ = eiσ1α/2 = 1 +

∞∑
n=1

(iασ1)
n

2nn!

= 1

∞∑
n=0

(−1)n(α)2n

22n(2n)!
+ iσ1

∞∑
n=0

(−1)n(α)2n+1

22n+1(2n+ 1)!
. (5.4.1)
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Again we recognize the sums and rewrite in the compact form

T1(α) =

(
cos α2 i sin α

2
i sin α

2 cos α2

)
. (5.4.2)

Note that in this case the transformation is no longer diagonal, i.e., this transformation does “rotate”
the eigenstates of S3 into one another (with some extra phases). This is intuitively reasonable as
the transformation is about an axis orthogonal to the direction along which we quantized the spin
component. Note also that

T1(π) =

(
cos π2 i sin π

2
i sin π

2 cos π2

)
=

(
0 i
i 0

)
, (5.4.3)

i.e., a “rotation” by π flips spin up to spin down and conversely (along with adding a phase of π/2),
which is intuitively expected.

The story for S2 is quite similar leading to

T2(α)≡ eiαS2/~ = eiσ2α/2 = 1 +
∞∑
n=1

(iασ2)
n

2nn!

= 1
∞∑
n=0

(−1)n(α)2n

22n(2n)!
+ iσ2

∞∑
n=0

(−1)n(α)2n+1

22n+1(2n+ 1)!
. (5.4.4)

Again we recognize the sums and rewrite in the compact form

T2(α) =

(
cos α2 sin α

2
− sin α

2 cos α2

)
. (5.4.5)

This really does look like an ordinary rotation (recall Eq. (1.5.10)) except for the factor of 1/2 in the
arguments of the sines and cosines, which is the residue of spin 1/2. It is also important to remember
that this 2-state system is in terms of the eigenstates of S3 and not in terms of the two components
of an ordinary location 2-vector.

Note that a rotation through 2π about any of the 3 axes, which you might naively expect to bring
us back to to where we started (i.e., yield the unit matrix), is given instead by the negative of the
unit matrix (see Eqs. (5.4.2), (5.4.5) and (5.2.13))

T1(2π) = T2(2π) = T3(2π) =

(
−1 0
0 −1

)
. (5.4.6)

This illustrates a fundamental difference between half-integer spin particles (fermions) and the more
classically behaved integer-spin particles (bosons - see below). This difference plays an essential role
in our understanding of how the fundamental particles behave.

As a final example let us evaluate finite SU(2) transformations for vector particles, i.e., in the basis of
the previous section. The products of the (representations of the) generators satisfy slightly different
relations than the more familiar form in Eq. (5.2.10) (also recall Eq. (5.3.6))

S2n
1 =

~2n

2

1 0 1
0 2 0
1 0 1

 , S2n+1
1 = ~2nS1 , (5.4.7)

10



Particles and Symmetries CHAPTER 5. QM AND ANGULAR MOMENTUM

S2n
2 =

~2n

2

 1 0 −1
0 2 0
−1 0 1

 , S2n+1
2 = ~2nS2 , (5.4.8)

and

S2n
3 = ~2n

1 0 0
0 0 0
0 0 1

 , S2n+1
3 = ~2nS3 . (5.4.9)

Thus, following a path similar to the one above, we find that, in the vector SU(2) representation,
the finite transformation generated by S1 is given by

T1(α)≡ eiαS1/~ = 1 +

∞∑
n=1

(iαS1/~)n

n!

=
1

2

 1 0 −1
0 0 0
−1 0 1

+
1

2

1 0 1
0 2 0
1 0 1

 ∞∑
n=0

(−1)n(α)2n

(2n)!
+ iS1

∞∑
n=0

(−1)n(α)2n+1

(2n+ 1)!
, (5.4.10)

where in the second step we split apart the unit matrix to provide the n = 0 term in the first sum.
As in the earlier analyses we can now rewrite the two sums as the cosine and sine functions. We
have

T1(α) =
1

2

 1 + cosα i
√

2 sinα −1 + cosα

i
√

2 sinα 2 cosα i
√

2 sinα

−1 + cosα i
√

2 sinα 1 + cosα

 . (5.4.11)

This matrix clearly reduces to the unit matrix for α = 0 and it is straight forward to demonstrate
that it is a Unitary matrix (T−11 = T †1 ) for real α. The form of the matrix for general α values is less
intuitive. However, for α = π, which we discussed above for the spin 1/2 case, and where we expect
to be exchanging the spin up and spin down states we find

T1(π) =

 0 0 −1
0 −1 0
−1 0 0

 . (5.4.12)

This matrix does indeed exchange the m = ±1 states with each other, and introduces a phase of −1
everywhere.

The same analysis for the transformation generated by S2 yields

T2(α)≡ eiαS2/~ = 1 +

∞∑
n=1

(iαS2/~)n

n!

=
1

2

1 0 1
0 0 0
1 0 1

+
1

2

 1 0 −1
0 2 0
−1 0 1

 ∞∑
n=0

(−1)n(α)2n

(2n)!
+ iS2

∞∑
n=0

(−1)n(α)2n+1

(2n+ 1)!
, (5.4.13)

where in the second step we again split apart the unit matrix to provide the n = 0 term in the first
sum. As in the previous analyses we can now rewrite the two sums as the cosine and sine functions.
We have

T2(α) =
1

2

 1 + cosα
√

2 sinα 1− cosα

−
√

2 sinα 2 cosα
√

2 sinα

1− cosα −
√

2 sinα 1 + cosα

 . (5.4.14)
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Except for the factors of i this transformation is very similar to T1. T2 is also a Unitary matrix.
T2(0) is again the unit matrix, while

T2(π) =

0 0 1
0 −1 0
1 0 0

 , (5.4.15)

which again exchanges the m = ±1 states, but with somewhat different phases.

Finally consider the transformation generated by S3, which, as noted earlier for the spin 1/2 case, is
particularly simple to evaluate when the basis states are eigenstates of S3 as here. We have

T3(α)≡ eiαS3/~ = 1 +
∞∑
n=1

(iαS3/~)n

n!

=

0 0 0
0 1 0
0 0 0

+

1 0 0
0 0 0
0 0 1

 ∞∑
n=0

(−1)n(α)2n

(2n)!
+ iS3

∞∑
n=0

(−1)n(α)2n+1

(2n+ 1)!

=

cosα+ i sinα 0 0
0 1 0
0 0 cosα− i sinα

 =

eiα 0 0
0 1 0
0 0 e−iα

 , (5.4.16)

which is, as expected, quite similar to Eq. (5.2.13)

To contrast with the result for spin 1/2 in Eq. (5.4.6) we can evaluate Eqs. (5.4.16), (5.4.11) and
(5.4.14) for a rotation through 2π applied to a spin 1 system,

T1(2π) = T2(2π) = T3(2π) =

1 0 0
0 1 0
0 0 1

 . (5.4.17)

For integer spin we obtain the expected “classical” result of returning to where we started.

The reader is encouraged to practice using the concepts described above by reproducung the above
expressions for the various transformations.
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