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Chapter -1

Preface

The preparation of these notes began in 2008 when my colleague Laurence Yaffe taught the first
offering of the newly designed class, Particles and Symmetries. This class was created to give un-
dergraduate physics students, early in their studies, an introduction to the fundamental constituents
of matter and the symmetries which characterize their interactions. The presentation begins with
an overview of special relativity, and then moves into an examination of the building blocks of the
current Standard Model of particle physics. The material, by design, takes advantage of the fact
that a remarkable amount of particle physics may be understood quantitatively using relatively few
basic concepts. Students are assumed to have had introductory physics and at least one quarter
of quantum mechanics introducing state vectors (bars and kets), quantum time evolution, observ-
ables and expectation values, spin-1/2 and related two-state systems, quantized angular momentum,
and quantized harmonic oscillators. Facility with calculus, linear algebra, and basic mathematical
methods is also assumed. Prior exposure to special relativity, or particle physics, is not required.

The spring 2014 version of these notes incorporates or adapts a number of subsequent changes to
the original notes from both myself (I have taught Particles and Symmetries several times starting
in 2011) and Professor Yaffe. His contributions are gratefully acknowledged. Note, in particular,
that this spring there are explicitly Chapters (1 and 5) reviewing the most relevant concepts from
Physics 227 and 225 (respectively). Note also that there is no required textbook for this course, only
some suggestions of books that you may find useful. On the other hand, it is essential that you read
the notes according to the reading assignments on the class webpage and come to class prepared
to discuss the covered topics, especially those that you might find confusing. We will have frequent
in-class “clicker quizzes” to encourage you to do the reading and also help me identify those concepts
that are causing difficulty.

Next, here are some comments regarding conventions. Arrows are used to indicate three-dimensional
spatial vectors, such as Z. Components of spatial vectors are written as 27, with a Latin index (such
as j), which runs from 1 to 3 (corresponding to x to z). Four-dimensional spacetime vectors, which
are introduced in chapter 3, will not be marked with a vector sign, but their meaning should be
clear from context. Components of a spacetime vector are written as z*, with a Greek index (such
as p) running from 0 to 3. Sadly, there are two different conventions in common use in the physics
community for defining the dot product of spacetime vectors, differing by an overall minus sign.
These notes use the so-called West Coast metric (+,-,-,-) that renders time-like invariants positive,
but the dot product of spacetime vectors having vanishing time components the negative of the
usual three-dimensional dot product. The notes from Prof. Yaffe use the so-called East Coast metric

© Stephen D. Ellis, 2014 1
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Figure 1: Correlation between HW scores and Final Grade for Spring 2013

(-,#+,+,+) (that he labels "the only sensible choice”), which makes the dot product of spacetime
vectors having vanishing time components the same as the usual three-dimensional dot product, but
time-like quantities are negative.

Finally we include a few words concerning the role of the Homework (HW) assignments. Since
this is a physics course with a focus on learning to quantitatively analyze the properties of physical
systems, the HW provides the core of this course. It is essential that you do the HW in order to
achieve command of the various concept and techniques covered in this course. This connection is
confirmed by the fact that the HW and the exams, for which you should consider the HW as practice,
constitute the basis of the course grade.

An illustration of the correlation between HW scores and Final Grade for the class last Spring is
provided in Fig. [I|, which clearly indicates a fairly direct correlation between performance on the
HW and in the class. In particular, students who put little effort into the HW, invariably received
a poor grade in the course. There is, in fact, an important further dimension to the question of
learning from the HW in this class. Solutions to all HW exercises are posted on the web (Catalyst)
as soon as the HW is turned in. It is important to look through these solutions, especially if you
had difficulty solving a particular exercise (or all of them), in order to identify and remedy any
misunderstandings that may be causing you difficulty. As part of the “postmortem” last spring, I
looked through the not-picked-up HW papers still in my office at the end of the quarter. Again there
was a strong correlation between the fraction of HW (turned-in but) not picked up and the final
grade, as illustrated in Fig. [2l Several students tuned in most (or all) of the HW but never picked
it up. In many such cases, these students where apparently unaware of the mistakes they made
on the HW and repeated these mistakes on the exams (and received poor final grades). You are
encouraged to make the HW a central part of your study process. Do the HW (or at least attempt
it), then study the solutions to identify the issues that are causing you trouble and then rectify that
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misunderstanding.

Note that there is a late HW option (after solutions are posted) for partial credit. I am also hoping
to have sufficient TA resources to allow a re-submittal option this Spring so that you can correct
your HW and turn it in again for more credit.

Stephen D. Ellis
April 2014



Chapter 0

Introduction

As we start this study of Particles and Symmetries it seems appropriate to try to provide an overview,
i.e., some version of the big picture goals for this course. As the title of the course implies, our goal is
to provide an introduction to an area of physics that has seen dramatic progress in the last 50 years
- particle physics. A central tool during this progress has been the exploitation of the underlying
symmetries, the other subject in the title, of the interactions of these particles. The short version
summary of this progress is encoded in the so-called Standard Model of Particle Physics (typically
denoted the SM), which identifies the particles (degrees of freedom) and interactions between the
particles relevant to the understanding of nearly all of the physical universe. When we include
collective behavior (quarks bounds in nuclei, electrons bound in atoms, atoms bound in solid matter)
plus classical gravity, we have a nearly complete explanationE] for the physics of the very large, e.g.,
the evolution of the universe from very early times, down to the physics at the shortest distances
now observable at particle accelerators. To have full quantitative command of this fundamental
understanding requires a tool not at our disposal - quantum field theory. However, we will be able
to outline a “semi-classical” (building block) picture of particle physics using only special relativity,
quantum mechanics and symmetries, which is remarkably complete and relatively quantitative. The
most recent addition to the SM is the so-called Higgs boson (named after the British theoretical
physicist Peter Higgs), whose initial discovery at the Large Hadron Collider (the LHC) at CERN
(in Geneva, Switzerland) was announced on the 4th of July, 2012, and whose detailed properties
have by now been largely confirmed to match those expected. Indeed the Nobel Prize in physics
was awarded to Peter Higgs and Francois Englert last autumn for their work (50 years ago) that
led to the prediction of this particle. Interestingly the existence and interactions of this particle
were predicted based on theoretical (i.e., mathematical) considerations, and the confirmation of the
expected properties constitutes a major step forward in particle physics research.

From a pedagogical perspective, this study of particle physics will help us learn about two of the
pillars of twentieth century physics, special relativity and quantum mechanics. The corresponding
dimension-full constants ¢ and h serve to set the “scale” for most of what we observe. The “uncer-
tainty principle” of quantum mechanics, which says, for example, that the product the uncertainties

The primary missing pieces are “dark matter” that serves to gravitationally binds galaxies but does not form
stars, and “dark energy” that is apparently causing an acceleration in the expansion rate of the universe. The former
category includes approximately 25% of the energy content of the universe, while the latter is about 70%. Stuff like us
is a 5% effect.

© Stephen D. Ellis, 2014 4
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in where we are (Ax) and where we are going (Ap, with p the momentum) is bounded below,
AzAp > h/2, guarantees that particles confined to small volumes must have large momenta. Thus,
since the masses of individual particles (of the variety discussed in this course) are so small, they are
very often (i.e., in most reference frames of interest) moving with velocities approaching the speed
of light. This situation will provide us with the opportunity to discuss special relativity in detail.
The exercises will allow us to practice using special relativity to describe the kinematics of particle
collisions at high energy, especially the role of 4-dimensional momentum conservation (which is itself
associated with the symmetry associated with the invariance of physics under translations in space
and time), and the speed of light as the universal speed limit. We will want to develop facility with
4-vector notation and the transformations (boosts) that take us between different inertial reference
frames. Similarly, since the total angular momentum of an individual particle (i.e., its “spin”) is
of order h, the fact that angular momentum is quantized on this scale means that quantum me-
chanics will play a central role. We will make use of (and practice using) the uncertainty principle
and the important role of the eigenstates of (commuting) operators. In particular, we will want to
become efficient at using operator notation to relate different states within the degenerate multi-
plets that arise due to symmetries. You should have seen this structure in the context of states of
definite total angular momentum, but varying angular momentum component along 1 spatial axis
(e.g., |J, Jz)). Transformations between these states are accomplished using the (hopefully familiar)
raising/lowering (ladder) operators, which are just a special form of a rotation (i.e., a particle with
its spin pointing “up” will look like its spin is pointing “down” if you stand on your head). Finally
we will discuss how to use symmetries (and the underlying mathematics of group theory) to tie this
all together and keep the mathematics simple. This approach will include the use of “approximate”
symmetries - where there is no true (exact) invariance under certain transformations, but rather
the transformations induce only numerically “small’ changes. This will allow us to simplify complex
computations in terms of perturbative expansions organized in terms of powers of these small changes
(such expansions are an essential tool for your physics toolbox). All during the quarter we should be
honing our skills for making order-of-magnitude estimates, i.e., being able to estimate the numerical
value of a given quantity even when we do not know (or do not understand) all of the details.

Do not be concerned if all of these concepts are not clear at the outset. Also, you should expect
that initially portions of our discussions may seem more “abstract” than you are accustomed to.
However, you should become concerned if clarity does not develop quickly over the next 10 weeks.
Finally do not be surprised if our approach seems somewhat circular. We will try to introduce the
relevant vocabulary and concepts in the early lectures, and then return to the same concepts in the
context of a more complete formalism in the latter lectures.

We end this Introduction with a brief summary of the ideas, definitions, mathematical tools that you
have already (hopefully) mastered in the prerequisite courses in mathematics and physics (especially
Phys. 225, 227 and 228, although these classes do not always cover the same material with different
instructors). If parts of the following do not seem familiar, you are encouraged to perform a more
thorough review, and/or come chat with me.

From Phys. 227-8:

1. Power series expansion: We very often want to expand a mathematical expression in terms of some
small parameter, which here we call |§| < 1 and note that ¢ is necessarily dimensionless. For
this purpose it is useful to recall the simple power series expansion (really the usual Taylor series
expansion),

(14+8)*~1+ad+ (ala—1)/2!) 62+ O(83).
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This expansion is valid independent of the signs of o and §, but actually requires that the product
|ad| < 1 to be useful. However, the exponent « is typically of order unity.

. Complex numbers:

z=1x+iy=re? =rcos¢+irsing, Rez =z, Imz =1y, |2| =r =/22 + 12, ¢ = arctan ¥
. Exponential function e*: Defined by

e =20l b = €

. Sinusoidal functions sinz cos z: Defined by
. _ iz n 2n+1 .
smz—%—zn 0 2n+1) , & sinz = cos z.

n2n

1z+efzz i o
cosz = =32 0 2n), , 42 C0sz = —sin z.

2

cos2z+sm z=1.

. Hyperbolic functions sinh z, cosh z: Defined by

. Z_,—Z2 2n+1
sinhz = &=F— =3"> (2n+1),, jz sinh z = cosh z.
z —z 2n .
coshz = % =30 @, 4 cosh z = sinh z.

cosh? z — sinh? 2z = 1.

. Vectors and Matrices: Facility with vector descriptions of both configuration space (“where the
particle is”) and momentum space (“where the particle is going”) are central to this course. We will
use vector notation in two dimensions ( labeled 1 and 2 or x and y), three dimensions (labeled 123
or zyz) and four dimensions (labeled 0,123 or ¢, zyz), where the role of ¢ will be distinguished from
xyz. This facility with vector notation should include some familiarity with the representations
of transformations like rotations as matrices. In particular, we would like to be able to think
of transformations in four dimensions - Lorentz transformations - as generalizations (with some
“funny” minus signs) of rotations in three dimensions.

. Matrices, operators and commutation relations: A (hopefully) familiar feature of rotations in three
dimensions is that, unlike rotations in two dimensions, 3D rotations do nmot commute in general.

This essential property is explicitly represented by the corresponding rotation matrices, i.e., My Ms—
M2M1 = [Ml, MQ] 75 0.

. Another important set of functions of mathematical physics, which hopefully you were introduced
to in Physics 227 or 228 (or somewhere that you learned about physics in 3 spatial dimensions),
are the spherical harmonics, Y7 ,,,(6, ¢). These functions form a complete (and orthonormal) set of
functions on the surface of a sphere. This means that any function of § and ¢, 0 < § < 7 and
0 < ¢ < 27, can be represented as a linear combination of the Y7, (6, ¢) with £ integer valued and
—¢ < m </, also integer valued. We can interpret the Y, (6, ¢) as the eigenstates of the orbital
angular momentum L and z projection L,. The corresponding eigenvalues are £h and mh.

Quite generally we find it useful to have complete (and orthogonal) sets of functions of a certain
class. For example, the functions sin(27tn/T) and cos(2wtn/T) with n an integer comprise a
complete (and orthogonal) set of functions of ¢ that are periodic with period T' (f(¢t) = f(t +T)).
The Y}, (8, ¢) above are such a set for functions that are well behaved (continuous) on the surface of
a sphere. Such functions are almost always defined in terms of solving an eigenvalue/eigenfunction
problem. This is especially true in the context of quantum mechanics.
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From Phys. 225:

1. The uncertainty principle, AxAp > h/2, requires that a small uncertainty in the location of a
particle must be matched by a large uncertainty in the particle’s momentum. We understand this
point “physically” through that the fact that fine spatial resolution (i.e., small Ax) corresponds
to interactions with particles with short wavelengths (A) and thus large momenta, where p = h/\,
with A the de Broglie wavelength. This last point emphasizes the essential quantum mechanical
point that real particles simultaneously exhibit both point-like (classical) and wave-like (quantum
mechanical) behavior. As you may recall this feature is often used to motivate that fact that only
certain energies and momenta are present for a particle confined to a box or an orbit, i.e., the
wavelength must be such as to “fit” in the box.

The uncertainty principle encodes the fact that the processes corresponding to the measurement
of location and the measurement of momentum “interact” with each other, i.e. the corresponding
operators do mot commute. Nonzero commutators play an essential role in quantum mechanics
and in this course. Commutation relations (equations involving commutators) are at the heart of
defining symmetries in terms of the underlying group theory.

2. The possible states of quantum mechanical (QM) systems are typically labeled in terms of the
eigenvalues of a (complete) set of commuting operators. An example is the labeling of states in
terms of the total energy and the total angular momentum J, or “spin” S for a single particle.
Further, these quantities are “quantized” in the sense that only certain discrete (not continuous)
values are allowed: FE,, = (n + 1/2)hw (for quantized harmonic oscillators with n an integer), and
S = (n+1/2)h (fermions) or S = nh (bosons). (We are unaware of this quantization in the context
of “classical physics” simply because n is so large for classical systems, and a change by unity (i.e.,
one unit of /) is very difficult to detect. For example, recall that the number of atoms in a mole is
of order 6 x 103 and 10723 is a very small number.)

To the extent that the underlying physics is invariant under translations in time and rotations in
space total energy and total angular momentum are constants of the motion. i.e., are “conserved”
quantities (a concept from Introductory physics).

The simplest spin system is spin zero with the corresponding state vecor (or “bra”) labeled as
|S,S.) =|0,0). This representation of the rotation group has only this one element and it follows
that it cannot be changed by a rotation, i.e., the spin structure is the same in all reference frames
related by rotations and is typically referred to as the singlet representation. The next simplest case
is spin 1/2 with two elements in the representation, |S,S3) = [1/2,1/2) and |S,S3) = [1/2,—1/2)
(the doublet representation). This fact leads to the pair of possible outcomes in the Stern-Gerlach
experiment you discussed in Phys. 225. An appropriate rotation (or boost) can turn one of these
states into the other. In general, a representation of spin S (with S an integer or half-integer)
corresponds to 25 + 1 elements (distinct states) labeled by Sz =5, S, =S5 -1 ... S3 =-S5 (for a
fixed choice of the 3 direction). Since the shift in Ss at each step is unity (this is the quantization
of spin in terms of k), this arithmetic only works for S an integer or a half-integer, i.e., for 25 + 1
an integer. It is these states (same S but different S3) that are transformed into each other by
rotations (or the ladder-operator) and thus constitute a representation of the rotation group.

3. Quantum Mechanics as a description of “small” systems is characterized by “wave functions” for the
energy eigenstates, which are compler valued solutions of differential equations, e.g., Schédinger’s
Equation. The amplitudes for something to happen in QM are expressed in terms of “matrix
elements” of operators, i.e., an operator between a “bra” ({|) and a “ket” (|)) representing the
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“outgoing” and “incoming” states, respectively. The underlying arithmetic is greatly simplified by
writing the wave functions or state vectors in terms of the eigenstates of the relevant operators,
which typically means in terms of representations of the relevant symmetries. Hopefully the linear
algebra describing the arithmetic of the corresponding state vectors and matrix elements (matrices)
is a familiar concept for simple (low dimensionality) systems. (If not, we will work to make it
familiar.) Finally note that probabilities, rates, cross sections are proportional to the absolute
squares of amplitudes, i.e., real numbers.

We will explicitly discuss some of the most useful of these topics in Chapters 1 and 5. The reader is
also strongly encouraged to review the lecture notes from the last time I taught Phys. 227-228 (2008-
2009), which are available here. The content of essentially all of the first ten lectures has application
to our studies in Physics 226. Finally note that these 227/8 notes include worked examples and
samples of how the computer program Mathematica can be used to both think about (make plots,
etc.) and solve relevant exercises. That will remain true in Physics 226.


http://www.phys.washington.edu/users/ellis/Phys2278.htm

Chapter 1

Math Methods: A Quick Review

In your Elementary Mathematical Physics course (227/8) you learned about a variety of functions
and techniques that will be useful in Physics 226. We will attempt to review the most relevant of
those, especially for the analysis of Special Relativity, in these notes. The reader is also strongly
encouraged to review the lecture notes from the last time I taught Phys. 227-228 (2008-2009), which
are available here. The content of essentially all of the first ten lectures has application to our
studies in Physics 226. Also note that these 227/8 notes include worked examples and samples of
how the computer program Mathematica can be used to both think about (make plots, etc.) and
solve relevant exercises.

1.1 Power Series

A extremely powerful tool for both understanding and evaluating functions is the power series ex-
pansion, typically the Taylor series expansion,

f(z) :chz”, (1.1.1)
n=0

where, for the expansion about the origin, the coefficients are the derivatives at the origin divided
by n!,
mn

Cn = dd.]:;(ZZ) ’2:0% . (112)
The analytic properties of the function f(z) in the complex z-plane are then characterized by the
convergence propertied of this series. Note that this power series, where it converges, serves to define
the function whether z is a real number, a complex number or matrix valued. We will use this last
point later in this Chapter.

A particularly useful approximate result arises when we have a small parameter, say |§| < 1, so that,

for example,
(14+6)*~1+ad+ (ala—1)/21)6%+ 0. (1.1.3)

This expansion is valid independent of the signs of a and J, but actually requires that the product
|ad| < 1 to be useful. However, the exponent « is typically of order unity.

© Stephen D. Ellis, 2014 9
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1.2 The Exponential Function

One of the most useful functions of mathematical physics is the exponential function. It is effectively
defined as the solution of the following (trivial) first order differential equation plus boundary /initial
condition,

df (z)

D — 1) £0) =12 f() = exp(z) = ¢*. (12.1)

So the exponential function is the eigenfunction of the derivative operator with a specific boundary
condition, i.e., specific normalization. Iterating the form of Eq. (1.2.1]) leads to the conclusion that
all derivatives of the exponential function at the origin have unit value,

d"f(z)
dnz

lo=1. (1.2.2)

Thus the Taylor series expansion of this function about the origin is given by

=3 % . (1.2.3)

Since only the n = 0 term contributes at the origin, this sum clearly satisfies the boundary condition,

V=1, (1.2.4)
as long as you know that, by convention, 0! = 1 (but note that (—1)! = oo0). Likewise taking a
derivative yields
de? o sn—1 o P B
= EEASEE— = ¢, 1.2.5
dz ;(n—l)! ;n! c (125)

A little 227 style analysis confirms that this sum is convergent in the entire z plane (i.e., it is singular
only at 00), and serves to define the exponential function as an analytic function everywhere in the
finite (complex) z plane. To explore this function we first focus on the behavior of the exponential
function separately along both the real and imaginary axes.

1.3 Along the Real Axis: The Hyperbolic Functions

Focusing on the case z = x +iy — x with x (and y) purely real, we can easily confirm that the series
in Eq. increases quickly with increasing positive x and diverges to co as x — +00. On the
hand, for negative x, there is substantial cancellation between the terms, which alternate in sign, and
the exponential function decreases rapidly as x becomes more negative. In the limit x — —oco the
exponential function vanishes (e~> = 0). This behavior is illustrated in Fig. Since the logarithm
function is the inverse of the exponential function, a semi-log plot, as on the right in Fig. yields
“linear” behavior in the plot, i.e., Ine® = x.

It is useful to define even and odd functions in terms of the real exponential (remember that sym-
metries are important), which yields the so-called hyperbolic functions:

xT —X
cosh(z) = %, cosh(z) = cosh(—z),
er —e™”
sinh(z) = — sinh(z) = —sinh(—x) . (1.3.1)
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Figure 1.1: The exponential function along the real axis: LEFT- linear scale, RIGHT- logarithmic scale.

Using Eq. (1.2.2) the hyperbolic functions have the expected series expansions in terms of even and
odd powers;

cosh(z) = ,
|
= (2n)!
& x2n+1
sinh(x) = —_—. 1.3.2
(z) = (2n+1)! ( )
Other useful properties follow from these definitions and Eq. (1.2.1). In particular, we have
d cosh T e @
CO; (2) ¢ 26 = sinh(x),
T
d sinh T e ?
sn; (z) = 26 = cosh(z) . (1.3.3)
x

So it follows that the hyperbolic functions are eigenfunctions of the second order derivative (with
eigenvalue +1),

CZQC;ZSE(:C) = cosh(z),
chj;E(a:) =sinh(z). (1.3.4)
We also have
cosh?(z) = —6290 * 64_% +2 ;
sinh?(x) = 621+e42$_2 , (1.3.5)
so that
cosh?(z) — sinh?(x) = 1. (1.3.6)

11
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cosh x cosh x
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Figure 1.2: The hyperbolic function cosh z: LEFT- small z, RIGHT- large .
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Figure 1.3: The hyperbolic function sinh z: LEFT- small z, RIGHT- large .
It follows from the behavior of the exponential function that
22
cosh(:v—>0)—>1+? -1,
cosh(x — +00) — 400, (1.3.7)
while
sinh(z - 0)—z — 0,
sinh(z — +00) = o0 (1.3.8)

The behavior of the hyperbolic function cosh z is illustrated in Fig. for both small (left) and large
(right) x. The corresponding plots for sinh x appear in Fig.

A related (and useful) function is the hyperbolic tangent defined by the ratio,

sinh(x)
cosh(z)

tanh(z) = (1.3.9)

12
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sinh x tanh x
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Figure 1.4: The hyperbolic function tanh z: LEFT- small z, RIGHT- large z.

It follows from the above properties of the hyperbolic sine and cosine that for small x values (z < 1),
tanh(x) behaves like sinh(x), i.e., like z, while its magnitude is bounded by 1 for large . We have

tanh(zr < 1) =z,
tanh(z — +o00) — £1, (1.3.10)

as illustrated in Fig.

As we will see when we discuss Special Relativity in detail, the hyperbolic functions play an essential
role in explicitly representing transformations between reference frames which are moving with a fixed
velocity with respect to each other. Next we consider the exponential function along the imaginary
axis.

1.4 Along the Imaginary Axis: The Sinusoidal Functions

Consider the exponential function with a purely imaginary argument, z = iy (with y real). We can

write the series form in terms of separate even, real and odd, imaginary parts (i2 = —1, i3 = —i,
it =1, etc.) ,
(o] . [o¢] o0
) (Zy)n (_1)ny2n . (_1)ny2n+1
W= = — — 1.4.1
¢ ; ! ; 2n)! an_% @2n + 1) (14.1)

This immediately suggests the usual series definitions of the sinusoidal functions:

> _1>nx2n+1

sin(x) E;O ((2“1)1 . (1.4.2)

Note that these expressions are very similar to the hyperbolic forms in Eq. (1.3.2) except for the
alternating signs in the sums. Thus Eq. (1.4.1) can be written as (called Euler’s formula)

e = cos(y) + isin(y), cos(y) = Re(e?), sin(y) = Im(e), (1.4.3)

13
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which leads to the analogs of Eq. (1.3.1)) illustrating similar symmetry properties,

Y —iy
cos(y) = 5, cos(y) = cos(—y).
e —e W
sin(y) = — sin(y) = —sin(—y). (1.4.4)
i

We can also immediately obtain the analogs of Eq. ([1.3.3)

deos(y)  ie" —ie™W

dsin(y) ie® +ie”%
> e = costy) (1.45)

So it follows that the sinusoidal functions are eigenfunctions of the second derivative operator (with
eigenvalue —1),

d? cos(y)

L) _ — —cosy),
d?y

d?sin(y) )

The next step is to determine the analogs of Eqs. ((1.3.5)) and (|1.3.6]),

e 4 e 42

2 —
cos?(y) = 2
21y —2iy 2
sin?(z) = &€ y : (1.4.7)
so that
cos®(y) +sin®(y) = 1. (1.4.8)

Note, in particular, the similarities and differences from the hyperbolic case.
Now consider the values of these functions. From the series expansions, it follows that at the origin,
like the hyperbolic functions, we have
cos(0)
sin(0)

)

1
0. (1.4.9)

However, away from the origin (along the imaginary axis for e?), things are more interesting. The
alternating signs in the series expansions suggests that any growth will be smaller than that of the
hyperbolic functions. In fact, since the expression e is a pure phase with modulus 1, |[e®| = 1, it
is not surprising that the sinusoidal functions have magnitudes bounded above by 1, as is already
suggested by Eq. . The most straightforward approach is to simply evaluate the series in
Eq. . It is perhaps surprising, based on simply looking at the series expression, that the
numerical results lead to the conclusion that both of these functions are periodic with period 27,

cos(y + 2m) = cos(y) ,

sin(y + 27) =sin(y) ,
sin(y) = cos (g - y) . (1.4.10)
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Figure 1.5: The sinusoidal functions: LEFT- cosy, RIGHT- siny.

In fact, the transcendental number 7 can be determined numerically by solving for the smallest
positive real number for which the series expression for the sine function vanishes. In this path to m
no reference is made to circles or trigonometry, which is how this quantity is usually first introduced.
We are also led directly to the special cases,

' : 3
cos(m) = —1 = €™, cos(2m) = €*™ =1, cos (g) = cos (;) =0,

sin(r) =sin(27) = 0, sin (g) =1, sin (3277) = 1. (1.4.11)

This behavior is illustrated in Fig. The analogue to Eq. ([1.3.9)) is the sinusoidal tangent function
defined by

tany = oY (1.4.12)

and illustrated in Fig. Note that, since the numerator of this expression is maximum when the
denominator vanishes, this function has regularly spaced singularities along the real axis (separated
by zeros).

Another way to approach the discussion of periodicity is to recall that, as we already noted, the series
expansion for the exponential function in Eq. defines an entire function with no singularities
in the finite complex z plane. We also need to recall (from Phys 227) that a complex number can be
written in terms of it real and imaginary parts, z = x + iy, or it terms of its magnitude and phase,
z = |z|e'® with ¢ = tan~!(y/x). Thus, if we evaluate the exponential function just above the real
axis, z4 = 1e" § <« 1, we must get the same value if we go around the unit circle and approach the
real axis from below, z4 = 1e(i2”_i5). It is consistent for the exponential function to be branch cut
free if and only if the sinusoidal functions are periodic, e = e?¥%7,

We close this discussion by exploring the situation in the complex plane more generally. With the
definitions above we have

cos(z) = cos(x + 1y) = cos(x) cosh(y) — isin(z) sinh(y) ,
sin(z) =sin(x + iy) = sin(x) cosh(y) + i cos(z) sinh(y) . (1.4.13)
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Figure 1.6: The sinusoidal tangent function.

This should look familiar to the addition of angles formulas you learned in high school,

cos(a + B) = cos(a) cos(B) — sin(«) sin(f3) ,
sin(a + ) =sin(a) cos(B) + cos(a) sin(B) , (1.4.14)

plus
cos(iy) = cosh(y), sin(iy) = isinh(y), (1.4.15)

which follow directly from the series expressions above.

1.5 Rotations in 3-D

As a final mathematical physics subject to review we turn to rotations in 3 dimensions (3-D), which
will allow us to use the sinusoidal functions from above and prepare for the idea of Lorentz trans-
formations (in 4-D). For a discussion of rotations as a specific set of transformations described by
the mathematics of Group Theory see Chapter 10. For the current discussion consider vectors in
3-D, for example, the position vector 7 (or the velocity ¥ = 7, where the dot signifies the derivative
with respect to time), measured with respect to a chosen origin. To use specific vector and matrix
notation we introduce 3 orthonormal unit basis vectors, €1, é2 and é3 to obtain a completely defined
reference frame. (Note that you may be more familiar with the Z, § and Z notation, but the 1-2-3
notation is more common in the 4-D world to which we are headed.) These are represented by

1 0
é1=10],é=|(1],é=1[(0]. (1.5.1)
0 0 1
A general 3-D position vector is then represented by
F=axtér +a2éy+adé3=[22] . (1.5.2)
3
x

With the usual definition of spherical coordinates with polar angle 6 (measured from the é3 direction)
and azimuthal angle ¢ (measured from the é; direction in the é;-é; plane), along with the usual
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trigonometric definitions of the sinusoidal functions, we have the familiar vector components
z! = |F|sinfcos ¢, x? = |F|sinfsinp, 2> = |7 cos . (1.5.3)

Now we want to consider performing a rotation. There are actually two types of rotations possible.
We could choose to rotate the location vector 7 with the basis vectors fized, called an “active”
rotation, or we could instead rotate the basis vectors with the location vector fixed, i.e., rotate
the reference frame, called a “passive” rotation. The mathematics is the same if the two angles of
rotation differ by a sign. In this class we will be concentrating on transformations between different
reference frames and thus on passive rotations.

We can think of generating a rotation through a specified angle o as being represented by the
exponentiation of the appropriate “generator” of an infinitesimal rotation (see Chapter 10 for more
details). As you may have learned in your Quantum Mechanics (or Classical Mechanics, or 227/8)
class and we will discuss more later, the generators of an infinitesimal rotation about any of the 3 axes
(i.e., a rotations in the plane orthogonal to that axis, are given by the 3 components of the angular
momentum operator modulo a factor of i that carries the appropriate units). These 3 operators
obey the commutation relation (here we include the explicit factor of h),

[Jk, Jl] = Jle — Jle = ihﬁklme [k, l,m = 17 2, 3] y (1.5.4)
which is the algebra of the Rotation Group, SO(S)E

A useful 3-D representation of these operators is given by

00 0 0 0 i 0 —i 0
Ji=h|00 —i|,=h|000]|,J5=n[i 0 0]. (1.5.5)
0i 0 —i 00 000

The reader is encouraged to verify that the matrices in Eq. satisfy Eq. . Note further
that these matrices are traceless and Hermitian (.J, = Ji) (see also the discussion in Chapter 10).
While the precise form of these matrices may not be intuitively obvious, the general form should be
clear from our understanding of how ordinary rotations work. For example, a rotation about the
l-axis is a rotation in the 2-3 plane. It should serve to mix the 2 and 3 components of an ordinary
3-vector. Modulo the issue of phases, this is precisely what the form of the J; matrix in Eq. (1.5.5))
does. It transforms a 3-component into a 2-component and a 2-component into a 3-component (i.e.,
the only non-zero elements of the matrix perform this transformation)ﬂ

As an explicit example we consider a rotation by an angle o about the 3-axis. This is obtained by
exponentiating the corresponding generator times the angle of rotation. How do we evaluate the
exponentiation of a matrix? We simply recall that the exponential is defined by the power series of
Eq. and proceed. In particular, we want to evaluate the expression

Ry(a) = et/ = 3 OBy | S fiads/B)". (1.5.6)

n! n!
n=0 n=1

!The symbol € (called the Levi-Civita symbol) represents the unique completely antisymmetric 3 x 3 x 3 matrix,
which is normalized so that €123 = 1. Cyclical permutations of the indices 123 also yield unity, e.g., €231 = 1, while
non-cyclical permutations give -1, e.g., €213 = —1. Repeated indices yield zero, e.g., €11x = 0.

2Being able to think of rotations as either occurring in a 2-D plane or about the direction orthogonal to that
plane is an accident of (apparently) living where there are precisely 3 spatial dimensions. The “rotation in a plane”
interpretation is the one that generalizes to a larger number of spatial dimensions.
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with 1 the unit matrix,
100
1=]010
001

(1.5.7)

Note that, since the quantity in the exponent must be dimension-LESS, we have divided out the
factor of h. To evaluate the rest of the sum we note that each term is a 3 x 3 matrix determined by
the following properties of Js,

100
(J3/R)*" =10 1 0|, (J3/h)*"* = J3/h. (1.5.8)
000

So, by “pulling apart” the unit matrix and using Eq. (1.5.8)), we can rewrite Eq. (1.5.6) as

> (i J3/R)"
Rg(a) zajg/h 1+Z ZOL 3/

000 1 00 i 2n i (i)2 !
={000]+1010 + (J3/h) Y
001 00 0/ n=0 = 2n+ 1)
000 L 00y e 2n o0 2n+1
(=)™ (@™ . (=) (@)
={oo0o0]+fo1o0|> ot tildy/n)d (1.5.9)
001 000/ @) 20+ 1)

We recognize the series from Eq. (1.4.2]) and can write

s 2. (i3 /)"
Ry(a) = o/ =1 4 3 TR/
n=1
000 100
=[000]+010]cosa+i(Js/h)sinc
001 000
000 100 0 10
=(000])+([010])cosa+|—-10 0|sina (1.5.10)
001 000 0 00
cosa sina 0
= | —sina cosa 0

0 0 1

As expected for a rotation about the 3-axis, the 3-component is unchanged (the 1 in the lower right
corner of the rotation matrix), while the 1 and 2-components are mixed via the sinusoidal functions.
Note that the full rotation matrix is an Orthogonal matrix (Rs(a)™' = R3(a)?, the transpose is
the inverse) as we would expect for the representation of an element of the 3-D Orthogonal group,
SO(3), and has determinant 1 (1 x (cos? a — (—sin?a)) = 1).

If we explicitly apply this rotation to a general location vector, we obtain (recall Eq. (1.5.2)), recall
also that we are performing a “passive” rotation where the location we are describing remains fized
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while the axes of the reference frame are rotated)

cos ax® + sin ax?

7 = R3(a)F = | —sinaz' + cosax? | . (1.5.11)
3
x

Returning to the spherical coordinate notation of Eq. (1.5.3)), we have

P |7] sin 0(cos ¢ cos o + sin ¢ sin ) = |7] sin 0 cos(¢p — ),

2 = |7] sin 6 (sin ¢ cos o — cos ¢ sin ) = |7] sin @ sin(¢p — ),

2 =a? = |r| cos @, (1.5.12)
where the last steps in the first two lines use the expressions in Eq. . This result should
be intuitively reasonable. First, as already noted, a rotation about the 3-axis does not change the
3-component, i.e., the polar angle 6 is unchanged. Such a rotation does, however, mix the 1 and
2-components. Since the rotation of the axes by angle « is in the same sense as the definition of the
azimuthal angle ¢, the azimuthal angle of the (unrotated) location vector as measured in the rotated
reference frame is reduced by «, ¢’ = ¢ — a.. This explicit example also serves to illustrate the again
intuitive result that such a rotation does not change the length of the rotation vector, which is given
by the “scalar” product of the vector with itself denoted by |7]> = 7. This is called a scalar product
precisely because it is not changed by rotations. (The label scalar is to be contrasted with objects
labeled as vectors that are changed by rotations.) In detail we have

7o 7= (21)2 4 (22)? + (2°)? = |7 (sin® O cos® ¢ + sin® O sin” ¢ + cos® §)
=7 (sin 6 + cos® 0) = |F]?, (1.5.13)

and
7o = (x’1)2+(x'2)2—|—(:1:’3)2 = |71? (sin® 0 cos*(¢ — «) + sin fsin’ (¢ — a) + cos® 0) = |7]*. (1.5.14)

The scalar product of two different 3-vectors is also unchanged by rotations, since it depends only
on the polar angle between the directions of the two vectors. Again in detail we have

71 -7 = (21)(23) + (2)(23) + (2)(3)
= |71 ||72| (sin 0y sin O2(cos ¢1 cos 2 + sin ¢1 sin ¢a) + cos 01 cos 03)
= |71||72| (sin 0y sin 63 cos(p1 — ¢2) + cos b1 cos 02)
=|71||72| cos Abrp = T - T, (1.5.15)

where the last step arises from recognizing the expression for the cosine of the angle between two
directions, cos A2, expressed in spherical coordinates ((01, ¢1), (62, ¢2)) (which you learned about
in Phys 227/8). Since this expression involves only differences between the spherical coordinate
angles, it will be unchanged when these angles are changed in identical ways by a rotation. The
corresponding group of transformations (rotations) is labeled the Orthogonal Group since orthogonal
vectors remain orthogonal after the transformation.

The reader is encouraged to evaluate more general 3-D rotations and prepare to consider 4-D trans-
formations - the Lorentz transformations. These will be expressed in terms of 4 X 4 matrices similar,
but not identical, to the rotation matrices above. 4-D Lorentz scalar products of a pair of 4-vectors
(invariant under Lorentz transformations) will play a central role in our discussion.
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1.6 Examples

To complete this discussion we present the results of rotation about the 1 and 2 axes, results the
reader should check. It follows from the explicit expressions in Eq. that we have the analogues
of Eq. as

000
1
0

[an}
[en}

(J1/h)*" = , (Ji/R)* T =gy /h, (1.6.1)

)
[

and
100

(Jo/B)*" =10 0 0|, (Jo/R)*" " = Jy/h. (1.6.2)
001

)

Thus we can nearly guess the corresponding rotations by an angle o about these two axes. For the
rotation about the 1 axis we have

, 2. (iaJy /)"
Rifa) =/ =143 27 7’1L'/)
n=1
100 000
=({000)+([010]cosa+i(Ji/h)sina
000 001
100 000 0 0 O
=|{000]4+]010]cosa+ |0 0 1]sina (1.6.3)
000 001 0 -10
1 0 0
=0 cosa sina
0 —sina cosa

To obtain an intuitive picture (or check) of the “signs in front of the sines” consider a vector in the
2-3 plane where both the 2- and the 3-components are positive (2 > 0 and 2% > 0) and the vector
lies in the 2-3 plane oriented between the positive 2- and 3-axes. Then a positive rotation about
the 1 axis (your right hand is essential here) rotates the 2-axis towards the fixed location vector and
the 3-axis away from the fixed location vector. Hence we expect that the 2-component in the new,
rotated frame to be larger (than in the old frame), while the 3-component will be smaller. This
result is precisely what the “signs” in Eq. tell us, i.e., addition occurs for the 2-component
while subtraction occurs for the 3-component.
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Finally the result for a rotation about the 2 axis is clear except, perhaps, the signs. We have

Ry(a) =€/ =143 (ivJo/h)

= n!

000 100
=(010)+([000]cosa+i(Jz/h)sinc

000 001

000 100 00 -1
=|{010]4+1000]cosa+ |00 0 |sinc (1.6.4)

000 001 10 0

cosa 0 —sina
= 0 1 0

sina 0 cosa

Again these are the expected Orthogonal matrices with unit determinant. To check the signs we can
perform a similar exercise to that above, but now in the 1-3 plane. A positive rotation about the
2-axis moves the 3-axis towards the fixed location vector and the 1-axis away. Hence we expect the
“4+” sign in the 3-row of the matrix and the “-” sign in the 1-row as seen in Eq. (1.6.4)).
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Chapter 2

Special relativity

2.1 Galilean relativity

We start by considering an important example of an invariance, i.e. an invariance of the equations
of motion under a change of the coordinate system. In particular, Newton’s laws of motion,

- dé p

“*r_F R 2.1.1
. 2=z (21.1)
retain the same form if one substitutes, i.e., changes coordinates via,

—

7 -z +at, —p' +mi, 2.1.2
P—D

for any velocity @ which is constant, i.e., independent of time, di/dt = 0. In other words, equations

(11) and [@1:2) imply that

—/ =/ —/
W AP (2.1.3)
dt dt m

This argument indicates that changing coordinates to those of a (relatively) moving (inertial) ref-
erence frame does not affect the form of Newton’s equations. In other words, there is no preferred
inertial frame in which Newton’s equations are valid; if they hold in one frame, then they hold in all
inertial frames. This is referred to as Galilean relativity. Note that an intrinsic feature (assumption)
of Galilean relativity is that clocks, i.e., time, are the same in all inertial frames. Once they are
synchronized between two different inertial frames, they will remain synchronized.

Consider a particle, or wave moving with velocity ¢ when viewed in the unprimed frame. In that
frame the position of the particle (or crest of the wave) is given by #(t) = Zy + ¢'¢t. In the primed
frame, using (2.1.2), the location of the same particle or wave-crest is given by Z'(t) = o+ (7 — @) t.
Hence, when viewed in the primed frame, the velocity of the particle or wave is given by

—/

=01 (2.1.4)

This shift in velocities upon transformation to a moving frame is completely in accord with everyday
experience. For example, as illustrated in Figure if a person standing on the ground sees a
car moving at 100 kph (kilometers per hour) parallel to a train moving at 80 kph, then a person

© Stephen D. Ellis, 2014 22



Particles and Symmetries CHAPTER 2. SPECIAL RELATIVITY
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Figure 2.1: A moving train and car, as seen from the ground (left), and from the train (right).

sitting in the train will see that car moving with a relative velocity of 20 kph = (100 — 80) kph,
while the person on the ground recedes from view at a velocity of —80 kph. Similarly, a sound wave
propagating at the speed of sound v, (in a medium), as seen by an observer at rest with respect to
the medium, will be seen (or heard) as propagating with speed v" = vs — u by an observer moving
in the same direction as the sound wave with speed u (with respect to the medium). Consequently,
the frequency f’ = v'/\ heard by the moving observer (i.e., the number of wave fronts passing the
observer per unit time) will differ from the frequency f = vs/A heard by the stationary observer,

, Us—U U
= = 1—— . 2.1.5
ptt=r (i) (2.15)
This is the familiar Doppler shift for the case of a moving observer and stationary source, where
both velocities are measured with respect to the medium. Recall from introductory physics that
the medium plays an important here. If, with respect to medium, it is instead the observer who is
stationary and the source that is moving (with the two still separating), the resulting Doppler shift
is now

fr= S (2.1.6)
(1+2)
Of course, to first order in u/vs the results are identical, i.e., (2.1.6)) approaches (2.1.5)), for u/vs < 1,
f u
fr= lufvsc1= f{1—— . (2.1.7)
(1) g
However, as u approaches vs (u/vs — 1) the limits of (2.1.6) and (2.1.5) are quite different,
, u
fr=rt1- e lu/vs—1—> 0, (2.1.8a)
S
f f
f, = 7~ |u/fus—>14> 5 . (218b)
(1+2)

Thus there is a special reference frame for sound, the rest frame of the medium in which the sound
propagates.
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2.2 Constancy of ¢

When applied to light (i.e., electromagnetic radiation) the Galilean relativity velocity transformation
predicts that observers moving at different speeds will measure different propagation velocities
for light coming from a given source (perhaps a distant star). This conclusion is wrong. Many
experiments, including the famous Michelson-Morley experiment, have looked for, and failed to
find, any variation in the speed of light as a function of the velocity of the observer. It has been
unequivocally demonstrated that does not apply to light. Note also that, unlike sound, light
requires no medium to propagate.

Newton’s laws, and the associated Galilean relativity relations (2.1.2]) and (2.1.4)), provide extremely
accurate descriptions for the dynamics of particles and waves which move slowly compared to the
speed of light ¢. But Newtonian dynamics does not correctly describe the behavior of light or (as we
will see) any other particle or wave moving at speeds which are not very small compared to ¢. Our
goal is to find a formulation of the dynamics which does not have this limitation.

We will provisionally adopt two postulates:

Postulate 1 The speed of light (in a vacuum) is the same in all inertial reference frames.

Postulate 2 There is no preferred reference frame: the laws of physics take the same form in all
inertial reference frames.

We will see that these postulates lead to a fundamentally different view of space and time, as well as to
many predictions which have been experimentally tested — successfully. In particular, we must view
the world as intrinsically 4-dimensional. Not only do velocities change as we move between different
inertial frames, but time does also. Yet, as required to match experiment, this new description of
space-time must reduce to the familiar Galilean result in the limit v < c.

2.3 Clocks and rulers

A clock is some construct which produces regular “ticks” that may be counted to quantify the passing
of time. An ideal clock is one whose period is perfectly regular and reproducible. Real clocks must
be based on some physical phenomenon which is nearly periodic — as close to periodic as possible.
Examples include pendula, vibrating crystals, and sun-dials. All of these have limitations. The
period of a pendulum depends on its length and the acceleration of Earth’s gravity. Changes in
temperature will change the length of a pendulum. Moreover, the Earth is not totally rigid: tides,
seismic noise, and even changes in weather produce (small) changes in the gravitational acceleration
at a given point on the Earth’s surface. The frequency (or period) of vibration of a crystal is affected
by changes in temperature and changes in mass due to adsorption of impurities on its surface. In
addition to practical problems (weather), the length of days as measured by a sun-dial changes with
the season and, on much longer time scales, changes due to slowing of the Earth’s rotation caused by
tidal friction. On the other hand, if we observe the behavior of quantum mechanical systems such
as individual atoms, we see much more robust periodic behavior]l]

! Atomic clocks can now provide a very high time standard indeed as described in this Wikipedia [article.
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An idealized clock, which is particularly simple e
to analyze, is shown in Fig. A short pulse
of light repeatedly bounces back and forth (in a
vacuum) between two parallel mirrors. Each time

>
the light pulse reflects off one of the mirrors con- :i
stitutes a “tick” of this clockPl If L is the distance
between the mirrors, then the period (round-trip
7

ligh 1 ti f this clock is At = 2L/c.
1ght trave tlme) of this clock 1s At /C Figure 2.2: An idealized clock in which a pulse of light

repeatedly bounces between two mirrors.

Now consider this same clock as seen by an ob- F——— —
server moving to the left (perpendicular to the di-
rection of the bouncing light) at velocity —u. In
the observer’s frame, the clock moves to the right
at velocity u, as shown in Fig. Let At’ be the
period of the clock as viewed in this frame, so that
the pulse of light travels from the lower mirror to
the upper mirror and back to the lower mirror in
time At’. The upper reflection takes place halfway
through this interval, when the upper mirror has
moved a distance u At’ /2 to the right, and the light
returns to the lower mirror after it has moved a distance u At’. Hence the light must follow the oblique
path shown in the figure. The distance the light travels in one period is twice the hypotenuse,
D =2\/L%2+ (uAt'/2)2 = \/AL? + (u At')2. Now use the first postulate: the speed of light in this
frame is ¢, exactly the same as in the original frame. This means that the distance D and the period
At' must be related via D = ¢ At’. Combining these two expressions gives ¢ At = \/4L? + (u At’)?
and solving for At’ yields At' = 2L/+/¢? — u?. Inserting 2L = ¢ At and simplifying produces

AY— AL (2.3.1)

1—(u/c)?

This is a remarkable result. It shows that the period of a clock, when viewed in a frame in which the
clock is moving, is different, and longer, than the period of the clock as viewed in its rest frame. This
phenomena is known as time dilation. It is an inescapable consequence of the constancy of the speed
of light. Although we have analyzed a particularly simple model of a clock to deduce the existence
of time dilation, the result is equally valid for any good clockE] In other words, moving clocks run
slower than when at rest, by a factor of

]
time 0 time At/2 time A#

Figure 2.3: Three snapshots of the same clock viewed
from a moving frame.

1
L ey R

where u is the speed with which the clock is moving. Note that v > 1 for any non-zero speed u which
is less (in magnitude) than c.

(2.3.2)

2To actually build such a clock, one would make one of the mirrors partially reflecting so that a tiny part of each
light pulse is transmitted and measured by a photo-detector. These practical aspects are inessential for our purposes.

3After all, if some other good clock remains synchronized with our idealized clock when viewed in their common
rest frame, then the same synchronization between the two clocks must also be present when the two clocks are viewed
in a moving frame.
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In the above discussion, we examined the case where the
axis of our idealized clock was perpendicular to the direction ATAN
of motion. What if the axis of the clock is parallel to the
direction of motion? This situation is shown in Fig.
Analyzing this case is also instructive.

e
Figure 2.4: Our idealized clock, now rotated
The round-trip light travel time (or period) must again be so that its axis is parallel to the direction of

At = v At, because time dilation applies to any clockE] Let motion.

L’ be the distance between the mirrors, as viewed in the primed frame. The mirrors are moving to
the right at velocity u, as shown in the figure. Suppose the light reflects off the right-hand mirror at
time 0t’ after leaving the left-hand mirror. During this time the right-hand mirror will have moved
a distance u 0t’ and therefore the distance light travels on this leg is L' + u dt’, longer than L’ due
to the motion of the mirror. Since At’ is the round-trip time, the light travel time for the return leg
must be At’ — §t’. On the way back, the light travel distance is L' — u (At’ — 6t’), since the motion
of the left-hand mirror is decreasing the distance the light must travel.

Now use Postulate 1. For the first leg, the light travel distance L’ + u §t' must equal cdt’, since the
speed of light in any (inertial) frame is ¢. Hence §t' = L' /(¢ — u). And for the second leg, equating
the distance L' — u (At' — 6t') with ¢ (At' — 6t’) implies that At' — 6t' = L' /(¢ + ). Substituting in
ot’ gives
r r 2c L’
At = = =~?(2L'Jc). 2.3.3
c+u+c—u 2 —u? v (2Le) ( )
But we already know that At' = v At = v (2L/c). The only way these two results for At can be
consistent is if the distance L’ between the mirrors, as seen in the frame in which the clock is moving
parallel to its axis, is smaller than L by a factor of ~,

L' = L_ L/1—(u/c)?. (2.3.4)

v

This phenomena is known as Lorentz contraction. We have deduced it by using an ideal clock to
convert a measurement of distance (the separation between mirrors) into a measurement of time.
But the same result must apply to the measurement of any length which is parallel to the direction
of motion. In other words, a ruler whose length is L, as measured in its rest frame, will have a length
of L' = L/v when viewed in a frame in which the ruler is moving with a velocity parallel to itself
(i.e., parallel to the long axis of the ruler).

2.4 Observational tests

As we have seen, both time dilation and Lorentz contraction are direct, logical consequences of the
frame-independence of the speed of light. Therefore every experimental test of the frame indepen-
dence of c is a test of the existence of both time dilation and Lorentz contraction. Nevertheless, it is
interesting to ask how these effects can be directly observed.

4To expand on this, imagine constructing two identical copies of our idealized clock. In their common rest frame,
orient the axis of one clock perpendicular to the axis of the other clock. Since these two ideal clocks remain synchronized
when viewed in their rest frame, they must also be synchronized when viewed from a moving frame whose velocity is
parallel to one clock and perpendicular to the other.

26



Particles and Symmetries CHAPTER 2. SPECIAL RELATIVITY

One place where time dilation has a “real world” impact is in the functioning of the global positioning
system (GPS). Time-dilation, due to the orbital motion of GPS satellites, slows the atomic clocks
carried in these satellites by about 7 microseconds per day. This is easily measurable, and is a huge
effect compared to the tens of nanosecond (per day) timing accuracy which can be achieved using
GPS signalsf]

A different observable phenomena where time dilation plays a key role involves muons produced in
cosmic ray showers. When a high energy cosmic ray (typically a proton or atomic nucleus) strikes
an air molecule in the upper reaches of the atmosphere (typically above 50 km = 5 x 10* m), this
can create a particle shower containing many elementary particles of various types (which we will
be discussing later) including electrons, positrons, pions, and muons. Muons are unstable particles;
their lifetime 7 is 2.2 microseconds. Moving at almost the speed of light, a high energy muon will
travel a distance of about c¢7 ~ (3 x 108 m/s) x (2 x 107%s) = 600 m in time 7. This is small
compared to the height of the atmosphere, and yet muons produced in showers originating in the
upper atmosphere are easily observed on the ground. How can this be, if muons decay after merely
a couple of microseconds?

The resolution of this apparent paradox is time dilation. Two microseconds is the lifetime of a muon
in its rest frame. One may view a muon, or a bunch of muons moving together, as a type of clock. If
there are Ny muons initially, then after some time ¢ (as measured in the rest frame of the muons) on
average all but N; = Nye /7 muons will have decayed. Turning this around, if all but some fraction
Nj /Ny of muons decay after some interval of time, then the length of this interval equals 7 In(Ny/N)
— as measured in the muons’ rest frame. But as we have seen above, a moving clock (any moving
clock!), runs slower by a factor of 7. Therefore, fast moving muons decay more slowly than do muons
at rest. This means that muons produced in the upper atmosphere at a height H (typically tens of
kilometers) will have a substantial probability of reaching the ground before decaying provided they
are moving fast enough so that vc7 > H.

Muons produced in the upper atmosphere and reaching the earth before decaying also illustrate
Lorentz contraction — if one considers what’s happening from the muon’s perspective. Imagine
riding along with a muon produced in an atmospheric shower. Or, as one says more formally,
consider the co-moving reference frame of the muon. In this frame, the muon is at rest but the Earth
is racing toward the muon at nearly the speed of light. The muon will decay, on average, in two
microseconds. But the thickness of the atmosphere, in this frame, is reduced by Lorentz contraction.
Therefore, the surface of the Earth will reach the muon before it (typically) decays if (H/v)/c < 7.
This is the same condition obtained above by considering physics in the frame of an observer on the
ground. This example nicely illustrates the second relativity postulate: because the laws of physics
are frame independent, one may use whatever frame is most convenient to analyze some particular
phenomena. In this example, whether one regards time dilation or Lorentz contraction as being
responsible for allowing muons produced in the upper atmosphere to reach the ground depends on
the frame one chooses to use. However, both approaches agree with the fact that high energy muons
can reach the ground from the upper atmosphere.

SHowever, this is only part of the story regarding relative clock rates in GPS satellites. The difference in gravitational
potential between the satellites’ orbits and the Earth’s surface also produces a change in clock rates due to a general
relativistic effect known as gravitational redshift. This effect goes in the opposite direction (speeding orbiting clocks
relative to Earth-bound ones) and is larger in magnitude, 45 microseconds per day. So GPS clocks actually run faster
than clocks on the ground by 45 — 7 = 38 microseconds per day.
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2.5 Superluminal motion?

The expressions for time dilation and length contraction make sense (i.e., yield real,
not imaginary, results) only for u < ¢. As we will discuss more explicitly in Chapter 3, a basic feature
of Special Relativity is that nothing (no signal, no particle, no information) can travel faster than
the speed of light ¢. Thus there was considerable excitement in autumn 2011 when the OPERA
neutrino detector at the Gran Sasso Laboratory in Italy (see link below) reported that neutrinos
(which are thought to have a very small but nonzero mass) had seemed to travel to the detector from
CERN in Geneva, Switzerland at a speed that exceeded c. (see, e.g., this Science Daily story.) Such
a measurement requires the realization of the typical (introductory physics) picture of a reference
frame densely populated by synchronized identical clocks. In particular, the clocks in Geneva and
in Gran Sasso need to be synchronized with a precision of better than 50 nanoseconds. As the
discussion above suggests, this is a daunting challenge indeed, but possible using the GPS system.

Hence the OPERA result fundamentally conflicted with Special Relativity. Either our postulates, or
the experimental measurement, must be in error. All indications are that the original measurement
was in error. The OPERA team reported in early 2012 that this original measurement likely suffered
from a synchronization error caused by a loose connection in a cable relaying the GPS signals to the
experiment’s clocks. Subsequent results reported by the companion experiment ICARUS confirmed
that the speed of neutrinos is indeed bounded above by the speed of light.

2.6 Further resources

Michelson-Morley experiment, Wikipedia

GPS and Relativity, R. Pogge

Relativity in the Global Positioning System, N. Ashby
GPS, Wikipedia

Introduction to Cosmic Rays, VVC SLAC
Do-it-yourself Cosmic Ray Muon Detector

Cosmic ray, Wikipedia

OPERA, Wikipedia

ICARUS, Wikipedia

2.7 Example Problems

Kogut 2-1

This is a typical “Star Trek” style multi-frame problem. We have 2 frames of reference: the Earth
(frame S) and the spaceship (frame S’) moving with velocity v = 0.6 ¢ with respect to each other.
Everything is synchronized at event 1 (¢t; = ¢ = 0, 21 = 2} = 0), as the (small) spaceship passes
the earth. Event 2 marks the emission of a pulse of light from the earth towards the spaceship at
to = 10 minutes = 600 seconds. Event 3 marks the detection of the light pulse by our friends on the
spaceship. We want to use the concept of proper time, which is the time measured by a clock for
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events occuring at the location of the clock, i.e., for events occurring at the same point in the (rest)
frame of the clock.

(a) Q: Is the time interval between events 1 and 2 a proper time interval in the spaceship frame? In
the Earth frame?

A: Events 1 and 2 occur at the same point in frame S (i.e., on the Earth), but not at the same
point in frame S’ on the spaceship. Hence the time interval between events 1 and 2 is a proper time
interval on the Earth, but not on the spaceship.

(b) Q: Is the time interval between events 2 and 3 a proper time interval in the spaceship frame? In
the Earth frame?

A: Events 2 and 3 occur at different points in both frames. Hence the time interval between
events 2 and 3 is not a proper time interval in either frame.

(c) Q: Is the time interval between events 1 and 3 a proper time interval in the spaceship frame? In
the Earth frame?

A: Events 1 and 3 occur at the same point on the spaceship (frame S’) (e.g., at the center of

the small ship), but not at the same point on the Earth. Hence the time interval between events 1
and 3 is a proper time interval on the spaceship but not on the Earth.

(d) Q: What is the time of event 2 as measured on the spaceship?

A: We want to determine the time of the light emission in frame S, ¢5,. This time interval (from
event 1) is not a proper time interval in the S’ frame and we must account for time dilation (with
respect to the proper time interval in frame S). We have

1

1
VT2 J1-(06)2
th, = vty = 1.25(600 seconds) = 750 seconds = 12.5 minutes. (2.7.1b)

v 1.25, (2.7.1a)

(e) Q: According to the spaceship, how far away is the Earth when the light pulse is emitted?

A: We want to determine the distance to the earth from the spaceship at the time of the emission
in frame S’. This is just the distance traveled by the earth as viewed by spaceship at velocity v during
the time interval determined in part (d). We have

Iy = vth = (0.6) x 3.0 x 10°m/s x 750s = 1.35 x 101 m. (2.7.2)

(f) Q: From your answers in parts (d) and (e), what does the spaceship clock read when the light
pulse arrives?

A: So we want to determine the time of event 3 in frame S’ on the spaceship. We have determined
both the time of emission and the distance to earth at emission in this frame, and we know that
light travels at speed ¢ in all frames (plus the fact that the spaceship is not moving in its own rest
frame, S’). Thus we need only calculate the time for light to travel from the earth to the spaceship
and add it to the time of the emission (all in the S’ frame)

th=th+1y/c="7505+1.35x 10" m/(3.0 x 108 m/s) = (750 +450) s = 1200s = 20 minutes. (2.7.3)

(g) Q: Find the time of event 3 according to the Earth’s clock by analyzing everything from the
Earth’s perspective.
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A: We return to frame S and find the time of event 3. On the Earth we have that, at the time
of event 2, the distance to the rocket ship is

Iy = vty = (0.6) x 3.0 x 10>m/s x 600s = 1.08 x 10 m. (2.7.4)

So the time interval (in this frame) between events 2 and 3 is given by (note that the spaceship
continues to move in the S frame)

lo  1.08x10"m
c—v 1.2x108m/s

C(tg — tg) =1y + ’U(tg — tg) — t3 — 1o = =900s. (2.7.5)

So finally we obtain
ts =ta + (t3 — t2) = (600 4+ 900) s = 1500 s = 25 minutes . (2.7.6)

(h) Q: Are your answers to parts (f) and (g) consistent with your conclusions from parts (a), (b) and
(c)?

A: We learned in (c) that the time interval between events 1 and 3 is a proper time interval in
frame S’, but not S, where the interval is dilated. We can check this point via

t5y = (20 minutes)(1.25) = 25 minutes = 3, (2.7.7)
which checks with our result in (g).

Kogut 2-2

Here we consider two rockets, A and B, to define two reference frames, and let the rockets have
identical proper lengths (i.e., lengths in their respective rest frames) of 100 m. The two rockets
pass each other moving in opposite directions and we consider two events defined in frame A by the
passing of the front of rocket B. Event 1 is when the front of B passes the front end of A and event
2 is when the front of B passes the back end of A. The time interval in frame A between the two
events is 1.5 x 1076 s.

(a) Q: What is the relative velocity of the rockets?

A: Since we know the length of rocket A (in its rest frame) and the time interval for the front of
rocket B to travel the length of A, all measured in frame A, we can find the relative velocity from

100 m

o] = —————— = 6. 10" m/s. 2.7.
Urel = TE 5 1065 6.67 x 10" m/s (2.7.8)

(b) Q: According to the clocks on rocket B, how long does the front end of A take to pass the entire
length of rocket B?

A: The passing of rocket A viewed from B will be exactly equivalent to the passing of B viewed
in A (by symmetry, the relative speed is the same of both frames). Hence the time interval for these
2 events in B is again 1.5 x 107% s,

100 m 100 m
tg = = =15x100s=1¢4. 2.7.9
B o 6.67 x 107 m/s XA s (2.7.9)

(c) Q: According to the clocks on rocket B, how much time passes between the time when the front
end of A passes the front end of B and the time when the rear end of A passes the front end of B?
Does this time interval agree with your answer to (b)? Should it?
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A: Now consider a third event in B (event 1 was the front of A passing the front of B and event
2 was the front of A passing the back of B) defined by when the back of A passes the front of B.
The important point now is that in frame B the length of rocket A is (relativistically) contracted.
We have

1
N= s = 1.0257, (2.7.10a)
1- (Urel/c)2
100
Laing = Tm = 97.50m, (2.7.10b)
_ Lawp _tB

to = = =1.46 x 10 %seconds. (2.7.10c)
¥

Urel

This is a time interval defined by a new pair of events, not equivalent to the previous pair, and the
new time interval does not and should not agree with the result in (b).
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Chapter 3

Minkowski spacetime

3.1 Events

An event is some occurrence which takes place at some instant in time at some particular point
in (3-D) space. Your birth was an event. JFK’s assassination was an event. Each downbeat of a
butterfly’s wingtip is an event. Every collision between air molecules is an event. Snap your fingers
right now — that was an event. The set of all possible events is called spacetime. A point particle, or
any stable object of negligible size, will follow some trajectory through spacetime which is called the
worldline of the object. The set of all spacetime trajectories of the points comprising an extended
object will fill some region of spacetime which is called the worldvolume of the object.

3.2 Reference frames

To label points in space, it is convenient to introduce
spatial coordinates so that every point is uniquely as-
sociated with some triplet of numbers (z!, 2% 23). Sim-
ilarly, to label events in spacetime, it is convenient to
introduce spacetime coordinates so that every event is
uniquely associated with a set of four numbers. The re-
sulting spacetime coordinate system is called a (4-D)
reference frame. Particularly convenient are inertial
reference frames, in which coordinates have the form
(t,z', 2%, 3) where the superscripts here are coordinate
labels and not powers. The set of events in which 2!, 22,
and 2 have arbitrary fized (real) values while ¢ ranges
from —oo to 400 represent the worldline of a particle,
or hypothetical observer, which is subject to no exter-
nal forces and is at rest in this particular reference frame
with no acceleration. This is illustrated in Figure [3.1].
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Figure 3.1: An inertial reference frame. World-
lines w1 and wa represent observers at rest in this
reference frame, ws is the spacetime trajectory of
an inertial observer who is moving in this frame,
and wy is the spacetime trajectory of a non-inertial
object whose velocity and acceleration fluctuates.
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As Figure tries to suggest, one may view an inertial
reference frame as being defined by an infinite set of in-
ertial observers, one sitting at every point in space, all of
whom carry synchronized (ideal) clocks and all of whom

are at rest with respect to each other (but recall that ‘ ﬁiCD ‘ ji\iCD ‘ ﬁiCD ‘
this situation is a challenge to realize in practice - see ﬁi@ ﬁ@ ﬁi@ ﬁi@
the discussion of the OPERA experiment at the end of Joe Moe Lisa
Chapter 2). You can imagine every observer carrying a Fred Sue Curly Mary
notebook (or these days a tablet computer) and record- Figure 3.2: A family of inertial observers, all

ing the time, according to his clock, of events of interest, With synchronized watches and mutually at rest,
defines an inertial reference frame.

For example, consider a statement like “a moving | ‘
rod has length L”. Suppose that the worldline of /
the left end of the rod intersects the worldline of
some observer A at the event labeled A* whose
time, according to observer A’s clock, is ¢;. The
worldline of the right end of the rod intersects the
worldline of observer B at the event labeled B*
whose time (according to B) is also ¢1, and then
intersects the worldline of observer C at event C*
at the later time t2 (according to C). The interior of
the rod sweeps out a flat two-dimensional surface
in spacetime — the shaded “ribbon” bounded by
the endpoint worldlines shown in Figure [3.3].

A*

The surface of simultaneity of event A*, in the
reference frame in which observer A is at rest, is
the set of all events whose time coordinates in this O @

frame coincide with the time of event A*. So event ﬁ ﬁ ﬁ®

B* is on the surface of simultaneity of event A* (it A B C

is displaced precisely horizontally), while event C* Figure 3.3: A moving rod which passes by three inertial
is mot on the surface of simultaneity of event A*. observers who are at rest.

The length of the rod, in this reference frame, is defined as the spatial distance between observers
A and B, i.e., the spatial distance between the ends of the rod at the same time in this frame (on a
surface of simultaneity). As usual, it is convenient to choose Cartesian spatial coordinates, so that, if

observers A and B have spatial coordinates (zl,z%,2%) and (z}, 2%, 23), then their relative spatial
separation is given by

1/2
dap = [(zh—a!)? + (2%—2%)% + (2%—a%)2] " . (3.2.1)

One should stop and ask how the observers defining an inertial reference frame could, in principle,
test whether their clocks are synchronized, and whether they are all mutually at rest. The simplest
approach is to use the propagation of light. Suppose observer A flashes a light, momentarily, while
observer B holds a mirror which will reflect light coming from observer A back to its source. If the
light is emitted at time t4, according to A’s clock, it will be reflected at time tg, according to B’s
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clock, and the reflected pulse will then be detected by A at some time t4 + At. If A and B’s clocks
are synchronized, then the time tp at which B records the reflection must equal t4 + %At. Any
deviation from this indicates that the clocks are not synchronized. If this experiment is repeated,
then any change in the value of At indicates that the two observers are not mutually at rest.

3.3 Lightcones

Before proceeding further, it will be helpful to introduce a useful convention for spacetime coordi-
nates. When one does dimensional analysis, it is customary to regard time and space as having
different dimensions. If we define the spacetime coordinates of an event as the time and spatial coor-
dinates in a chosen inertial frame, (¢, z', 22, 23), then the differing dimensions of the time and space
coordinates will be a nuisance. Because the value of the speed of light, ¢, is universal — independent
of reference frame — we can use it as a simple conversion factor which relates units of time to units
of distance. Namely, we define the new coordinate (with dimensions of length)

¥ = ct, (3.3.1)

0

which is the distance light can travel in time ¢. Henceforth we will use x” in place of the time ¢ as

the first entry in the spacetime coordinates of an event, (z°, 2!, 22, 23).

Now consider a flash of light which is emit- x0

ted from the event with coordinates z° =

x! =22 = 23 = 0 — i.e., from the space-

time origin in this coordinate system. The

light will propagate outward in a spherical

shell whose radius at time t equals ct, which

is 2. Therefore, the set of events which

form the entire history of this light flash are

those events for which

[(21)2 + (22)2 + (23)2]"? = 2% We can

think of these events as forming a “cone”

as illustrated in Figure [3.4]. The intersec-

tion of this cone with the (2-D) 2%z plane

is comprised of the two half-lines at £45°,

for which z° = +z!' and 2 > 0. These o2
45° lines describe the path of light which is Figure 3.4: The “lightcone” of a flash of light emitted from the
emitted from the origin traveling in the 2! origin.

directions.

3.4 Simultaneity

Next consider the reference frames of two different inertial (non-accelerating) observers, A and B,
who are not at rest with respect to each other. As viewed in A’s reference frame, suppose that
observer B is moving with speed v in the x! direction (with respect to A), so that B’s position
satisfies

zt =t = (v/c) x® (in frame A).
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Figure depicts this situation graphically. (We have chosen the origin of time to be when A and B
are at the same point.) In reference frame A, the worldline of observer A is the vertical axis (labeled
wa), since this corresponds to all events with 2! = 22 = 2% = 0 and 2" arbitrary. The worldline of
observer B (in reference frame A and labeled wg) is a tilted line with a slope of ¢/v (slope here is
defined as Az?/Ax!, i.e., the tangent of the angle with respect to the z! axis), since this corresponds
to all events with 2° = (¢/v) z! (and vanishing x? and 23). As expected v — 0 corresponds to a
vertical line (infinite slope), while v — ¢ is the line at 45° (corresponding to unit slope and the light
cone in frame A).

Surfaces of simultaneity for observer A
correspond to horizontal planes in this
diagram, because such planes represent
all events with a common value of time
(or 2Y) according to A’s clock. But what
are surfaces of simultaneity for observer
B? In other words, what set of events
share a common value of time accord-
ing to B’s clock? These turn out to be
tilted planes with slope v/c (not ¢/v), as
shown in the figure by the red lines la-
beled 2'° =1, 2’9 = 0 and 2/° = —1.

A quick way to see that this must be the
case is to note that the 45° path of a light
ray traveling from the origin in the +z'
direction (the dashed line in Fig. [3.5))
bisects the angle between observer A’s
worldline (the z° axis in Fig. and his
surface of simultaneity defined by 20 =
0. Exactly the same statement must also
be true for observer B — she will also
describe the path of the light as bisecting the angle between her worldline and her surface of si-
multaneity which contains the origin (the red 2’° = 0 line). This is an application of our second
postulate (the physics looks the same in all inertial reference frames). Therefore, when plotted in
A’s reference frame, as in Figure [3.5], observer B’s worldline and surfaces of simultaneity must have
complementary slopes (c/v versus v/c), so that they form equal angles with the lightcone at 45°.

Figure 3.5: Worldline of two observers, and corresponding surfaces
of simultaneity. The dashed lines show the lightcone of the origin.

The essential point, which is our most important result so far, is that the concept of simultaneity
is observer dependent. Events that one observer views as occurring simultaneously will not be
simultaneous when viewed by a different observer moving at a non-zero relative velocity (as long as
the events occur at spatial points separated by a nonzero distance).

Because this is a key point, it may be helpful to go through the logic leading to this conclusion in
a more explicit fashion. To do so, consider the experiment depicted in Figure [3.6]. Two flashes of
light (the black lines) are emitted at events R and S and meet at event 7. In observer B’s frame,
shown in the left panel of Figure [3.6], the emission events are simultanecous and separated by some
distance L’. The reception event T is necessarily equi-distant between R and S. Lines wg, wg/, and
wpr show the worldlines of observers who are at rest in this frame and who witness events R, T',
and S, respectively. (In other words, wg is the worldline of observer B, sitting at the origin in this
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wA wB wB, wB” wA

Y

x’0=0 R

LUB LUB, LUB”

Figure 3.6: Two flashes of light emitted at events R and S which meet at event 7', as described in two different frames.

frame, while wg/ is the worldline of an observer sitting at rest a distance L'/2 away, and wgn is the
worldline of an observer at rest a distance L’ away, with all distances in the same direction.)

In observer A’s frame, shown in the right panel of Figure [3.6], the worldlines of observers at rest in
frame B are now tilted lines all with slope ¢/v. But the paths of the light rays (propagating within the
plane shown) lie at £45° in both frames, because the speed of light is universal. The emission event
S, which lies on B’s surface of simultaneity, is the intersection between the leftward propagating light
ray and the worldline wg~ of an observer who is at rest in B’s frame and twice as far from the origin
as the worldline, wp/, which contains the reception event T'. Since events R and S are simultaneous,
as seen in frame B (and the distance L’ in this construction is arbitrary), the frame B surface of
simultaneity containing events R and S must, in frame A, appear as a straight line connecting these
events. From the geometry of the figure, one can see that the triangles RTU and RT'S are similar,
and hence the angle between the simultaneity line RS and the the 45° lightcone is the same as the
angle between the worldline wg and the lightcone. This implies that the slope of the simultaneity
line is the inverse of the slope of worldline wg, as asserted above. (As an exercise determine where
the point U lies in the left panel and whether the triangles RTU and RT'S are again similar - they
are.)

3.5 Lorentz transformations

Just as many problems in ordinary spatial geometry are easier when one introduces coordinates and
uses analytic geometry, spacetime geometry problems of the type just discussed are also simpler if
one introduces and uses analytic formulas relating coordinates in different reference frames. These
relations are referred to as Lorentz transformations. Recall that in Chapter 1 we considered the
transformation of coordinates between two reference frames related by a rotation.

Using the two frames discussed above, let (20, 2!, 22, 23) denote spacetime coordinates in the inertial
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reference frame of observer A, and let (z'°, 2!, 22, 2/3) denote spacetime coordinates in the inertial
reference frame of observer B, who is moving in the z! direction with velocity v relative to observer
A. How are these coordinates related?

Assume, for simplicity, that the spacetime origins of both frames coincide. Then there must be some
linear transformation which relates coordinates in the two frames,

330 x
l’l €T
1'3 €T

where A is some 4 X 4 (real) matrix. (This is the 4-D analog of the 3 x 3 rotation matrix in
Eq. (1.5.10).) Since the transformation A describes the effect of switching to a moving frame, it is
referred to as a Lorentz boost, or simply a ‘boost’.

If the spatial coordinates of frame B are not rotated with respect to the axes of frame A, so that
observer B describes observer A as moving in the —a’! direction with velocity —v, then the Lorentz
boost will only affect lengths in the 1-direction, leaving the 2 and 3 directions unaffected. Therefore,
we should have

2 2 3

=22, =23 (for a boost along z1), (3.5.2)

implying that the boost matrix A has the block diagonal form

: (3.5.3)

oo Qe
copPbw™
R
===

with an identity matrix in the lower-right 2 x 2 block, and some non-trivial 2 x 2 matrix in the
upper-left block, which we need to determine.

Now the coordinates of events on the worldline of observer B, in frame B coordinates, satisfy z/! =
2'? = 2/3 = 0 since observer B is sitting at the spatial origin of her coordinate system. Specializing
to this worldline, the transformation (3.5.3)) gives

¥ =ar', 2! =720, (3.5.4)

implying that z! = (I'/a)z". But we already know that this worldline, in frame A coordinates,
should satisfy ! = (v/c) 2 since observer B moves with velocity v in the 1-direction relative to
observer A. Therefore, we must have I'/a. = v/c. We also know that from observer A’s perspective,
clocks at rest in frame B run slower than clocks at rest in frame A by a factor of v = 1/4/1 — (v/¢)?.
In other words,

- Aty - dx o
At do'0

Combining this with the required value of I'/a implies that I' = ~ (v/c). This determines the first
column of the Lorentz boost matrix (3.5.3)) .

0% a. (3.5.5)

To fix the second column, consider the events comprising the z’! axis in frame B, or those events
with 2% = 2/2 = 2/3 = 0 and 2’! arbitrary. These events lie on the surface of simultaneity of the
spacetime origin in frame B. Above we learned that this surface, as viewed in reference frame A, is
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the tilted plane with slope v/c, whose events satisfy 2° = (v/c)z'. But applied to the 2’1 axis in
frame B, the transformation (3.5.3]) gives

2 =Bt ' =Az"t, (3.5.6)

or 2% = (B/A) x'. Therefore, we must have 3/A = v/c. Finally, we can use the fact that events on
the path of a light ray emitted from the spacetime origin and moving in the 1-direction must satisfy
both 2/! = 2/% and 2! = 2V, since observers in both frames will agree that the light moves with speed
c. But if /! = 2/, then the transformation gives 2° = (a + B)2'%, and 2! = (I' + A) 2'°.
Therefore, we must have o + 8 =I' + A. Inserting a =, I' = (v/c) v, f = (v/c) A and solving for
A yields A = . Putting it all together, we have

v @/ 0 0
v/c 0 0

N R A 557
0 0 0 1

for a boost along the 1-direction with velocity v. The mixing of the 0 and 1 components of four-vectors
provided by this matrix is the direct analogue of the usual mixing of 2 spatial components under
an ordinary spatial rotation (recall Eq. (1.5.10)). In some sense the difference when mixing with
the 0 (or time) component is that the rotation “angle” is now imaginary and we obtain hyperbolic
functions (instead of sinusoidal functions - recall the discussion in Chapter 1), and no minus sign.
To see this point explicitly, a useful notation is

v =coshy, v v_ sinhy, tanhy = v , (3.5.8)
c c

so that Eq. (3.5.7) can be written in the evocative form

coshy sinhy 0

0
sinhy coshy 0 O
0
1

A= (3.5.9)

0 0 1
0 0 0

The quantity y is called the “rapidity” and is a useful kinematic variable at particle colliders like
the LHC. This notation efficiently encodes the fact that (following from the definition of v and the
hyperbolic functions)

2
A2 2 (3) — cosh?y —sinh?y = 1, (3.5.10)
c
which ensures that det A = 1 as was also true for ordinary rotations.
Using the matrix (3.5.7) or (3.5.9) and multiplying out the transformation (3.5.1)) yields

20 = v (xlo + %J)ll) — (COShyx’O + Sinhyxll) , 22 = x/27 (3'5.113)
a' =522’ +2') = (sinhya’® + coshya''), 2° = a3, (3.5.11D)

With a little more work, one may show that the general Lorentz transformation matrix for a boost
with speed v in an arbitrary direction specified by a unit vector n = (nq, n2,ns), n% + n% + n% =1is
given by
g v(/e)ny  y(v/e)ny v (v/c)ns

_ [/ 1+ (y=1)ni (v=Dmnz  (y=1)ning
A= 9 . (3.5.12)

Y(/e)ny (y=1)mng 14+ (y=1)n3 (y—1)n2ns

v(/e)ns (y=1)mng  (y=1)nans 1+ (y=1)n3
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Finally, it is always possible for two inertial reference frames to differ by a spatial rotation (of the
axes), in addition to a boost. The coordinate transformation corresponding to a spatial rotation may
also be written in the form (3.5.1)), but with a transformation matrix which has the block-diagonal
form

A= (1 R) (spatial rotation), (3.5.13)

where R is some 3 x 3 rotation matrix (an orthogonal matrix with determinant one as, for example, in
Eq. (1.5.10) in our discussion in Chapter 1, a representation of an element of the Special Orthogonal
Group SO(3) E[) In other words, for such transformations the time coordinates are not affected,

20 = 2’9, while the spatial coordinates are transformed by the rotation matrix R. The most general

Lorentz transformation is a product of a rotation of the form ([3.5.13|) and a boost of the form (3.5.12)),

A= Aboost X Arotation s (3514)

and is an element of the group SO(3,1), where the 3, 1 notation reminds us of the difference (in the
signs in the metric, see below) between the 3 spatial dimensions and the 1 time dimension.

3.6 Spacetime vectors

In ordinary three-dimensional (Euclidean) space, if one designates some point O as the spatial origin
then one may associate every other point X with a vector which extends from O to X. One can,
and should, regard vectors as geometric objects, independent of any specific coordinate system.
However, it is very often convenient to introduce a set of basis vectors {é1, é2, €3} (normally chosen
to point along orthogonal, right-handed coordinate axes), and then express arbitrary vectors as linear
combinations of the chosen basis vectors,

3
=) év'. (3.6.1)
i=1
The components {v'} of the vector depend on the choice of basis vectors, but the geometric vector
¥ itself does not.

In exactly the same fashion, once some event O in spacetime is designated as the spacetime origin, one
may associate every other event X with a spacetime vector which extends from O to X. Spacetime
vectors (also called “4-vectors”) are geometric objects, whose meaning is independent of any specific
reference frame. However, once one chooses a reference frame, one may introduce an associated set of
spacetime basis vectors, {ég, €1, é2, €3}, which point along the corresponding coordinate axes. And,
as in any vector space, one may then express an arbitrary spacetime vector v as a linear combination
of these basis vectors,

3
v=Y et (3.6.2)
©n=0

We will use Greek letters (most commonly v and /3, or 1 and v) to represent spacetime indices which
run from 0 to 3. And typically we will use Latin letters ¢, j, k to represent spatial (only) indices

'If you are not familiar with the concepts and language of group theory, which will be useful in much of our discussion
this quarter, you are encouraged to look at the brief introduction to group theory in Chapter 10 of the (supplementary)
lecture notes for this class.
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which run from 1 to 3. We will often use an implied summation convention in which the sum sign is
omitted, but is implied by the presence of repeated indices:

3
vt = vt (3.6.3)
pn=0

We will generally not put vector signs over spacetime vectors, instead relying on the context to make
clear whether some object is a (4-)vector. But we will put vector signs over three-dimensional spatial
vectors, to distinguish them from spacetime vectors.

The spacetime coordinates of an event are the components of the spacetime vector x associated with
this event in the chosen reference frame,

x:éuaz“Eé0x0+é1x1+é2:1:2+égx3. (3.6.4)

A different reference frame will have basis vectors which are linear combinations of the basis vectors
in the original frame. Consider a ‘primed’ frame whose coordinates {z'#'} are related to the coordi-
nates {z”} of the original frame via a Lorentz transformation ([3.5.1). It is convenient to write the
components of the transformation matrix as A#, (where the first index labels the row and the second
labels the column, as usual for matrix components). Then the linear transformation (3.5.1)) may be
compactly rewritten as

ot =AM, 2V (3.6.5)

The inverse transformation, expressing primed coordinates in terms of unprimed ones, is

o't = (ATHPE 2, (3.6.6)

v

where (A71)#  are the components of the inverse matrix A_1E| The components of any 4-vector
transform in exactly the same fashion when one transforms between two given reference frames.

The Lorentz transformation matrix also relates the basis vectors in the two frames (note the indices),

& =é, A", (3.6.7)

In other words, if you view the list (ép, é1, €2, €3) as a row-vector, then it is multiplied on the right
by a Lorentz transformation matrix A. The transformation of basis vectors must have precisely this
form so that the complete spacetime vector is frame independent, as initially asserted,
r=eé,a'M=¢, A (ATHE 2 = ¢, 2" (3.6.8)
Next recall that the dot or scalar product of two spatial vectors, a- 5, is defined geometrically, without
reference to any coordinate system, as the product of the length of each vector times the cosine of
the angle between them. One can then show that this is the same as the component-based definition,

a-b=>, a’ b, for any choice of Cartesian coordinates. It is this frame or rotation independence
that ensures this product is a scalar.

2For boost matrices of the form or , changing the sign of v (or y) converts A into its inverse. Note
that this changes the sign of the off-diagonal components in the first row and column, leaving all other components
unchanged. For transformations which also include spatial rotations, to convert the transformation to its inverse one
must transpose the matrix in addition to flipping the sign of these “time-space” components, corresponding to changing
the sign of the rotation angle.
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What is the appropriate generalization of the dot or scalar product for spacetime vectors? This
should be some operation which, given two 4-vectors a and b, produces a single number. The
operation should be symmetric, so that a -b = b- a, and linear, so that a- (b+c¢) =a-b+a-c. The
result should also be independent of the choice of (inertial) reference frame one uses to specify the
components of these vectors, i.e., be a scalar (unchanged) under Lorentz transformations. Finally
it should essentially reduce to the usual spatial dot product if both a and b lie within a common
surface of simultaneity. There is a (nearly) unique solution to these requirements.

However, there is a sign ambiguity when satisfying the above constraints (except the last) and you
will see two definitions of the Lorentz scalar product in common usage (and it is important to
recognize this fact in order to avoid confusion). The one typically labeled the “East Coast” choice
is given by a - b = —a’ b + a! b' 4 a? b 4 a3 b3. This definition of the dot product differs from the
four dimensional Euclidean space definition of a dot product merely by the change in sign of the
time-component term. It satisfies the required linearity and reduces to the usual spatial dot product
if the time components of both four vectors vanish. The alternative “West Coast” scalar product,
which is used in the the text by Kogut and will be used in this class, is given by

a-b=+a"° —a'bt —a?v? —aPb?, (3.6.9)
or with an implied summation on spatial indices, a - b = +a’b° — a’ b*. Only the overall sign of the
scalar or dot product changes between the two definitions, and not the underlying symmetry prop-
erties or the physics. Note that with the “West Coast” scalar product it is the 3 spatial components
that differ in sign from the Euclidean space scalar product, but with the advantage that typical
physically interesting scalar quantities will have positive values. (But be warned that the East Coast
definition is used when Prof. Yaffe teaches this course. As a result his lecture notes exhibit sign
differences in several places.)

To see that this definition of the scalar product is frame-independent (i.e., is really a scalar), it is
sufficient to check the effect of a boost of the form (since we already know that a rotation
of coordinates does not affect the three-dimensional dot product). Transforming the components of
the 4-vectors a and b to a primed frame, as in Eq. , using the boost gives

a'%=~v(a"—2Yad), ad'=v(a' —2a, a?=d?, a?=a?, (3.6.10a)

0O =~ (-2, o=y (b - 207, b =07, b =0 (3.6.10b)
Hence

a/ObIO _ a/l bll _ ,}/2 [+ (CLO _ % al) (bO _ % bl) _ (al _ % CLO) (bl _ % bO)]
=72 [1— (v/c)?] (+a%0° — a'b!)
= +a%° —a'b', (3.6.11)
where the last step used 72 = 1/[1 — (v/c)?]. Therefore, as claimed, the value of the dot product

(3.6.9) (or with the alternative definition) is independent of the specific inertial frame one uses to
define the vector coefficients and, in that sense, is a scalar.

The spacetime dot product is a useful construct in many applications (since the underlying
physics is Lorentz invariant and thus expressible in terms of Lorentz scalars). As a preview of things
to come, consider some plane wave gacoustic, electromagnetic, or any other wave type) propagating
with frequency w and wave-vector k. One normally writes the complex amplitude for such a wave
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as some overall coefficient times e~ “!*"%"%  Having already defined the spacetime position vector
whose time component z¥ = ¢t, if we also define a spacetime wave-vector k whose time component
kY = w/c then this ubiquitous phase factor may be written as a spacetime dot product,

—iwt+ik-Z

e =T, (3.6.12)

Similarly, in quantum mechanics the wave function of a particle with definite momentum p and
energy E moving in empty space is proportional to e~ Bt/ P E/h 1f we define a 4-momentum p with
time component p® = E/c, then this phase factor may also be written as a spacetime dot product,

o~ iBt/h+ipE/h _ —ipa/h (3.6.13)

(Note that in the East Coast definition the minus sign in the exponent becomes a plus sign.)

3.7 Units: What is large and what is small?

It may be helpful at this point to say a few words about units and the size of things. Recall from
freshman physics that one of the most confusing issues in the introductory course is the question of
units. For quantities with units (which we will call “dimensionfull” quantities) the specific size will
depend on the choice of units. For example, in (old) English units a typical student is approximately
6 feet tall, while in by now standard (except in the US) MKS units that means just 2 meters tall.
This is clearly a confusing situation. A (single) dimensionfull quantity has no intrinsic “size” as its
numerical value depends on the (arbitrary) choice of units. However, a dimensionfull quantity can
be (meaningfully) large or small compared to another dimensionfull quantity with the same units.
We often say that non-relativistic kinematics apply for small velocities. What we really mean is for
velocities small compared to the velocity of light c. Thus in the equations above the relevant measure
of relativistic effects is the ratio v/c (often labeled 8 = v/c) as in v = 1//1 —v?/c? = 1/4/1 — 2.
When f is small compared to one (the “natural” separator between large and small), non-relativistic
approximations are accurate, while as f — 1 we must use the full relativistic description.

Similarly when quantities like p - = in Eq. (3.6.13) are large compared to h (many “quanta”’) the
effects of interference are numerically small and “classical mechanics” pertains. Yet when p - z/h is
of order unity or smaller even bullets can display “wavy” (i.e., quantum mechanical) behavior.

A related issue is that the MKS system exhibits three fundamental varieties of dimensionfull quan-
tities, length (m), mass (kg) and time (s). Yet in the relativistic and quantum mechanical world
of particle physics that we want to discuss here, we clearly want to employ 4-vectors, which relate
time with space (and energies with momentum) as in Egs. and (and Eq. ) In
order to make the units of the different components match-up (as they must in order that we can
Lorentz transform the components into one another), we had to introduce all those factors of c. We
also introduced the factor of 1/4 in Eq. to ensure that the argument of the exponential is
dimensionless. Since the exponential is defined by a power series and each term in the series must
have the same units, the only possibility is that the exponent (the argument of the exponential) has
no units, i.e., is dimensionless.

Further, as noted above, the actual magnitudes of the standard units were chosen to correspond to
human scales (e.g., the size of a king). These choices are, of course, unnatural for particle physics
applications. For example, the mass of a proton is 1.67 x 10~27 kg while the spatial ”size” of a proton
is measured in fermi’s (1 femtometer = 1 fm = 107! m), not meters. Likewise the lifetime of a

42



Particles and Symmetries CHAPTER 3. MINKOWSKI SPACETIME

typical particle that decays via the strong interactions is of order 10723 s, which is the time for light

to travel across a particle of size 1 fm. Since the particle physics we will discuss later in this course is
“naturally” relativistic and quantum mechanical, we would like to make a different choice of scales
so that the speed of light ¢ and & are both of order 1. It turns out we can address all of the above
issues by defining a new set of ”particle physics units” such that both ¢ and A are exactly equal to
1M In the process we have reduced the number of types of dimensionfull quantities to 1. In these
rather surprising “natural” units we have

c=2.9979 x 10°m/s = 1, (3.7.1a)
i =1.055 x 10731Js = 6.58 x 1072*MeVs = 1. (3.7.1b)

Thus time now has the same units as distance. Likewise mass and energy have the same units and
both go like 1/distance or 1/time. In these new units the mass of the proton is essentially 1 GeV
(0.938 GeV/c?) (1 GeV = 1 gigaelectronvolt = 10° electronvolts). We also have one fm equal to
1/(197 MeV)~ 1/(200 MeV) = 1/(0.2 GeV) (1 MeV = 10° electronvolts). It is typical in particle
physics to express (nearly) all dimensionfull quantities in terms of the “natural” (particle physics)
unit of GeV. A list of useful values is provided in the following table, where the “old” units are
indicated in the [] brackets.

Units
1 kg = 5.61 x 10%° GeV [GeV/c?
1 m=5.07 x 10" GeV~! [hc/CeV]
1s=1.52x10* GeV~![h/GeV]
1 TeV = 10" eV = 10° GeV [GeV/c?]
1fm=1F=10"1 cm = 5.07 GeV ™!
(1 fm)? =10 mb = 10726 cm? = 25.7 GeV 2
(1 GeV)™? =0.389 mb

As suggested by the last 2 lines, the “areas” of particles (i.e., the cross sections for scattering) are
typically measured in millibarns (mb). Masses, energies and momenta are measured in GeV, while
distances and times are in GeV~1. Thus the product of distance and momenta (time and energy) is
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dimensionless, as desired. In these units the sizes of various “objects” become:

Sizes (~ means ignore factors of 2)
Universe ~ 1026 m = 5 x 10*! GeV~!(~ 10! galaxies)
Galaxy Supercluster ~ 10** m = 5 x 103 GeV~!
Galaxy ~ 10?! m = 5 x 10%¢ GeV~!(~ 10!! stars)
Star ~ 10 m = 5 x 10** GeV~*
Earth ~ 10" m = 5 x 10%* GeV ™!
Human ~ 10° m = 5 x 10'° GeV ™!
Atom ~ 107" m = 5 x 10° GeV ™!
Nucleus ~ 107 m = 5 x 10! GeV~!
Proton ~ 107" m = 5 x 10° GeV ™!
Present observational limit ~ 1071 m = 5 x 107* GeV !

Planck length ~ 1073 m = 5 x 1072 GeV~!

This last quantity is the length scale (inverse mass scale) set by the (very weak) gravitational inter-
actions. Note the huge range of sizes that characterize our universe.

You will not be surprised to learn that with only one fundamental type of dimensionfull unit it is easy
to define dimensionless ratios. In many instances these are the simplest quantities to understand
in particle physics. On the other hand, the really interesting (and more difficult to explain) quan-
tities are the small number of dimensionfull quantities. Examples include Aqcp (= 0.2 GeV), the
fundamental dimensionfull parameter characterizing the strong interaction, Gr (the Fermi constant,
~ 1.2 x 107® GeV~2) or My, (the mass of the W boson, ~ 80 GeV), the dimensionfull parameters
that characterize the weak interactions and Gy, Newton’s constant (=~ 6.7 x 107> GeV~2), that
characterizes the gravitational interaction.

For now in this course, we will keep the explicit factors of ¢ and h, but our goal is to become
comfortable with the natural units of particle physics where ¢ = A = 1.

3.8 Minkowski spacetime

In Euclidean space, the dot product of a vector with itself gives the square of the norm (or length) of
the vector, -7 = |#]?. This is the familar situation for three dimensional spatial vectors. Proceeding
by analogy, we will define the square of a spacetime vector using the dot product (3.6.9)), so that

(a))=a-a=(a")? - (a")? - (a®)? — (a®)%. (3.8.1)

If Az is a spacetime vector representing the separation between two events, then the square of Ax
is called the invariant interval separating these events. This is usually denoted by s2, so that

52 = (Az°)? — (Az1)? — (Az?)? — (Az?)2. (3.8.2)
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Spacetime in which the “distance” between events is defined by this expression is called Minkowski
Spacetimeﬁ

The definition of the invariant interval , or the square of a vector , differ from the usual
Euclidean space relations due to the minus signs in front of the spatial component terms (or in front
of the time components in the other definition). But this is a fundamental change. Unlike Euclidean
distance, the spacetime interval s can be positive, negative, or zero (and this is true for either
definition of where the minus signs go). Let Az be the spacetime displacement from some event X
to another event Y. If the interval s> = (Axz)? vanishes, then the spatial separation between these
events equals their separation in time multiplied by c,

=0 = (AD)? = (Az")? = (cAt)? (lightlike separation). (3.8.3)

This means that light could propagate from X to Y (if At > 0), or from Y to X (if At < 0). In other
words, event Y is on the lightcone of X, or vice-versa. In this case, one says that the separation
between X and Y is lightlike.

If the interval s2 is positive (in our metric), then the spatial separation is less than the time separation
(times ¢),

$2>0 = (AD)? < (A20)% = (cAt)? (timelike separation). (3.8.4)
This means that some particle moving slower than light could propagate from X to Y (if At > 0),
or from Y to X (if At < 0). In other words, event Y is in the interior of the lightcone of X, or
vice-versa. In this case, one says that the separation between X and Y is timelike.

Finally, if the interval s? is negative (in our metric), then the spatial separation is greater than the
time separation (times c),

<0 = (AD)?> (A20)% = (cAt)? (spacelike separation). (3.8.5)

In other words, event Y is outside the lightcone of X, and vice-versa. In this case, one says that the
separation between X and Y is spacelike. These possibilities are shown pictorially in Figure [3.7].

With the alternate definition of the scalar product, i.e., the extra overall minus sign, spacelike
separations correspond to positive values of s while timelike separations are negative. This is the
most confusing feature of having two definitions in wide usage - you need to know what definition is
being used to distinguish spacelike from timelike from the sign aloneﬁ

3Minkowski spacetime is the domain of special relativity, in which gravity is neglected. Correctly describing grav-
itational dynamics leads to general relativity, in which spacetime can have curvature and the interval between two
arbitrary events need not have the simple form . We will largely ignore gravity.

A further word about index conventions may also be appropriate. It is standard in modern physics to write the
components of 4-vectors with superscripts, like a* or ", as we have been doing. Although we will not need this, it is
also conventional to define subscripted components which, in Minkowski space (with our choice of the scalar product),
differ by flipping the sign of the space components, so that ay = —a® (k = 1,2,3) for any 4-vector a. This allows
one to write the dot product of two 4-vectors a and b as a,b* (with the usual implied sum). More generally, in
curved space one defines a metric tensor g, via a differential relation of the form ds® = g,,, dz* dz”, and then defines
Gy = guv a” so that a-b = aub" = a"b, = guv a” b”. In flat spacetime the metric tensor is diagonal: “West Coast”
guv = diag[l, —1,—1,—1], “East Coast” g,.., = diag[—1,1,1,1].

4When you begin a physics conversation with another physicist, the first question should be to establish what sign
convention to use (an essential part of the “secret” physicist’s handshake). The choice is typically correlated with
where the physicist went to graduate school and this explains the coast-based labels. Those trained on the East Coast,
e.g., Larry Yaffe, use the sign convention used, e.g., in the autumn 2013 version of this class, while those trained on the
West Coast, e.g., John Kogut and Steve Ellis, tend to use the convention used in this class this quarter. You should
learn to be fluent in both.

45



Particles and Symmetries CHAPTER 3. MINKOWSKI SPACETIME

(i)
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x2

x1
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(iv) (iv)

Figure 3.7: The past and future lightcones of an event X separate spacetime into those events which are: (i) timelike
separated and in the future of X, (i) lightlike separated and in the future of X, (iiz) spacelike separated, (iv) lightlike
separated and in the past of X, and (v) timelike separated and in the past of X.

3.9 The pole and the barn

A classic puzzle illustrating basic aspects of
special relativity is the pole and the barn,
sketched in Figure |3.8|. You are standing
outside a barn whose front and back doors : T
are open. A (very fast!) runner carrying a

long horizontal pole is approaching the barn. 10m
The (proper) length of the barn (measured ﬁ?

in its rest frame) is 10 meters. The length

of the pole, when measured at rest, is 20 Figure 3.8: A relativistic runner, carrying a long pole, ap-
meters. But the relativistic runner is moving proaches and passes through a barn. Does the pole fit within
at a speed of § ¢ ~ 0.866 ¢, and hence the the barn?

pole (in your frame) is Lorentz contracted by a factor of 1/v = /1 — (v/c)? = 1/2. Consequently,
from your standpoint, the pole just “fits” within the barn; when the front of the pole emerges from
one end of the barn, the back of the pole will have just passed into the barn through the other door.

v=0.866c

But now consider this situation from the runner’s perspective. In his (or her) co-moving frame, the

pole is 20 meters long. The barn is coming toward the runner at a speed of —§ ¢, and hence the
barn which is 10 meters long in its rest frame is Lorentz contracted to a length of only 5 meters.

The pole cannot possibly fit within the barn!
Surely the pole either does, or does not, fit within the barn. Right? Which description is correct?

This puzzle, like all apparent paradoxes in special relativity, is most easily resolved by drawing
a spacetime diagram which clearly displays the relevant worldlines and events of interest. It is
often also helpful to draw contour lines on which the invariant interval s? (relative to some key
event) is constant. For events within the z°-z! plane, the invariant interval from the origin is just
52 = (29)2 — (21)2. Therefore, the set of events in the 202! plane which are at some fixed interval
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s? from the origin lie on a hyperbolaE]

Let us create a spacetime diagram for this puzzle working in the reference frame of the barn. (This
is an arbitrary choice. We could just as easily work in the runner’s frame.) Try doing this yourself
before reading the following step-by-step description of Figure [3.9.

Orient coordinates so that the ends of the barn are at z! = 0 and 2! = 10 m. Therefore, the worldline

of the left end of the barn (wr,) is a vertical line at x! = 0, while the worldline of the right end of
V3

the barn (wg) is a vertical line at ! = 10m. Since the pole is moving at velocity 73 c (in the x!
direction), the worldlines of the ends of the pole are straight lines in the #°-x! plane with a slope of
c¢/v =2/4/3 ~ 1.155. Call the moment when the back end of the pole passes into the barn time zero.
So the worldline of the back end of the pole (wf;) crosses the worldline of the left end of the barn at
event A with coordinates (2%, ') = (0,0). In the frame in which we’re working the pole is Lorentz
contracted to a length of 10 meters. Hence, the worldline of the front end of the pole (wf) must
cross the x! axis at event B with coordinates (x°,z') = (0,10m). This event lies on the worldline
wg of the right end of the barn, showing that in this reference frame, at time t = 0, the Lorentz

contracted pole just fits within the barn.

Now add to the diagram the surface of simultaneity of event A in the runner’s frame. From section
[3.4 we know that this surface, in the frame in which we are a drawing our diagram, is tilted upward
so that its slope is v/c ~ 0.866 (and the 45° lightcone of event A bisects the angle between this
surface and the worldline wg). The worldline wg of the right end of the barn intersects this surface
of simultaneity at event C, while the worldline w}, of the front of the pole intersects this surface at
event D. This surface of simultaneity contains events which, in the runner’s frame, occur at the same
instant in time. From the diagram it is obvious that event C lies between events A and D. In other
words, in the runner’s frame, at the moment when the back end of the pole passes into the barn, the
front end of the pole is far outside the other end of the barn — the pole does not fit in the barn.

The essential point of this discussion, and the spacetime diagram in Figure [3.9], is the distinction
between events which are simultaneous in the runner’s frame (events A, C, and D), and events which
are simultaneous in the barn’s frame (A and B). Both descriptions given initially were correct. The
only fallacy was thinking that it was meaningful to ask whether the pole does (or does not) fit within
the barn, without first specifying a reference frame. The answer depends on the choice of frame.

To complete our discussion of this spacetime diagram, consider the invariant interval between event
A (which is our spacetime origin) and each of the events B, C', and D. Within the two-dimensional
plane of the figure, the invariant interval from the origin is s? = (2°)? — (2!)?. We know that event
B has coordinates (z°,z') = (0,10m) so it is immediate that s 5 = —(10m)?. We could work out
the (20, 2') coordinates of events C' and D, and from those coordinates evaluate their interval from
event A. But this is not necessary since we can use the fact that events C' and D lie on the runner’s
frame surface of simultaneity of event A. We are free to evaluate the interval from event A using the
runner’s frame coordinates, instead of barn frame coordinates. Within the two-dimensional plane of
the figure, s? = (2'9)? — (2/1)2. Events A, C, and D are simultaneous in the runner’s frame, so all
their 2’9 coordinates vanish. And in this frame (the rest frame of the pole) we know that the pole’s
length is 20m, while the barn’s length is Lorentz contracted to 5m. Hence s%, = —(5m)? and
8?4 p=—(20 m)?2. Therefore, event C' must lie on the hyperbola whose intersection with the z! axis

®Recall that the equation 3? — 22 = s? defines a hyperbola in the (z,y) plane whose asymptotes are the 45° lines

y = +x. If s> < 0 then one branch opens toward the right and the other opens toward the left. If s> > 0 then one
branch opens upward and one opens downward.
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Figure 3.9: A spacetime diagram of the pole and the barn, showing events in the rest frame of the barn. The red
vertical lines are the worldlines wy, and wr of the left and right ends of the barn. The blue lines labeled wg and wpg
are the worldlines of the front and back of the pole, respectively. The thin blue line passing through events A, C, and
D is a surface of simultaneity in the runner’s reference frame. The hyperbola passing through event C shows events
at invariant interval s? = —(5m)2 relative to event A. Note that this hyperbola intercepts the z! axis at 5m. The
hyperbola passing through event D shows events at invariant interval s> = —(20m)? relative to event A. Note that
this hyperbola intercepts the z! axis at 20m.
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is at 5m, while event D must lie on the hyperbola whose intersection with the z! axis is at 20m, as
indicated by the 2 green curves.

3.10 Causality

Consider any two spacetime events A and B which w w
are spacelike separated. A basic consequence of
the fact that surfaces of simultaneity are observer
dependent is that different observers can disagree

;0:0
about the temporal ordering of spacelike separated *
events. For example, in the unprimed reference
frame illustrated in Flg B.10], event B l%es i'n the oz
future of event A — its z¥ coordinate is bigger. S|/ 0o
20 =

But event B lies below the 2/ = 0 surface of si-
multaneity which passes through event A. This
means that event B lies in the past of event A in A
the primed reference frame.

This should seem bizarre. If observers at rest in
the unprimed frame were to see some particle or
signal travel from event A to event B, then this
signal would be traveling backwards in time from
the perspective of observers at rest in the primed

Figure 3.10: Two spacelike separated events A and B.
In the unprimed frame, B is in the future of A, but in
frame. This is inconsistent with causality — the the primed frame B is in the past of A.

fundamental idea that events in the past influence
the future, but not vice-versa.

An idealized view of the goal of physics is the prediction of future events based on knowledge of the
past state of a system. But if different observers disagree about what events are in the future and
what events are in the past, how can the laws of physics possibly take the same form in all reference
frames? Are our two relativity postulates fundamentally inconsistent?

If it is possible for some type of signal to travel between events A and B then, because these two
events are outside each other’s lightcones, this would be superluminal propagation of information.
The only way that our postulates can be consistent is if it is simply not possible for any signal to
travel between spacelike separated events. In other words, a necessary consequence of our postulates
is that no signal whatsoever can travel faster than light. For fans of science fiction this is a sad state
of affairs, but it is an inescapable conclusion. (Read again the discussion at the end of Chapter 2 of
the recent, apparently wrong, observation of neutrinos traveling faster than the speed light.)

The situation is different if events A and B are timelike separated. First, A and B will be timelike
separated in all frames. Further, if B occurs after A in some reference frame (so that a signal could
propagate from A to B), then this same temporal ordering will obtain in all frames. To see this
last point, first note that, for a timelike separation, we have (ts — t,)? — (¥4 — )% > 0 in all
frames. The temporal ordering statement means that tp > t4 in some frame. In order to switch this
temporal ordering to t)3 < t/; in a different reference frame, there must be an intermediate reference
frame where t” g = t” 4, since this quantity changes smoothly with the intervening boosts. But the
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temporal separation can never vanish for a timelike separated pair of events (i.e., (t4 —tg)? > 0 in
all frames).

3.11 Example Problems

Kogut 2-6

The emission and the absorption of a light ray are two distinct spacetime events, which are separated
by a distance £ in the common rest frame of the emitter and the absorber. This question asks for the
spatial and temporal separation of these events as observed in a boosted reference frame traveling
with velocity v parallel to the direction from the emitter to the absorber. It is very similar to Kogut
problem 2-5. Three different methods for solving the problem (each of which are instructive) are
presented below.

Method #1: Thought-experiment

(a) In the original frame, the light ray travels a distance x9 — 1 = £ in a time ¢ = ¢/c. Now consider
the light ray emission/absorption process in a frame moving with speed v along the x! direction of
the original frame. Without loss of generality, assume that the origin of the boosted frame coincides
with the emission event. As seen in the boosted frame, the original frame is moving with velocity —v
along the 2! direction. Call the time between emission and absorption events (in the boosted frame)
', so in this frame the light ray travels a distance ct’. Since the distance between z7 and xo was ¢
in the original frame, it is now ¢/ in the boosted frame due to Lorentz contraction. But it is also
essential to realize that while x1 and z9 are fixed in the original frame, they are moving as viewed
in the boosted frame. In particular, zo moves a distance —wvt’ while the light is traveling, which
we must add on to ¢/ to obtain the net distance traveled by the light in this frame. Therefore,
ct’ = 0/y — vt’. Write this as ct’ = £/y — (v/c)ct’, and solve for ct’,

1 1—v/c

' = ——— .
(1 +v/c) L+v/e

(b) The time between events in the boosted frame is just

¢ |1—
t'=ct'/c= - U/C,
c\l 1+v/c

(since the speed of light is frame-independent). Notice that this result is not a simple time dilation.
For positive v, the time interval between emission and absorption as measured in the boosted frame
is less than in the original frame. For negative v, that time interval is greater.

ASIDE: This result allows us to make a connection to our discussion of clocks in Chapter 2. Imagine
that, instead of being absorbed, the light ray is reflected back and detected at the emitter. The
corresponding time interval (in the original frame) between emission and detection,

2/

At = —

c
is just the time between ticks of the clock we discussed in Chapter 2 (L — ¢). As observed in the
moving frame (moving in the configuration of Figure 2.4), the time interval is (note the different
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direction of motion in the two segments)

¢ [1—v/fc £ |[14+v/e 20 1
/= _ — —
Al = c\/1+v/c + c\/l —vfc ¢ /1= (v/c)? vAt,

which is the usual time dilation result.

Method #2: Lorentz transformation

In the original frame, the emission event may be placed at the origin of the Minkowski diagram of
spacetime. The absorption event then has coordinates (z°,2') = (¢,¢) which lies on the lightcone
(since it describes the motion of light!). Under a boost, the origin is mapped to the origin so the
emission event also occurs at the origin of the boosted frame (since we assumed that this was the

synchronizing event). The absorption event has coordinates (20, 2'!) given by

()= (279 )

The spatial separation is given by z/! = 4¢(1 — v/c), which reduces to the same answer given above
for ¢t/ i.e., £r/(1 —v/c)/(1 + v/c). Since the events lie on the lightcone, the time separation (times
¢) and spatial separation are equivalent.

Method #3: Spacetime diagram

In the diagram to the right we have drawn
the lines of simultaneity for the boosted ob-
server that intersect the emission and ab-
sorption events, E and A. The upper line
of simultaneity is described by the equation
(2% — £) /(2! — £) = v/e, which when written A
in the more familiar slope-intercept form is
20 = (v/c)x' +£(1 —v/c)ﬁ The z%-intercept
is /(1 — v/c) and as you can see from the
diagram it gives the time (times ¢) between
emission and absorption events for the boosted
observer. Well, almost. We must realize
that the orthogonal axes of the diagram are
drawn in the original frame, not the boosted
one. So the time we have just extracted
is the time measured in the original frame, /
not the boosted one. But we already know E = i X
how to convert time intervals between iner- l

tial frames in relative motion—use time dilation. A clock carried by the boosted observer will run
slower than that carried by the observer at rest. So we again obtain the same result 2’0 = 20 =

YE(1 —v/e) = (/T — vfe) /(L + v]).

More spacetime separation examples.

5You should keep in mind that the line of simultaneity is merely the intersection of the three-dimensional hyperplane
of simultaneity with the z° — ' plane, so the complete equation is 2° — (v/c)a' + z? + 2* — £(1 — v/c) = 0.
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Figure 3.11: Timelike separation in S’ frame.

Let us make use of the specific Lorentz transformation in Eq. and the (West Coast) metric
to look explicitly at an illustrative variety of pairs of events in the 2 reference frames defined by the
boost. As usual, we assume that the two frames have a common origin and that the spatial directions
are aligned (i.e., the is no rotation in the transformation, as should be clear from its form).

Timelike separation

Consider the situation suggested in Fig. . In the S’ frame (the right-hand figure) two events
(the green dots) occur at the spatial origin, but separated in time (i.e., in 2’°) by a distance A.
In the S frame (the left-hand figure) the lightcone (red dashed line) and the boosted z'® and z'!
directions (blue dashed lines) are indicated. Note that the two events lie along the 2’° direction in
both frames. The specific components of the 4-vector separations of the two events in the two frames
are given by (the reader is encouraged to explicitly evaluate the matrix multiplication to find Ax)

A ~yA
Az’ = 8 , Az =AAY = “”%WA : (3.11.1)
0 0

in agreement with the figure. The invariant separation squared is given by
(Az')? = +A% = (Az)? = A% (1 = (v/e)?) = +A?. (3.11.2)

The factor of + in the zeroth component of Ax is the usual time dilation factor, but note that the
two events occur at different spatial points in the S frame. However, since both the zeroth and
first components of the separation change between the two frames in just the correct fashion, the
invariant separation (squared) is unchanged, i.e., is invariant, under the Lorentz transformation.

Spacelike separation, é' direction

Next consider two simultaneous events in the S’ frame, one at the origin and one translated by A in
the é! direction as indicated in Fig. (3.12)). Note that this corresponds to the usual (simultaneous)
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Figure 3.12: Spacelike separation (in z' direction) in S’ frame.

definition of a length in the S’ frame. Now the 4-vector separations in the two frames are

0 (v/e)yA
Az = ﬁ . Az =AAZ = 70A , (3.11.3)
0 0
while the invariant separation is
(Az')? = —A? = (Az)? = A%y? ((v/c)2 -1)= —AZ, (3.11.4)

As expected for a spacelike separation the invariant has a negative value (in our West Coast metric).

The astute reader may be concerned by the fact that the spatial component of the separation in the
S frame is YA, and not the “expected” contracted length. All readers are encouraged to think about
this issue, and, in particular, how to measure lengths in different reference frames. The essential
point is that a length is defined by the spatial separation of two events that occur at the same time
in the given frame. If we think of the green dots as defined by the ends of a “A-stick”, at rest in
the S’ frame, we can measure the length of the same A-stick by determining the location of the
right-hand end of the A-stick when the left-hand end is a the origin, i.e., at z° = 0. This requires
a little bit of trigonometry as indicated in Fig. . In particular, we can use the fact that the
motion of the right-hand end of the A-stick in the S frame (recall the A-stick is at rest in the S’
frame) will be along a line parallel to the 2™ direction (as indicated in the figure). Next we use the
two similar triangles (indicated by the identical angles 6, where tan§ = v/c) to determine the length
of the lower side of the smaller triangle to be (v/c)yA x (v/c) = (v/c)?>yA, as noted in the figure. To
find the measured length of the A-stick in the S frame we need the location of the two ends measured
simultaneously at 2 = 0 (or any other shared 2 value). Thus the length we want in Fig. is
the lower side of the larger triangle (yA) minus the side of the smaller triangle ((v/c)?yA). Thus
the length of the A-stick in the S frame is

Length = 7A — (v/¢)?*yA = (1 — (v/e)?)yA = A/y, (3.11.5)
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Figure 3.13: Spacelike separation (in z' direction) in S’ frame, viewed in S frame.

which is just the expected contracted length.

Spacelike separation, €% (or é2) direction

Next consider two simultaneous events in the S’ frame, one at the origin and one now translated by
A in the é2 (or é3) direction. Note that again this corresponds to the usual (simultaneous) definition
of a length in the S’ frame. Since the boost is not along the (spatial) direction of the separation, the
separations in the two frames are identical as indicated in Fig. ,

0

Ax' = Ar = AA2' = (3.11.6)

0

0 0
Al A
0 0

Hence in this case the 4-vector separation is unchanged by the boost (as is its invariant square).
This is an illustration of the fact that spatial separations orthogonal to the direction of a boost are
unchanged by the boost.

Lightlike separation, é' direction

Next we consider two events separated by a lightlike displacement in the S’ frame, one at the origin
and one translated by A/v/2 in both the é° and é' directions (i.e., separated by a distance A along
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Figure 3.15: Lightlike separation (in 2’0 and ! direction) in S’ frame.
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the lightcone) as indicated in Fig. (3.15). Now the separations in the two frames are

AV (14 (/) vA/VE
1+ @/e)ra/v2 | (3.11.7)

~

Ax = A/Oﬁ . Az =AAx =

o O

0

Thus, although there is a dilation by the factor (1 + v/c)y for both components, the separation
remains lightlike (and along the light cone),

(Az')? =0 = (Ax)?. (3.11.8)

Lightlike separation, é* direction

Finally we consider two events separated by a lightlike displacement in the S’ frame, one at the
origin and one translated by A/v/2 in both the é° and é2 directions (i.e., separated by a distance A
along the lightcone, but not parallel to the boost). Now the separations in the two frames are

A/V2 TA/NV2
Av = AAg = | (PN (3.11.9)

Az = 0
a2 A2
0 0

Thus in this case the impact of the boost is more complicated, dilating the zeroth component and
changing the direction of the spatial component (i.e., in the S frame the separation is no longer in
just the é° — &2 plane), but the resulting separation is still lightlike,

(A2)? =0 = (Az)? = (A?/2) (v*(1 — (v/e)?) — 1) = (A?/2) (1 - 1) . (3.11.10)

The reader is encouraged to invest the time necessary to ensure that the differences between these
various examples are clear.
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Chapter 4

Relativistic dynamics

We have seen in the previous lectures that our relativity postulates suggest that the most efficient
(lazy but smart) approach to relativistic physics is in terms of 4-vectors, and that velocities never
exceed c¢ in magnitude. In this chapter we will see how this 4-vector approach works for dynamics,
i.e., for the interplay between motion and forces.

A particle subject to forces will undergo non-inertial motion. According to Newton, there is a simple
(3-vector) relation between force and acceleration,

—

f=ma, (4.0.1)
where acceleration is the second time derivative of position,

dv  d*%

a—=

There is just one problem with these relations — they are wrong! Newtonian dynamics is a good
approrimation when velocities are very small compared to ¢, but outside of this regime the relation
(4.0.1)) is simply incorrect. In particular, these relations are inconsistent with our relativity postu-
lates. To see this, it is sufficient to note that Newton’s equations (4.0.1)) and (4.0.2)) predict that a
particle subject to a constant force (and initially at rest) will acquire a velocity which can become
arbitrarily large,

A .
dv
o(t) = | —dt' = it — 00 ast— 00. (4.0.3)
0 dt m
This flatly contradicts the prediction of special relativity (and causality) that no signal can propagate
faster than c. Our task is to understand how to formulate the dynamics of non-inertial particles in a
manner which is consistent with our relativity postulates (and then verify that it matches observation,

including in the non-relativistic regime).

4.1 Proper time

The result of solving for the dynamics of some object subject to known forces should be a prediction
for its position as a function of time. But whose time? One can adopt a particular reference frame,
and then ask to find the spacetime position of the object as a function of coordinate time ¢ in
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the chosen frame, z*(t), where, as always, #° = ct. There is nothing wrong with this, but it is a

frame-dependent description of the object’s motion.

For many purposes, a more useful description of the object’s motion is provided by using a choice
of time which is directly associated with the object in a frame-independent manner. Simply imagine
that the object carries with it its own (good) clock. Time as measured by a clock whose worldline
is the same as the worldline of the object of interest is called the proper time of the object. To
distinguish proper time from coordinate time in some inertial reference frame, proper time is usually
denoted as 7 (instead of t).

Imagine drawing ticks on the worldline of L _J
the object at equal intervals of proper time,
as illustrated in Figure f.1]. In the limit of
a very fine proper time spacing Ar, the in-
variant interval between neighboring ticks
is constant, s> = (cA7)2. In the figure, - -
note how the tick spacing, as measured by L
the coordinate time x°, varies depending
on the instantaneous velocity of the par-
ticle. When the particle is nearly at rest
in the chosen reference frame (i.e., when
the worldline is nearly vertical), then the m-
proper time clock runs at nearly the same L
rate as coordinate time clocks, but when the
particle is moving fast then its proper time
clock runs more slowly that coordinate time
clocks due to time dilation. — x1

Figure 4.1: The worldline of a non-inertial particle, with tick
marks at constant intervals of proper time.
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4.2 4-velocity

Using the proper time to label points on the spacetime trajectory of a particle means that its space-
time position is some function of proper time, (7). The time component of x (in a chosen reference
frame) gives the relation between coordinate time and proper time of events on the worldline,

ct =a2%(7). (4.2.1)

The corresponding four-velocity of a particle is the derivative of its spacetime position with respect

to proper time, (note that both u and x are 4-vectors)

dx(T)
dr

u

(4.2.2)

Since 20 = ¢t, the time component of the 4-velocity gives the rate of change of coordinate time with

respect to proper time,
dt
0
U =c—. 4.2.3
dr ( )
The spatial components of the 4-velocity give the rate of change of the spatial position with respect
to proper time, u* = da* /dr. This is not the same as the ordinary 3-velocity ¢, which is the rate of
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change of position with respect to coordinate time, v* = dz*/dt. But we can relate the two using

calculus,
det  dt do® Wl
k k
Tk 4.2.4
dt dr dt c ! ( )
From our discussion of time dilation, we already know that moving clocks run slower than clocks at

rest in the chosen reference frame by a factor of «. In other words, it must be the case that

u’ dt y217 12
c dr ! [ } ( )
Combined with Eq. (4.2.4), this shows that the spatial components of the 4-velocity equal the 3-

velocity times a factor of ~,
k
ub = ok = S — (4.2.6)

V1=02/c2

We can now use Egs. (4.2.5)) and (4.2.6)) to evaluate the square of the 4-velocity,

u? = (u)? — (uF)? =42 (? - %) = 2. (4.2.7)

So a 4-velocity vector always squares to +c?, regardless of the value of the 3-velocity. (Recall that
the plus sign here corresponds to our choice of metric; the East Coast metric yields u? = —c?, but
still a constant.)

Let’s summarize what we’ve learned a bit more geometrically. The worldline z(7) describes some
trajectory through spacetime. At every event along this worldline, the four-velocity v = dx/dr is a
4-vector which is tangent to the worldline. When one uses proper time to parametrize the worldline,
the tangent vector v has a constant square, u? = ¢2. So you can think of u/c as a tangent 4-vector
which has unit “length” everywhere along the worldline. The fact that u? is positive (in our metric
choice) shows that the 4-velocity is always a timelike vector. (Note that it is a timelike vector in
both metrics, but with appropriately differing signs for the square.)

Having picked a specific reference frame in which to evaluate the components of the 4-velocity u,
Eqgs. and show that the components of u are completely determined by the ordinary
3-velocity ¥, so the information contained in u is precisely the same as the information contained in
9. You might then ask “why bother with 4-velocity?” The answer is that the 4-velocity w is a more
natural quantity to use — it has geometric meaning which is independent of any specific choice of
reference frame. Moreover, the components u* of the 4-velocity transform linearly under a Lorentz
boost in exactly the same fashion as any other 4-vector. [See Eq. (3.6.5)]. In contrast, under a
Lorentz boost the components of the 3-velocity v transform in a somewhat messy fashion, but we
can use the four-velocity to analyze this question.

4.3 Relativistic Addition of Velocities

Consider a point particle moving with 3-velocity v’ in the z! direction in the S’ frame (to match
our previous convention) such that (u)T = (yy¢, v2',0,0), with v, = 1/4/1 — v/?/c2. Now view
the motion of this particle in the S frame, which is defined such that, in the S frame, the S’ frame
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is moving in the 4! direction with velocity vg. Thus the boost between the two frames is (recall
Eq. (3.5.7))
Y0 Y (vo/c) 0 0
_ [ /o) 0 0 _ 1
A(vg) = 1 0 = (4.3.1)
0 1

770 M
0 0 V1-12Z/c?
0 0
so that
Yoo (1 + v/ /c?)
/
b= | @ | 432)
0

These results allow us to obtain the ordinary 3-velocity in the S frame from the 4-velocity via

. ul vg + v’

U:|v’:2}1:c$:1+0v701}//c2’(02203:0)' (4.3.3)
While the numerator is the familiar Galilean result for velocity addition (and reduces to this result
for velocities small compared to ¢), the denominator is new to the relativistic addition of 3-velocities.
(Note that the plus signs in the numerator and denominator correspond to the two 3-velocities
being in the same direction. The signs would be negative for velocities in opposite directions.)
This expression has the interesting feature, required by our relativistic Postulates, that, if either (or
both) of the initial three-velocities approach ¢, v also approaches but never exceeds c¢. The reader
is encouraged to complete this analysis and carry out the algebra necessary to obtain the following
results,

(u/)z " —
1
0Yo' l—i-’l)lv() A=y = ——— . 4.3.4
The first equation confirms the Lorentz invariance of the four-velocity squared, while the second
equation confirms that, in the S frame, the four-velocity can be written in the standard from u’ =

(’71167 ’7an Oa 0)

4.4 4-momentum

To discuss momentum we should first be explicit concerning what we mean by the symbol m. The
rest mass m of any object is the mass of the object as measured in its rest frame. The 4-momentum
of a particle (or any other object) with rest mass m is defined to be m times the object’s 4-velocity,

p=mu. (4.4.1)

For systems of interacting particles, this is the quantity to which conservation of momentum will
apply. Spatial momentum components (in a given reference frame) are just the spatial components
of the 4-momentum. The definition of 3-momentum which you learned in introductory physics,
P = m, is, at best, a non-relativistic approximation. This is important, so let us repeat,

pP#Fmu. (4.4.2)
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From now on do not think of momentum as mass times 3-velocity. Rather, think 4-dimensionally
with momentum as mass times 4-velocity[l]

If the spatial components of the 4-momentum are the (properly defined) spatial momentum, what is
the time component p°? There is only one possible answer — it must be related to energyﬂ In fact,
the total energy E of an object equals the time component of its four-momentum times ¢, or

P’ =FE/c. (4.4.3)
Using the relation (4.4.1)) between 4-momentum and 4-velocity, plus the result (4.2.5)) for u°, allows

one to express the the total energy F of an object in terms of its rest mass and its velocity,

2
0 0 2 mce

N

In other words, the relativistic gamma factor of any object is equal to the ratio of its total energy to
its rest energy (recall Eq. (3.5.8)),

= mc?coshy. (4.4.4)

E
= —_ —coshy. 445
v =5 =coshy (4.4.5)

When the object is at rest, its kinetic energy (or energy due to motion) vanishes, but its rest energy,
given by Einstein’s famous expression mc?, remains. If the object is moving slowly (compared to c),
then it is appropriate to expand the relativistic energy (4.4.4)) in powers of #'2/c?. This gives

E=mc®+imv? + ... (4.4.6)

In other words, for velocities small compared to ¢, the total energy E equals the rest energy mc?

plus the usual non-relativistic kinetic energy, %mfz’ 2 up to higher order corrections which, relative

to the non-relativistic kinetic energy, are suppressed by additional powers of #2/c?. We can, of

course, define the relativistic kinetic energy via K = E — mc?> = mc?(y — 1), which reduces to the
1

non-relativistic form $mo? for 72/c? < 1.

The corresponding spatial component of the four-momentum is then (recall Egs. (4.4.2) and (3.5.8))

mu
V1—192/c?

(where 0 is the spatial unit vector in the direction of @) which, as advertised, approaches the non-
relativistic definition for v < ¢, v — 1 and sinhy — v/c.

—

p=miy= = mecosinhy, (4.4.7)

We saw above that (with our choice of metric) 4-velocities square to ¢2. Since 4-momentum is just
mass times 4-velocity, the 4-momentum of any object with (rest) mass m satisfies

p? = m?c? (cos.h2 y — sinh? y) =m?c. (4.4.8)

!Many introductory relativity books introduce a velocity-dependent mass m(v) = m+, in order to write ' = m(v) 7,
and thereby avoid ever introducing four-velocity (or any other 4-vector). This is pedagogically terrible and offers no
benefit whatsoever. If you have previously seen this use of a velocity-dependent mass, erase it from your memory
banks!

2To see why, recall from mechanics (quantum or classical) that translation invariance in space is related to the
existence of conserved spatial momentum, and translation invariance in time is related to the existence of a conserved
energy. We will discuss this in more detail later. Since Lorentz transformations mix space and time, it should be no
surprise that the four-momentum, which transforms linearly under Lorentz transformations, must characterize both
the energy and the spatial momentum.
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Since p? = (p°)? — (p¥)?, and p° = E/c, this may rewritten (in any chosen inertial reference frame)
as

E? =252 + (mc?)?. (4.4.9)
So, if you know the spatial momentum p and mass m of some object, you can directly compute its

energy E without first having to evaluate the object’s velocity. Note, in particular, that Eq. (4.4.9))
is true for either choice of metric!

But what if you want to find the ordinary 3-velocity? Return to the relation u* = yo* [Eq. (4.2.6)]
between 3-velocity and 4-velocity, and multiply both sides by m to rewrite this result in terms of four-
momentum. Since spatial momentum p* = mu”, and total energy E = mc?~, we have p* = (E/c?) vk

or
k

_
E/c?’

Three-velocity is not equal to momentum divided by mass. Rather, the ordinary 3-velocity equals
the spatial momentum divided by the total energy (over ¢2). And its magnitude never exceeds c.

k |0]| = ctanhy. (4.4.10)

4.5 4-force

In the absence of any forces, the momentum of an object remains constant. In the presence of forces,
an object’s momentum will change. In fact, force is just the time rate of change of momentum. But
what time and what momentum? Newtonian (non-relativistic) dynamics says that dp/dt = F along
with dZ/dt = p/m, where p'is 3-momentum and t is coordinate time. This is wrong — inconsistent
with our relativity postulates. A frame-independent formulation of dynamics must involve quantities
which have intrinsic frame-independent meaning — such as 4-momentum and proper time. The
appropriate generalization of Newtonian dynamics which is consistent with our relativity postulates
is

de p

—_— == 4.5.1
dr  m’ (45.12)
d

ch ~ 1. (4.5.1b)
-

Eq. (4.5.1a)) is just the definition (4.2.2)) of 4-velocity rewritten in terms of 4-momentum, while
Eq. (4.5.1b)) is the definition of force as a four-vector. The only difference in these equations, relative
to Newtonian dynamics, is the replacement of 3-vectors by 4-vectors and coordinate time by proper
time.

Equations are written in a form which emphasizes the role of momentum. If you prefer, you
can work with 4-velocity instead of 4-momentum and rewrite these equations as dx/dr = u and
du/dt = f/m. Defining the 4-acceleration a = du/dt = d*x/dr?, this last equation is just f = ma.
This is the relativistic generalization of Newton’s f = md, with force and acceleration now defined
as spacetime vectors

In non-relativistic dynamics, if you know the initial position and velocity of a particle, and you know

—

the force f(t) which subsequently acts on the particle, you can integrate Newton’s equations to find

3Eq. (4.5.1b)) is equivalent to f = m a provided the mass m of the object is constant. For problems involving objects
whose mass can change, such as a rocket which loses mass as it burns fuel, these two equations are not equivalent and
one must use the more fundamental dp/dr = f.
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—

the trajectory Z(t) of the particle. Initial conditions plus a three-vector f(¢) completely determine
the resulting motion. To integrate the relativistic equations , you need initial conditions plus
a four-vector force f(7). This would appear to be more information (four components instead of
three), and yet relativistic dynamics must reduce to non-relativistic dynamics when velocities are
small compared to c.

The resolution of this apparent puzzle is that the four-force cannot be a completely arbitrary four-
vector. We already know that, for any object with mass m, its four-momentum must satisfy p> =
(me)? [Eq. } Take the derivative of both sides with respect to proper time. The right hand
side is constant in time (provided that the object in question is some stable entity with a fixed rest
mass), so its proper time derivative vanishes. The derivative of the left hand side gives twice the dot
product of p with f, and hence the 4-force must always be orthogonal to the 4-momentum,

p-f=0. (4.5.2)

Written out in components, this says that p° f0 = p’ %, or

i =
o_ P f _v 2
f=ts=tT (4.5.3)
showing that the time component of the force is just a particular linear combination of the spatial
components, i.e., the four components of the force cannot vary freely, but rather must satisfy this
constraint.

4.6 Constant acceleration

Let us put this formalism into action by examining the case of motion under the influence of a
constant force. But what is a “constant” force? We have just seen that the 4-force must always be
orthogonal to the 4-momentum. So it is impossible for the 4-force f(7) to be a fixed four-vector in an
arbitrary frame, independent of 7. However, it is possible for the force to be constant when viewed
in a frame which is instantaneously co-moving with the accelerating object.

Suppose a particle begins at the spacetime origin with vanishing 3-velocity (or 3-momentum) at
proper time 7 = 0, and a (3-)force of magnitude F, pointing in the x! direction, acts on the
particle. Hence the components of the initial spacetime position, four-velocity, and four-force are
zh = (0,0,0,0), uff = (¢,0,0,0), and f§' = (0, F,0,0), respectively. The 4-velocity at later times may
be written as some time-dependent Lorentz boost acting on the initial 4-velocity,

U(T) = Aboost(T) Uug - (461)

The condition that the force is constant (fp) in a co-moving frame amounts to the statement that
the same Lorentz boost (as in Eq. 4.6.1])) relates the 4-force at any time 7 (in the frame where the
velocity is u(7)) to the initial force,

f(T) = Aboost(T) fO . (462)

At all times, u? = ¢? (because u is a 4-velocity), and f2 = —F2 because the magnitude of the force
is assumed to be constant.

Since the initial force points in the z! direction, the particle will acquire some velocity in this
direction, but the 2% and 2® components of the velocity will always remain zero. Hence the boost

63



Particles and Symmetries CHAPTER 4. RELATIVISTIC DYNAMICS

Aboost (T) will always be some boost in the z! direction, and the force f(7) will likewise always have
vanishing 2 and 2® components. In other words, the 4-velocity and 4-force will have the form

u(r) = (u’(7),u(7),0,0) ,  fH(r) = (f°(r), f'(r),0,0), (4.6.3)

with u%(0) = ¢, u*(0) = 0 and f°(0) = 0, f1(0) = F. From (4.5.2)) the dot product f-u = fou®— flu!
must vanish, implying that f°/f! = u! /u®. So the components of the 4-force must be given by
F
(7)== (u!(r),u%(1),0,0) . (4.6.4)

c
(Do you see why? This is the only form for which f-u =0 and f? = —F2.)

Now we want to solve mdu/dr = f(7). Writing out the components explicitly (and dividing by m)
gives
du®(7) F dut (1) F oy
= = — . 4.6.5
dr me © (7), dr me © (7) ( )

This is easy to solve if you remember some basic mathematical physics (from Chapter 1) - % sinh z =
cosh z and d% cosh z = sinh z (recall Eq. (1.3.3)). To satisfy Eq. |l and our initial conditions,

we simply choose
F F
W) =ccosh—,  ul(r)=csinh . (4.6.6)
me me
The ordinary velocity is given by v* = u* (¢/u®) [Eq. (4.2.4))], so the speed of this particle subject to

a constant force is

Fr
= ¢ tanh — . 4.6.7
v(T) = ¢ tan — ( )

Since tanh z ~ z for small values of the argument (recall Eq. (1.3.10)), the speed grows linearly
with time at early times, v(7) ~ (F/m) 7. This is precisely the expected non-relativistic behavior.
But this approximation is only valid when 7 < mec/F and the speed is small compared to c¢. The
argument of the tanh becomes large compared to unity when 7 > mc/F, and tanhz — 1 as z — oc.
So the speed of the accelerating particle asymptotically approaches, but never reaches, the speed of
light. In fact, we see from our previous definitions of the 4-momentum in terms of the rapidity y
that it is the rapidity that grows linearly with 7 in the case of “constant acceleration”,

v(T) _Fr

c

F
= tanh — = Y= (4.6.8)

tanhy = o o

At this point, we have determined how the velocity of the particle grows with time, but we need to
integrate dx/dr = u to find its spacetime position. Due to the properties of the hyperbolic functions
the integrals are elementary,

T T F / 2 F

xO(T) = / dr’ UO(T/) = c/ dr’ cosh T _me sinh—T, (4.6.9a)
0 0 mc F mc
T T F / 2 F

xl(T) = / dr’ ul(T') = c/ dr’ sinh T _mne [COShT - 1] . (4.6.9b)
0 0 me F mc

Note that the hyperbolic sines and cosines grow exponentially for large arguments, sinh z ~ cosh z ~
1e? when z > 1. Hence, when 7 > mc/F the coordinates 2°(7) and z!(7) both grow like ef'7/me
with increasing proper time. But the accelerating particle becomes ever more time-dilated; the rate
of change of proper time with respect to coordinate time, dr/dt = ¢/u’ = 1/ cosh %, behaves as

2e~FT/me o me/(Ft).
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4.7 Plane waves

Next we want to discuss the very important question of how waves are described in relativistic
notation. Consider some wave (any type of wave) with wave-vector k and frequency w (3-vector
notation), as measured in some inertial frame. The amplitude of the wave is described by a complex

exponential, A eik-T—iwt , with the usual understanding that it is the real part of this function which
describes the physical amphtude Such a wave has a Wavelength A =27/ \k\ and planar wave-fronts
orthogonal to the wave-vector that move at speed v = w/|k| in the direction of k.

As mentioned earlier (Eq. (3.6.12)), it is natural to combine w and k into a spacetime wave-vector
(i.e., 4-vector) k with components

kM= (w/e, kY K% ED), (4.7.1)

so that w = ck® and we have simply e*7—wt = g=ikz (

with our choice of metric).

The virtue of this formulation is that it is frame-independent. The spacetime position x and wave-
vector k are geometric entities which you should think of as existing independent of any particular
choice of coordinates. The value of the amplitude, A e~ depends on the position = and the wave-
vector k, but one may use whatever reference frame is most convenient to evaluate the dot product
of these 4-vectors since k - z is the same in all frames. (This fact gives us the opportunity to be both
lazy and smart, and is the real power of the 4-vector notation.)

Just as surfaces of simultaneity are observer-dependent, so is the frequency of a wave. After all,
measuring the frequency of a wave involves counting the number of wave crests which pass some
detector (or observer) in a given length of time. The time component of the wave-vector gives (by
construction) the frequency of the wave as measured by observers who are at rest in the frame in
which the components k* are defined. Such observers have 4-velocities whose components are just
(c,0,0,0) (in that frame, i.e., in their rest frame). Consequently, for these observers the frequency
of the wave may be written as a dot product of the observer’s 4-velocity and the wave-vector,

Wobs = Uobs * K - (4.7.2)

This expression is now written in a completely general fashion that is observer-dependent but frame-
independent. That is, the expression depends explicitly on the observer’s 4-velocity u, but is
independent of the frame used to evaluate the dot product between u and k (i.e., the dot product
must be the same in every frame). Therefore, the frequency which is measured by any observer will
be given by the dot product of the observer’s 4-velocity v and the wave-vector k. The dot product
can be evaluated in any convenient (lazy but smart) frame, but, of course, v and k must both be
evaluated in that same frame.

As we will discuss a bit more below, it should be no surprise that this approach is particularly useful
for the discussion of light waves, where v = ¢, w = c|k| and

w A 2
Kfig = = (1, k) K = 0. (4.7.3)
As a simple first application of Eqs. (4.7.2) and (4.7.3]) we can derive the basic form of the relativistic
Doppler shift of light. Consider a source of plane wave light, which emits light with frequency
vy = wp/2m as measured in the rest frame of the source (note that w has units of radians per second,
while v is measured in cycles per second - NOT the same units!). Further we take the light waves
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to be moving in the z! direction (l% = ¢é1). Consider an observer moving away from the source (the
receding case) also in the z! direction with velocity v, as measured in the source rest frame. Clearly
the lazy but smart choice of frame is the source frame, where we have

Cc

V1—v2/c?

g 1
Vobs :Wobs _ Uobs _ U/C <1 [receding] ) (474b)
Z VN wo 1+wv/c

In this case (see Eq. (3.3.7) in Kogut), with the source and observer receding from each other,
the observer sees a smaller frequency than the source emits (the light is red-shifted, vops/vo =
V(1 —v/e)/(1+v/c) < 1). For an observer approaching a source, we simply change the sign of v in
Eq. and the light is blue-shifted to a larger frequencyﬁ

-k 1
Pobs _ Wobs _ Yobs ' _ ”—&—7@/0 > 1 [approaching] . (4.7.5)
Vo wo wo 1—v/c

kH :% (1a 17070) ; Uobs = (1,U/C,0,0) ) (474&)

A more sophisticated application of receiver at time
Eq. (4.7.2), demonstrating the value of emission

of writing physical quantities in frame
independent form, is illustrated in receiver at time
Figure Mounted on the inner  of absorption
surface of a centrifuge, which is ro-

Y

emitter at time
of emission

tating at angular frequency {2, is an
emitter of light at one point, and a
receiver at a different point. Let ¢
be the angle between emitter and
receiver, relative to the center of
the centrifuge, as measured in the
inertial lab frame. The (inner) ra-
dius of the centrifuge is R. The fre-
quency of the light as measured by
an observer who is instantancously Figure 4.2: Inside a rotating centrifuge, light is emitted at one point
at rest relative to the emitter is 6. and later received at another point. Is there a Doppler shift between the
The frequency of the light as mea- frequencies of emission and reception?

sured by an observer who is instan-
taneously at rest relative to the receiver is v,. What is the fractional difference (v, — ve)/ve? How
does this frequency shift depend on the angle ¢ and the rotation frequency 27

One approach for solving this problem would involve explicitly constructing the Lorentz transforma-
tions which relate the lab frame to the instantaneous rest frames of the emitter and receiver, and then
combining these two transformations to determine the net transformation which directly connects

4A familiar application of this result in the context of astronomy and cosmology is the the redshift z, defined as the
fractional change in the frequency (or wavelength). For a radially expanding (receding) universe (with radial velocity
v), this leads to the relation 1 + 2z = /(1 +v/c)/(1 — v/c).

5This discussion is an adaptation of an example in Gravitation by Misner, Thorne and Wheeler.
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emitter and receiver. Given the three-dimensional geometry involved, this is rather involved (and
would not correspond to the lazy but smart approach).

A much better approach is to choose a convenient single frame, namely the lab frame, in which to
evaluate the components of the four-vectors appearing in the frame-independent expression (4.7.2))
for the frequency. We need to compute

ve  up-k ulkY—d, -k

=L = . (4.7.6)

Here wu, is the four-velocity of the emitter at the moment it emits light, and u, is the four-velocity
of the receiver at the moment when it receives the light.

If O, denotes the angle between the spatial wavevector and the direction of motion of the emitter (at
the time of emission), and 6, denotes the angle between k and receiver’s direction (at the time of
reception) (all as indicated in Figure , then we can express the spatial dot products in terms of
cosines of these angles,

v ulk0— ||| k] cos 6,

Ve w0 kO — || |k| cos B

(4.7.7)

The speed of the inner surface of the centrifuge is constant, v = Q2 R, and hence the speeds of
the emitter and receiver, as measured in the lab frame, are identical — even though their velocity
vectors are different. The time component of a 4-velocity, u/c = (1 — v?/c?)~1/2, only depends on
the magnitude of the velocity ¥, and hence u? = u2. The equality of the emitter and receiver speeds
also implies that the magnitudes of the spatial parts of the 4-velocities coincide, |t;| = |ie|. So using

expression (|4.7.7)) for the frequency ratio, the only remaining question is how does 6, compare to 6,7

This just involves ordinary geometry. Looking at the figure, notice that 6, and 6, are the angles
between the path of the light, which is a chord of the circle, and tangents to the circle at the
endpoints of the chord. But the angle a chord makes with these tangents is the same at either end,
implying that . = 6. And this means v, = v, — there is no Doppler shift no matter how fast the
centrifuge rotates (or what the values of ¢, 6, or R are)! (Try obtaining this result directly using
boosts and more complex trigonometry.)

4.8 Electromagnetism

As noted earlier, it should be no surprise that the technology we are developing is especially useful
for “objects” that travel at the speed of light, such as light itself. Unfortunately we do not have time
here for an extensive explorations of the relativistic aspects of electromagnetism, which will be left
for other classes. But one aspect, how to represent the Lorentz force in the framework we have been
discussing, is natural to describe here.

As we have seen above, generalizations from non-relativistic to relativistic dynamics are mostly a
matter of replacing 3-vectors by 4-vectors (and coordinate time by proper time). But what about
electric and magnetic fields? Both are (apparently) 3-vectors, and there is no sensible way to turn
them into 4-vectors. Recall that E is an ordinary “polar” 3-vector, which changes sign under reflec-
tion, while B is an “axial” 3-vector, which does not change sign under reflection. It turns out that
what is sensible (and natural) is to package the components of E and B together into a 4 x 4 matrix
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(a 4-tensor) called the field strength tensor, whose components are

0 E, E, E,
E, 0 cB, —cB,
E, —cB. 0 cB,
E. c¢By —cB, 0

|F*y| = (4.8.1)

It is important to realize that this explicit form for the field strength tensor (i.e., the explicit signs
and factors of ¢) corresponds to our specific choices of units (here SI, with F measured in New-
tons/Coulomb and B in Tesla) and the choice to write down the form with one superscript and one
subscriptﬁ Different choices for these details yield slightly different expressions.

With this repackaging of electric and magnetic fields, the Lorentz force (as a 4-vector) has a remark-

ably simple form,
q

fﬁtorentz = E FFyu” (482)
Verifying that this 4-force leads to exactly the same rate of change of energy and momentum as
does the traditional form of writing the Lorentz force, f = q(E + U X B) is an instructive and
recommended exercise.

4.9 Scattering

When objects (elementary particles, molecules, automobiles, ...) collide, the results of the collision
can differ markedly from the initial objects. Composite objects can fall apart or change form (leading
to large insurance premiums). Interestingly, dramatic changes during collisions can also occur for
elementary particles. In fact, studying the collisions of elementary particles is a primary method used
to investigate fundamental interactions and explains the existence of large energy particle colliders
like the LHC. These machines are really just (large!) microscopes with very fine resolution and with
the capability to produce particles, like the Higgs boson, that we do not observe in everyday life.

A complete description of what emerges from a collision (or ‘scattering event’) depends on microscopic
details of the interaction between the incident objects. But certain general principles constrain the
possibilities, most importantly, the conservation of energy and momentum. As discussed in section
the total energy F and spatial momentum p of any object may be combined to form the 4-
momentum p* = (E/c,p’). Consequently, energy and momentum conservation may be rephrased as
the conservation of 4-momentum: in the absence of any external forces, the total 4-momentum of
any system cannot change,

d

%ptot(t) =0. (4.9.1)

5To appreciate the field strength tensor in its full 4-glory, we recognize that it is defined in terms of a 4-vector
potential, A = (¢, cff), where ¢ is the usual electric scalar potential (in volts) and A is the usual 3-vector potential,
which you may have seen in previous courses. Then the field strength tensor is the 4-curl, F*, = 0" A, — 9, A*, with
0" = 0/0xy = (O¢/c,— H) and 9, = 9/0z" = (Oi/c, V) (in our metric). Finally we need the 3-vector definitions
E = —BA/Bt qu and B = V x A where this cross product explains why B is an axial or pseudo-vector. The
interested reader is encouraged to work out the terms is Eq. using these definitions. Note that with both indices

either up or down the resulting tensor is fully anti—symmetric instead of the mixed symmetry (metric independent)

form in Eq. (4.8.1).
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In a scattering process two or more objects, initially far apart, come together and interact in some
manner (which may be very complicated), thereby producing some number of objects that sub-
sequently fly apart. When the incoming objects are far apart and not yet interacting, the total
4-momentum is just the sum of the 4-momentum of each object,

Nin
=" n. (4.9.2)
a=1

where Nj, is the number of incoming objects (and the index a labels particles, not spacetime di-
rections). Similarly, when the outgoing objects are arbitrarily well separated, they are no longer
interacting and the total 4-momentum is (again) the sum of the individual 4-momenta of all of the

outgoing objects,
Nout

Pout = Z Pb - (4.9.3)
b=1

Hence, for any scattering processes, conservation of energy and momentum implies that the total
incident 4-momentum equals the total outgoing 4-momentum (independent of the values of Ny, and
Nout)7

Pin = Pout - (494)

As with any 4-vector equation, one may choose to write out the components of this equation in
whatever reference frame is most convenient (as long as we use the same frame for both py, and
Pout). For analyzing scattering processes, sometimes it is natural to work in the rest frame of one of
the initial objects (the ‘target’); this is commonly called the lab frame and experiments of this variety
are called “fixed target” experiments (the frame of the actual lab is the target frame). Alternatively,
one may choose to work in the reference frame in which the total spatial momentum vanishes. In
this frame, commonly called the CM fmmem the components of the total 4-momentum are

pén = (Eom/c, 0, 0, 0), (4.9.5)

where Ecy is the total energy of the system in the CM frame. In the early days of particle physics,
where only a single beam of accelerated particles was available, fixed target experiments were the
norm and the CM frame was an intellectual construct. For the kinematic reasons we are about to
discuss, it became clear that moving the actual lab to the CM frame would provide an enormous
increase in efficiency for particle production. As a result, we now live in the era of particle collid-
ers, where two beams of accelerated particles, moving in opposite directions, are caused to collide
essentially head-on.

As an application of these ideas, consider first the scattering of protons of energy Ei, = 1TeV on
protons at rest (in ordinary matter). The proton rest energy my, c? is a bit less than 1 GeV. Using
Eq. , one sees that a proton with 1TeV energy is ultrarelativistic, v = Ein/(m,c*) ~ 103,
When an ultrarelativistic proton strikes a target proton at rest, both protons can be disrupted and
new particles may be created. Schematically,

p+p— X,

T¢«CM’ means ‘center of mass’, but this historical name is really quite inappropriate for relativistic systems, which
may include massless particles that carry momentum but have no rest mass. The widely used ‘CM’ label should always
be understood as referring to the zero (spatial) momentum frame.
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where X stands for one or more outgoing particles. What is the largest mass of a particle which
could be produced in such a collision?

The total energy of the incident particles (in the rest frame of the target) is Fiot = Ein + mp02 ~
1.001 TeV. If all of this energy is converted into the rest energy of one or more outgoing particles, then
you might conclude that these collisions could produce particles with mass up to Eiot/c? = 103 my.
This would be consistent with conservation of energy. But this is wrong, as it completely ignores
conservation of 3-momentum. In the rest frame of the target, the total spatial momentum piy; is
non-zero (and equal to the momentum pi, of the projectile proton). If there is a single outgoing
particle X, it cannot be produced at rest — it must emerge from the collision with a non-zero spatial
momentum equal to pPior. That means its energy will be greater than its rest energy.

To determine the largest mass of a particle which can be produced in this collision, one must simul-
taneously take into account conservation of both energy and momentum. That is, one must satisfy
the 4-vector conservation equation . In the lab frame, if we orient coordinates so that the
3-axis is the collision axis, then

Ey/c mpc
0 0
Pin = Pprojectile T Dtarget = 0 + 0 (496)
Pin 0

If a single particle X emerges, then its four-momentum is the total outgoing four-momentum,

Pout = PX = 2 . (497)

Demanding that pi, coincide with poyt determines px = piy és and Ex = By, + mp02. Eq. ,
applied to the projectile proton (with known mass), may be used to relate the incident spatial
momentum and energy, p2, = (Ein/c)? — (myc)?. The same relation , applied to the outgoing
particle X, connects its energy Ex and momentum px to the desired maximum mass my, (mxc?)?
E% — (epx)?. Inserting numbers and computing Ex, |px| = pin, and finally my is straightforward.
But even less work is required if one recalls [from Eq. ] that the square of any four-momentum
directly gives the rest mass of the object, p> = m?c?. Hence

2 2 2 2 2 2
Mmx ¢ =Px = Pout — Pin = (pprojectile + ptarget)
2 2
= pprojectile + ptarget + 2pprojectile : ptarget

=2m} c* + 2B my . (4.9.8)

Consequently, mx = \/2mp(my + Ein/c?) = mp\/2 + 2En/(mpc?) ~ v2002m, ~ 45m,. Even
though the projectile proton has an energy a thousand times greater than its rest energy, the maxi-
mum mass particle which can be created in this collision is only 45 times heavier than a proton. The
rest of the energy most provide the kinetic energy associated with the conserved spatial momentum.
More generally, the maximum mass that can be produced grows (only) like the square root of the
lab frame energy, mx ~ \/2Einmp/c2, when Ey, > mp02. This is why “colliders”, where the lab
and CM frames coincide with both the “beam” and “target” particles racing towards each other, are
most efficient when hunting for new particles. In particular, if we collide two particles with the same
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mass (e.g., either identical particles or particle and antiparticle), the same energy (Eji,) but opposite
momenta, the largest rest mass (particle) we can produce is mx = 2Ej,, which in this case increases
linearly with the beam energy FEjy.

4.10 Example Problems

Kogut 4-3

In the S’ frame we have an event at the 4-vector point 2’ = (c x9x107%s,100m, 0, 0). We want to
determine the location of this event in the S frame, where the S’ frame moves with velocity v/c = 4/5
along the z axis with respect to the S frame and, for convenience (we are free to be lazy but smart),
we assume that the origins (in space and time) of the 2 frames are synchronized. The boost factor
between the two frames is v = 1/4/1 — (v/¢)? = 5/3. Thus the corresponding Lorentz boost gives us

5/3 4/3 0 0 27m 178.33m cx59.44 x 10785
_ ,|4/3 5/3 0 0 100m | [202.67m | 202.67m
r=ARE=1 0 1 o 0o |- 0 - 0
0 0 0 1 0 0 0
Kogut 4-4
In frame S we are given two events defined by the 4-vectors 1 = (L, L,0,0) and x9 = (L/2,2L,0,0),
or Az = L/2 and Ax! = —L. We want to boost to a frame S’ where the events (appear to) occur

at the same time. Thus we want to solve (note v is the velocity of " in S so using A~! or A(—v)
Az = (Az® + (—v/e)Az') = 0= L/2+ (—v/c)(~L) = 0 = v/c = —1/2,

corresponding to the S’ frame moving towards negative x values. So we find the common time in
the S’ frame is

t'=7(ct1 + (—v/c)x1) Jc = (2/\/§) (L+ (1/2)L) /e =V/3L/c.
As a check, note that we obtain the same result if we use instead to and xs.

Kogut 6-11

Consider a relativistic particle whose (relativistic) kinetic energy is twice its rest energy, i.e., its total
energy is three times its rest energy. Thus we have

1
KszcZ:E:3m02:>fy:3:>%: 15 =003,

Thus the magnitude of this particle’s momentum is
p=~ymv = 3(v/c)mec = 2.83mc.

If the kinetic energy is 5mc?, we have instead

1
7:6:»%:,/1—%20.986,]0:5.9277@@.
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Kogut 6-16

Here we have the opportunity to consider the most fuel-efficient rocket exhaust - photons (the fastest
exit velocity for any given energy) in a problem with an explicitly time dependent mass for the rocket.
We are given only the rocket’s initial and final masses, M; and My, and want to calculate its final
velocity (starting at rest). Being smart but lazy we do NOT integrate Newton’s law! Instead we
simply use 4-momentum (energy-momentum) conservation. We image that a certain fraction of the
initial mass of the rocket, AM = M; — My, is instantaneously converted into a photon (or several
collinear photons). To conserve momentum the rocket must recoil in the direction opposite to the
photon(s). We have (in the initial rest frame of the rocket)

Ef =F, = ]\41‘02 = Ephoton(s) + Mf’ycz R
c+v

Protal =0 = va’}/ = Pphoton(s) = Ephoton(s)/c = M;c — MfC’y =M, = Mf’y c (4.10.1)
i 1+1)/C v (Mi/Mf)Q—l

My _ v _ S, = 4.10.2

A A gy el s VA v ch (4.102)

So the price of going very fast, v — ¢, is that the final mass (including the astronaut) must be very
much smaller than the initial mass (M; < M;), i.e., accelerating rockets to near light-speed is an
expensive activity (as has always been known to NASA).
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Chapter 5

QM and Angular Momentum

5.1 Angular Momentum Operators

In your Introductory Quantum Mechanics (QM) course you learned about the basic properties of
low spin systems. Here we want to review that knowledge and indicate in more detail how it arises
from the basic principles of QM, i.e., that we work with operators, in particular with Hermitian
operators, and those operators obey simple commutation relations. To illustrate these ideas let us
review the formalism of eigenstates of definite (total) angular momentum. The following analysis
applies as well to the spin operator S and, except in one detail noted at the end, to orbital angular
momentum L. (Of course, these operators are related via J = L+ S.) If you have not seen this sort
of analysis before, consider it as an introduction to the power of symmetries as expressed in terms
of quantum mechanical operators and states. The analysis involves a large number of steps, but, in
a very real sense, each of those steps is quite small.

Also be aware of the larger picture, as discussed in Chapter 10, that we are actually discussing
the properties of representations of the rotation group, SO(3) (for integer angular momentum) and
SU(2) (for half-integer angular momentum). The different states in the representation are what
you see when you perform rotations on the reference frame. The apparently different states are, in
some sense, the same given the underlying symmetry, i.e., we are simply labeling them differently
as we change (rotate) the directions of the “axes”. Note, in particular, that the possible states of
the system must always appear in complete representations of the underlying symmetries. So our
understanding of symmetries and the associated representations will provide tools to organize our
description of physical systems, e.g., the particles of the Standard Model.

We want to work with the (hopefully) familiar (3-vector) total angular momentum operator .J with
three components Ji, Jo and Js (or J;, Jy, and J, see, for example, Chapters 7 and 11 in McIntyre).
We take all 3 to be Hermitian operators (J,i = J, where T =*T_ i.e., take complex conjugate and
transpose) and thus to have real eigenvalues. An essential feature of the operator nature of J (and

of QM) is the fact that these three operators obey the nontrivial commutation relation (i.e., the
algebra corresponding to SO(3) and SU(2)))

[Tk, Ji| = JpJi — Ji g = ihegimdm [k, l,m =1,2,3], (5.1.1)

where €g;,, is the unique 3 x 3 x 3 anti-symmetric tensor.
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ASIDE The algebra serves to completely define the properties of the group elements, the transfor-
mations, near the identity - no change - operator. However, there may still be ambiguity about the
properties of the elements “far” from the identity operator, and this point is related to the difference
between SO(3) and SU(2) - see Chapter 10.

Next we define J2, the total angular momentum squared operator,
JE=J+ I3+ T3, (5.1.2)

which is also a Hermitian operator (J?! = J?) again with real eigenvalues. Actually, since the
operators on the RHS of Eq. are all the squares of Hermitian operators, the corresponding
eigenvalues are all positive semi-definite (> 0), i.e., the squares of real numbers. By the same token
the related operator expression

J2—J2 =T+ J3 (5.1.3)

tells us that the eigenvalues of J? — J; are also positive semi-definite, or that the eigenvalues of J?
are greater than or equal to the eigenvalues of J3. (Actually, as we will see shortly, equality will only
occur for the special case of zero total angular momentum.)

The next essential fact, following from Eq. (5.1.1)), is that J? commutes with the individual J. For
example, we haveﬂ

(72, J3] = [J}, Js] + [J5, Js] + [J3, J:]
=1, Js)J1 + i1, J3] + [Ja, J3)J2 + Ja[J2, j3] + 0O
= —ihJyJ1 — ithJ1Js + ihJ1Jo +ihJoJ; = 0. (5.1.4)

Clearly a similar result holds for [J2, J;] and [J2, Jo].

Finally we make the conventional choice that our basis states be the simultaneousness eigenstates of
of J% and J3 (possible because they commute), |j,m), with eigenvalues, j,m, and defined by

TG, m) = (Jf + J3 + J5)lj,m) = j(G + V|5, m), Js|j,m) = mhlj,m), (5.1.5)
where we take these eigenstates to be normalized
(j.m|j,m) = 1.0. (5.1.6)

We are encouraged to think of j as labeling the total angular momentum of the state independent
of any choice of reference frame, while m labels the component of the angular momentum along the
3-axis in a specific choice of reference frame. As we will see in detail below, when we rotate the
reference frame (or the state), the value of m changes, but j does not. Thus the states corresponding
to a given j value and the possible m values, —j < m < j comprise a representation of the rotation
group, i.e., these states are transformed into each other in a specific fashion by the rotations. In
Group Theory language (see Chapter 10) the operator .J? is formally labeled a Casimir operator. It
is not an element of the algebra or the group, but does commute with the generators (and thus the
group elements) and, as noted, its eigenvalues serve to label the specific representation of the group,
while m labels the specific element of the 2j + 1 elements in the representation.

These results are presumably familiar from your QM course, including the fact that the allowed
values of j are either integer or half-integer and the allowed values of m are the 25 + 1 values in the

'The signs in Eq. 1i follow from the definition of €xim, i.e., €132 = —1 while €231 = +1.
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range m = —j,—j + 1...j — 1,j. Here we will see how these results follow from the basic properties
of the operators noted above (and the following will serve as an introduction if this was not covered
in your 225 class). To that end let us for now define the eigenvalues instead by

J23,m) = N2(§)R%|4,m), Js|5,m) = mh|j,m), (5.1.7)

where we will derive below the specific form of N?(j) and the constraints on the possible values of
m.

From the standpoint of the underlying Group theory, we label the J as the generators of the unitary
rotation group (SO(3) and SU(2)) in the sense that they “generate“ an infinitesimal rotation. Since
we want a rotation through a finite angle to be a unitary transformation (i.e., it should conserve
probability), the generators are necessarily Hermitian operators, J]i = Ji (so that the group elements
arising from their exponentiation are Unitary). As already mentioned in Chapter 1 and described in
some detail in Chapter 10, the finite rotation corresponds to exponentiating these generators times
a continuous parameter (i times the rotation angle over h). For example, 30/ corresponds to a
rotation around the 3-axis by an angle  and is a member of the rotation group. Note that, since

(eiJge/h>T _ 0/ _ idsoh _ (euge/h)_l ’ (5.1.8)

iJ30/h

the operator e is Unitary (i.e., the Hermitian conjugate is the inverse) if (and only if) J3 is

Hermitian.

At this point we can also demonstrate that the eigenstates in Eq. ((b.1.5)) are orthogonal as desired
(for different m values). We have (recall that 1 = 0 = ¢=#/30/hetiJs0/h)

<j, m’]j, m> _ <]7 mlyefiJgﬁ/heJriJgG/hU’ m> — 61‘(mfm’)9/h<j7 m’]j, m> ) (519)

There are two ways to satisfy this equation. Either the exponential factor is unity because m = m/
and these are really both the same state, or they are different states and the matrix element vanishes,

(G,m'|5,m) =0, m' #m. (5.1.10)

To proceed we want to make use of the two remaining generators (J; and J2) that do not define our
basis eigenstates, and will change the states when they operate. This is the part of the analysis that
may not be familiar (it appears in Chapter 11 of McIntyre’s QM text), but it is illustrative of how
we can prove useful results using only the properties of the operators. In particular, we can define
the so-called “ladder” (or raising and lowering) operators by

Jr=J1£ids. (5.1.11)
Since the Jj are Hermitian, it follows that

JL=dlxid = 1id=Js. (5.1.12)

Using Egs. (5.1.1)) and (5.1.11)), and some straightforward algebra, we can evaluate the new commu-
tators

[J+, J_] = [Jl, J1] + [Jl, —iJQ] + [iJQ, Jl] + [iJg, —iJQ]
=0 —i(iJsh) +i(—iJsh) + 0 = 2hJ3 (5.1.13)
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and

[Jg, J:t] = [Jg, Jl] + [Jg, iiJQ] =1hJy + (ii)(—ihjl)
— h(iJs+ J)) = +hs . (5.1.14)

With a little more algebra we can demonstrate (and you should try this at home) that, since the
total spin operator .J? commutes with each of the components (recall Eq. ), it also commutes
with the ladder operators,

[J2, J,] = 0= [J? J] =0. (5.1.15)

Since we eventually want to be able to evaluate the result of operating on the eigenstates with the
ladder operators, we want to first evaluate the products in terms of the eigen-operators J2 and J3.
This may seem unmotivated at first, but the usefulness of this step will be clear shortly. By explicit
calculation it follows that

Jod_ = (S +il)(Jy —ide) = JE+ J3 —ilJy, Jo] = J* — J2 + hJs, (5.1.16)
and
J Jp = (J1— i) (Ji+idy) = JE+ J2 +ilJy, Jo] = J* — J2 — hJ3, (5.1.17)

Note that the difference between these two equations is 2h.J3 as expected from Eq. . The
content of these relations is that the ladder operators move us around in a given representation of
SO(3) or SU(2) (hence the label), but do not change the representation, i.e., do not change the
eigenvalue of J2 (recall Eq. ) To see this explicitly we first note the operator relation (recall

Rq. (5-119))
J3Jy = JyJ3 + [Jg, Jj:] =JiJsthJi. (5.1.18)

Thus, when we apply this operator to an eigenstate, we obtain
J3<]:|:|j’ m> = J:N:J?)’jvm) + [J37 J:I:”j7m> = th:t‘jvm> + hJ:t’jvm> = (m + 1)h<]:|:|j> m> ’ (5119)

clearly indicating that the operator Jy raises/lowers the J3 eigenvalue by one (explaining the “ladder”
label),
Jilj,m) o |j,m£1), (5.1.20)

or, including an explicit coefficient,

Jeljm) = As(j,m £ 1)|j,m+1). (5.1.21)

We will determine the coefficient A4 (j, m £ 1) shortly. From Egs. (5.1.15)) and (5.1.7) we have

J2Jilj,m) = JyJ?|j,m) = N*(j)h*J+|j,m) = N*(j)R* AL (j,m £ 1)|j,m £ 1), (5.1.22)

confirming that J4 does not change the J? eigenvalue.

So, as already noted, these last equations tell us to interpret the operator Ji as stepping us through
the 1-D representation labeled by total angular momentum j.

To determine the coefficient A4 (j, m) we perform the following manipulations, which follow from the
definitions above. First, from the definition of the coefficient in Eq. ((5.1.21)) and the unit normaliza-
tion of the eigenstates, we have

Gl T d_|j,m) = GomlJEI_|jm) = [A_(,m = DG, m—=1]j,m—1) = |A_(j,m—1)[2, (5.1.23)
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and
Gym|J_Jylg,m) = (G,m|J TG, m) = |ALG,m+ D) PG, mA+1j,m+1) = |AL(,m+1)]2. (5.1.24)
Now we can use Egs. (5.1.16|) and (5.1.17)) to explicitly evaluate these matrix elements and find

(Gyml T J-|gym) = (j,m|J? = J5 + By [j,m) = N*(j)h* — m*h? + mh?
=R (N?(j) —m?* +m) = |A_(j,m — D?, (5.1.25)

and

<.ja m’J—J+’.]7m> - <.7a m‘Jz - J?? — hJs ‘.77 m> - Nz(j)h2 — m?h* — mh?
— R(N?(j) = m? —m) = | A1 (j,m + D). (5.1.26)
We can choose the phases of the eigenstates so that both coefficients are positive, real (without any

impact on the quantum physics) and define the coefficients in the operation of the ladder operators
to be (keeping the still to be evaluated parameter N2(j))

Ar(j,m+1) = hy/N2(j) —m2 Fm, (5.1.27)

Now we return to the discussion surrounding Eq. . We have seen that the ladder operators
raise and lower the eigenvalue m without changing the eigenvalue N?2(j). However, Eq. tells
us that N2(j) —m? > 0 for all allowed values of N2(j) (i.e., allowed values of j) and m. These two
results can both be true if and only if the raising and lowering process truncates, since otherwise
we will eventually obtain an m? value greater than any (fixed) N2(j) value. Thus there must be
maximum and minimum values of m, M,q, and My;n, such that

J—&-Uvmmaz) =0, J_‘j, mmin> =0. (5.1.28)

These results can be rewritten as the statements that

Ay (G, mMimaz +1) = 0, A—(j, Mmin — 1) = 0. (5.1.29)
Combining with Eq. (5.1.27) we have
N2(.7) _m?naa: — Mmax :07 Nz(]) _mgm'n""mmin =0. (5130)

Since the raising and lowering is always by a unit step (of h, this is QM after all), we know that
Mynaz — Mmin = an integer, which we label n. Using the difference of the two results in Eq. (5.1.30))
to eliminate N2 (7) and substituting mmaee = Mmin + n, we find

n n

Mmin = _§a Mmax = 5 . (5131)
Returning to Eq. (5.1.30) we find also that
N(j) = 5 (g +1). (5.1.32)

So now we can make the standard identification for the eigenvalue j,

]E§=>—]§m§]

N*(j) =j(+1). (5.1.33)
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Substituting in Eq. (5.1.27) we have

Ar(jym=E=1) =h/iG+1) —mm*+1)=h/GFm)(Gixtm+1), (5.1.34)

These expressions for the coefficients explicitly verify the truncation results of Eq. , i.e.,
Ay(Jommaz +1=7+1)=0and A_(j,mpmim —1=—7—1) =0.

Since n is an integer, there are two possibilities corresponding to odd or even n. If n is an odd
integer, then the “total angular momentum” eigenvalue j = n/2 is half-integer, while if n is an even
integer, then j = n/2 is integer. In either case the number of distinct values of m is the familiar
27 4+ 1 corresponding to the values m = —j tom = j E| Since the same arithmetic applies to the spin
of an individual particle, we see that both integer spin particles, i.e., bosons, and half-integer spin
particles, i.e., fermions, are possible. On the other hand, orbital angular momentum arises from the
L = (7 x p) operator (with a clear classical connection) and assumes only integer values.

To recap, we have used only the facts that the 3 components of the total angular momentum op-
erator are Hermitian operators (and so have real eigenvalues) and that these operators satisfy the
commutation relation of Eq. , to derive that the possible eigenvalues of .J? and J3 are specified
by a single parameter j. Further this parameter is either half-integer (1/2, 3/2, ...) or integer (0, 1,
2 ...). The eigenvalue of J? is given by j(j + 1)h? corresponding to the 2j + 1 m values in the range
—7 < m < j with J3 eigenvalues mh in the range —jh to +jh. Note that only for the “trivial” case
j = 0 is the eigenvalue of J? equal to the eigenvalue of J3 (both are 0). For j greater than 0 we have
j(j+1) greater m?, as we should expect for QMical systems where the other components besides .J3,
which do not commute with J3, will exhibit nonzero, if indeterminate, values in an eigenstate of Js.

5.2 Spin 1/2 in Vector/Matrix Notation

Here we will study a spin 1/2 system as an example of a 2-state system as you studied in your QM
class. We represent the corresponding states as

330 =10=(;) H-p=19=() (5.2.1)

where the up and down arrow notation is specific to the spin 1/2 interpretation and corresponds to
the component of spin along the 3 axis. In this basis we can use the so-called Pauli matrices, which
you likely learned about in Physics 225 or 227 as a basis set of 2 x 2 matrices. They are defined by

01 0 —2 1 0
01—<1 0),02—(2, O),Ug—(o _1>, (5.2.2)

and obey the commutation relation (note the factors of 1/2)

o; O} .o
[73 7} = icju Yy (5.2.3)

2The underlying physics point here is the quantization of angular momentum in units of %, i.e., changes in angular
momentum (spin) can only occur in integer steps with magnitude . We don’t notice this in ordinary life because a
typical (classical) angular momentum has magnitude of order kg m?/s or Joule * second. In units of & this is of order
103* 1 and changes in the angular momentum of magnitude 7 will appear to be continuous changes.
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Thus we can define the representation of the spin operator for our spin 1/2 system as (recall
Eqgs. (1.5.4) and (1.5.5))

o .
Sp, = h?’“, S}, Sk] = iejrhsS) . (5.2.4)
Note, in particular, that
h(1 0
Sy = 3 (0 _1> , (5.2.5)
as is appropriate for basis states that are eigenstates of S35 with eigenvalues +4/2. It follows that
11 h1l1 1 1 h11 1 1 3.5,1 1
S5l =) = =|=, = Sy =D, 2y, 82 s, o) = SRS, ). 5.2.6

Now consider the raising and lowering (ladder) operators. The representations for the raising and
lowering operators are

) 01 : 00
S+=Sl+252—ﬁ<0 0),3_—51—152—71(1 0), (5.2.7)

which clearly perform the following transformations

ST =0, S |N=h1), S|O=H1), S|}h=o0. (5.2.38)
This checks with Eq. (5.1.34) that yields for the spin 1/2 coefficients

n(3) 3 ()3 () o
- (g) =3 () -3 () =
n(e3) 3 (0)- ()i
(5930 (2) () -0

(Be certain to verify that you understand how these results arise.) The raising and lowering operators
are simply flipping the spin component along the 3 axis, or producing zero if this spin component
cannot be raised or lowered further.

Next we look at finite transformations in the underlying (Unitary Group) SU(2). We proceed much
as we did when we studied the group of rotations in 3-D in Chapter 1 (i.e., the group SO(3)). To
proceed it is useful to have the analogue of Eq. (1.5.8) for the Pauli matrices,

10
o = (0 1) =1, 0" =oy. (5.2.10)
ASIDE This result allows us to easily verify the last result in Eq. (5.2.6]),

2 2 2 2 2
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Proceeding as we did in Chapter 1, we find results similar to, but simpler than Eqs. (1.5.9) and
(1.5.10) (see also Chapter 10). For the finite transformation generated by S3 or o3 we have

(taos)™
2!

00
Tg(Oé) EeiozSg/h — 61’0’3(1/2 =1+ Z
n=1

(1) (a2 . O (=1 (a)2n 1
_120(223(2(71))! +ZU32)2(271+)1(;H)+1)!. (5.2.12)

Using what we know about the sinusoidal functions, especially Egs. (1.3.2) and (1.3.3), we can write
this transformation in the compact form

Q| iain & iae/2
T3() = (COS 2 J(F)Zsm 2 0 ) _ (e . e—?aﬂ) (5.2.13)

(0% N (0%
COS b 7 S1In b

(see also Eq. (10.3.23)). This SU(2) transformation generated by Ss or o3 in the basis of eigenstates
of S3 is simply a change of phase by +«a/2 where the sign depends on the sign of the eigenvalue. In
particular, the transformation is diagonal and does not involve any mixing of the two eigenstates. In
fact, since our basis states are eigenstates of S3, we could have evaluated this transformation directly,

1
2 7
where m = £1/2. This is the same result as the matrix form in Eq. (5.2.13)).

1 , 1 ,
T3(“)’57m> = e’aS3/h]§,m) =" Y=, m), (5.2.14)

5.3 Spin 1 in Vector/Matrix Notation

To further strengthen our understanding of spin systems, we want to consider a spin 1 systemE] where
again we use the simultaneous eigenstates of S? and S3 as the basis states. The possible eigenvalues
of S3 are now +1,0 — 1. So our vectors will have 3 components similar to the discussion of ordinary
rotations, SO(3), in Chapter 1, but is important to remember that here we are talking about SU(2)
Unitary transformations of a 3 state QMical system (where phases can matter) and not ordinary
location vectors in 3 dimensions. For this case the basis states are

1 0 0
lsm)=[1,1y= 0|, |Loy=[1], |1,-n=1[o]. (5.3.1)
0 0 1

Next we want representations of S7, So and S3 in this basis. As just noted, this is not the same basis
as in Chapter 1.5 (i.e., not ordinary location 3-vectors) and we do not expect the same representation
as in Eq. (1.5.5). In particular, in the basis of its own eigenstates, S5 should be represented by

0
0, (5.3.2)

1
Ss=h|0
0 —1

o O O

3In the individual particle language we will use shortly spin 1 particles are labeled vector particles in an obvious
reference to the more familiar, but distinct, 3-component location vectors in 3-D space.
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so that
S3|1,1) = A[1,1), S3/1,0) =0, S3|1,—1)=—h|1,—1). (5.3.3)
A little algebra (or a good book) yields the corresponding representations of S; and Sy to be
s—t(ton]. setfio 53
1= —= s 2 = —= 1 —1 . ..
V2 010 V2 0 ¢+ O

The reader is strongly encouraged to verify that this set of representations (matrices) are Hermitian
and satisfy the required commutator,

[Sj,Sk] = z’ejkthl . (5.3.5)
With a little more algebra we find that
g2 (101 p (10 -1 100
S%:? 020], 822:? 02 01|, S2=nrf0o00], (5.3.6)
101 10 1 001
so that
100
S? =824 52 +S3=2r*|010], (5.3.7)
001

So we have confirmed that in a spin s = 1 system the shared eigenvalue of S? is h%s(s + 1) = 2h2.

Finally with this representation we can construct the corresponding raising and lowering operators,

p (020 010
S, =84iSs=— 1002 =v2n|001],
V21000 000
p (000 000
S =8 —iSy=—1200]=VvV2n[100 (5.3.8)
V210 20 010

These matrices perform the expected transformations,

S+|151>:07 S+|1’O>:\/§h|1a]->a S+‘1771>:\/§h’170>
S_|1,1) =v2A|1,0), S_|1,0) = V2Ah|1,-1), S_|1,-1)=0. (5.3.9)

Recall from Eq. (5.1.34) that /2% is the expected nonzero coefficient.

5.4 Examples

To practice using the techniques described above let us consider the form of the SU(2) transformation
generated by S1 and Se when operating on the eigenstates of S5 as the basis states. Since the structure
of Eq. (5.2.3)) still obtains, the procedure follows much as it did for S3. For S; we have

— aSi/h _ Jicia/2 _ ZOéO'l
T (o) =™ =912 =1 + Z o]
e (D) () (=1)" ()
=1 nz:%) 220 (2n)] +ioq Z 22”“(271 ek (5.4.1)

81



Particles and Symmetries CHAPTER 5. QM AND ANGULAR MOMENTUM

Again we recognize the sums and rewrite in the compact form

a suoa
Ti(a) = (.CCTS 2 Zsma2> . (5.4.2)

781N b COS 5

Note that in this case the transformation is no longer diagonal, 4.e., this transformation does “rotate”
the eigenstates of S3 into one another (with some extra phases). This is intuitively reasonable as
the transformation is about an axis orthogonal to the direction along which we quantized the spin

component. Note also that
_ [ cos 5 ising _ (0
Ti(m) (z sing  cos§ > (z 0) ’ (5:4.3)

i.e., a “rotation” by 7 flips spin up to spin down and conversely (along with adding a phase of 7/2),
which is intuitively expected.

The story for Ss is quite similar leading to

_ _iaSy/h o (iao2)"
Ty(a) = 5/ = o202 = 1+Z 2

2n 1 2n+1
—12 22( + iy 222”31((2”)% (5.4.4)

Again we recognize the sums and rewrite in the compact form

Ty(a) = ( %2 Smg) . (5.4.5)

— S1n b COS 5

This really does look like an ordinary rotation (recall Eq. (1.5.10)) except for the factor of 1/2 in the
arguments of the sines and cosines, which is the residue of spin 1/2. It is also important to remember
that this 2-state system is in terms of the eigenstates of S3 and not in terms of the two components
of an ordinary location 2-vector.

Note that a rotation through 27 about any of the 3 axes, which you might naively expect to bring
us back to to where we started (i.e., yield the unit matrix), is given instead by the negative of the

unit matrix (see Eqgs. (5.4.2)), (5.4.5)) and (5.2.13))

T1(27) = To(27) = T3(27) = (‘01 _01> : (5.4.6)

This illustrates a fundamental difference between half-integer spin particles (fermions) and the more
classically behaved integer-spin particles (bosons - see below). This difference plays an essential role
in our understanding of how the fundamental particles behave.

As a final example let us evaluate finite SU(2) transformations for vector particles, i.e., in the basis of
the previous section. The products of the (representations of the) generators satisfy slightly different
relations than the more familiar form in Eq. (5.2.10]) (also recall Eq. (5.3.6))

101
sim=——1020]|, S¥'=p"g, (5.4.7)
101
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pon (10 —1
Sgn=—10 2 0 |, SItl=pongG,, (5.4.8)
2 \_10 1
and
100
Sn=p(00 0|, S¥=p"G;. (5.4.9)
001

Thus, following a path similar to the one above, we find that, in the vector SU(2) representation,
the finite transformation generated by 57 is given by

Tl(O[) EeiaSl/h -1 + Z (/LOZSl/h)

— n!
1 0 -1 101\ «
1 1 ( 1) 2n+1
== 000 |+-({020]> +ZSZ . (5.4.10)
2\ 10 1 2\1 01/ = (@n 2”+

where in the second step we split apart the unit matrix to provide the n = 0 term in the first sum.
As in the earlier analyses we can now rewrite the two sums as the cosine and sine functions. We

have
1+cosa iv2sina —1+ cosa

Tl(a):§ iv2sina  2cosa iV2sina | . (5.4.11)
—1+cosa ivV2sina 1+ cosa

This matrix clearly reduces to the unit matrix for &« = 0 and it is straight forward to demonstrate
that it is a Unitary matrix (77 T = TlJr ) for real . The form of the matrix for general « values is less
intuitive. However, for aw = 7, which we discussed above for the spin 1/2 case, and where we expect
to be exchanging the spin up and spin down states we find

0 0 -1
Tym)=|0 -1 0 |. (5.4.12)
-1.0 0

This matrix does indeed exchange the m = +1 states with each other, and introduces a phase of —1
everywhere.

The same analysis for the transformation generated by Sy yields

T = iaSa/h -1 ('LOJ 2
2(a)=e + E o

1 0 -1\ )
(DM@ | o (1))
0 (2) (1) Z W + ZSQ go W s (5413)

where in the second step we again split apart the unit matrix to provide the n = 0 term in the first
sum. As in the previous analyses we can now rewrite the two sums as the cosine and sine functions.

We have
l+cosa +2sina 1-—cosa

TQ(Q):i —V/2sina 2cosa V2sina | . (5.4.14)
1—cosa —+v2sina 1+ cosa
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Except for the factors of ¢ this transformation is very similar to 77. 7% is also a Unitary matrix.
T5(0) is again the unit matrix, while

0 0 1
To(m)=|0 =1 0], (5.4.15)
1 00
which again exchanges the m = +1 states, but with somewhat different phases.

Finally consider the transformation generated by S3, which, as noted earlier for the spin 1/2 case, is
particularly simple to evaluate when the basis states are eigenstates of S3 as here. We have

Ty(a) =S/t =14+ (iS3/h)

|
= n!
000 100\ ~ 9 00 In+1
_]_ n n _1 n mn
—lo1o0l+[000 Z%_FZ’SSZ%
000 001/ @) = (@n+1)
cosa+isina 0 0 e 0 0
= 0 1 0 =10 1 O , (5.4.16)
0 0 cosa —isina 0 0 et

which is, as expected, quite similar to Eq. (5.2.13))

To contrast with the result for spin 1/2 in Eq. (5.4.6) we can evaluate Egs. (5.4.16)), (5.4.11]) and
(5.4.14)) for a rotation through 27 applied to a spin 1 system,

Ti(2m) = To(27m) = T3(27) =

S O =

00
10]. (5.4.17)
01

For integer spin we obtain the expected “classical” result of returning to where we started.

The reader is encouraged to practice using the concepts described above by reproducung the above
expressions for the various transformations.
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Chapter 6

Known particles

6.1 Ordinary matter

What are you made of? Blood and guts and bone and muscle is a little more accurate than the
traditional mother goose rhyme. Your tissues are made of cells, which are little bags of chemicals:
proteins, nucleic acids, lipids, water and other molecules. Each molecule is a specific assembly of
atoms. And each atom contains an atomic nucleus surrounded by some number of electrons.

This should all sound familiar. But stop for a minute and ask how this is known. You can see cells
in a microscope. But for objects smaller than cells direct observation gets more difficult. How do
you know that atoms and molecules, or electrons and nuclei, exist? Is it just because someone told
you so? What’s the evidence?

Figure 6.1: Three examples of modern atomic scale imaging. Image (a) shows the surface of sodium chloride, imaged
by atomic force microscopy (AFM). Note the two surface defects. Image (b) (courtesy of E. Andrei) is a scanning
tunneling microscope (STM) image of a freely suspended graphene sheet — a single atomic layer of graphite. The
hexagonal structure, reflecting the sp? hybridization of valence electrons in the carbon atoms, is obvious. Image (c)
(from the cover of the April 4, 2008 issue of Science) shows single cobalt atoms on a platinum surface with steps,
imaged with spin-polarized scanning tunneling microscopy. Blue areas show the platinum substrate; red and yellow
regions in front of the steps show adsorbed cobalt monolayer stripes with magnetization up (yellow) or down (red).
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The historical basis for the atomic structure of matter owes much to the development of the kinetic
theory of gases, the understanding of Brownian motion, and chemistry. From a more modern per-
spective, two compelling types of experimental evidence for the existence of atoms can be summed
up as (7) chemistry works, and (7)) individual atoms and molecules can be imaged using a variety
of modern techniques, such as scanning tunneling microscopy and atomic force microscopy. A few
examples of atomic scale imaging are shown in Figure [6.1].

In the following discussion we will introduce the know particles essentially in historical order. In-
dividual particles are characterized by their (rest) mass, their spin (i.e., how they transform under
ordinary spatial rotations) and their participation in the known types of interactions, which comprise
the Standard Model (labeled the SM)E' All particles participate in gravitational interactions, but for
our purposes this interaction is extremely weak and will be largely ignored in this class. Nearly all
particles participate in the Weak Interactions (all except photons and gluons), which are stronger
than gravity but weaker than the Electromagnetic and Strong interactions. Particles with a nonzero
electric charge (plus the photon) participate in the Electromagnetic interactions. Finally the hadrons
(made from quarks and gluons) participate in the Strong interactions. The relative strengths and
ranges of the known “fundamental” forces are characterized in the following table.

Force Relative Strength Range
Strong 1 ~ fm = 107! meter
Electromagnetic 1072 “Infinite” (o< 1/7?)
Weak 10-¢ ~ 1073 fm
Gravitational 10713 “Infinite” (o< 1/72)
Anode

Deflecting coils

Control Grid

/ J J [ / J Fluorescent screen
!

Cathode  Electron
beam

Focusing coil

Figure 6.2: Simple sketch of cathode ray tube.

The existence of electrons has been known experimentally since the work of J.J. Thomson who, in
1897, studied the behavior of particles that pass through a cathode ray tube (which is essentially a
really old tv) when a suitably large voltage is applied between the anode and cathode as illustrated
in Figure [6.2].

We will eventually characterize this participation in terms of a variety of “charges”, which themselves characterize
how the particles transform under more abstract “rotations.”
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Thomson found that these particles have a mass to (electric) charge ratio which is independent of
the type of material forming the cathode or the gas in the tube. Further the magnitude of this ratio
is about 2000 times smaller than the corresponding mass to charge ratio of a hydrogen ion (i.e.,
a proton). Measurement of the charge-to-mass ratio involves observing the deflection of a moving
particle produced by a magnetic field (generated by the deflecting coils in Figure . The charge
of a single electron can be measured using the approach of Millikan and Fletcher’s famous oil drop
experiment pictured in Figure [6.3]. Based on refinements of such measurements, the magnitude of

cover
.::-
= | i
-~ |spra microscope
several thousand e pray ) -
volts |r ki =3 L |u|

N\

— uniform electric field

Figure 6.3: Simple sketch of Millikan and Fletcher’s oil drop experiment.

the electron charge is now known to a precision of a few parts in 108,
| —e| = 1.602 176 565 (35) x 1071 C. (6.1.1)

(The number in parentheses indicates the uncertainty in the last two digits.) In other words, a
Coulomb, whose definition is based on macroscopic measurements of current plus the definition of a
second, is equal in magnitude to 6.241 509 34 (13) x 10'8 electron charges. The mass of the electron
is also known to a similar precision,

me = 0.510 998 928 (11) MeV/c* = 9.109 382 91(40) x 103! kg . (6.1.2)

One MeV (= 108 eV) is the energy acquired by an electron passing through a potential difference of
one million volts. (The interested student is encouraged to become familiar with the vast amount of
precision data available to you at the PDG website, which is linked at the bottom of the class web
page.)

A few angstroms (1 A= 1071 m = 5 x 10° GeV™!) is the size of individual atoms, whereas nuclear
sizes are naturally measured in units of the fermi (or femtometer), where 1 fm = 1071 m ~ 5
GeV~L. Direct evidence of the size of atomic nuclei comes from scattering experiments, specifically
measurements of the momentum dependence of the scattering cross section. This topic will be
discussed more fully in a later chapter. For now, it suffices to note that, in order to learn about the
structure of some object like an atomic nucleus, one must use some probe [such as photons (light),
electrons, or other nuclei] whose wavelength is smaller than the size of the object of interest. To
this end particle physics, starting around the middle of the 20th century, has been marked by the
development of particle accelerators of ever increasing energy.

Atomic nuclei are known to be bound states of more fundamental particles, protons and neutrons
(except for the lightest nucleus of hydrogen, which is just a single proton). This information again
comes from scattering experiments: one can bombard nuclei with various projectiles, such as electrons
or other nuclei, and observe individual protons or neutrons knocked out of the target nucleus. Just
as atoms come in different types, which are usefully organized in the traditional periodic table
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B 0455 1001
Proios  1002s
Prowrs 1003
Powoss 10045
Piowss 1005
Powss  1008s
104025 10-07s
10401s  10-15s
Mios00s | <10-155s

unknown

Figure 6.4: Chart of the nuclides (from the National Nuclear Data Center at Brookhaven National Laboratory). The
number of protons, Z, is plotted vertically and the number of neutrons, N, horizontally. The color coding indicates the
lifetime, with stable nuclei in black and lighter colors corresponding, as shown in the legend, to progressively shorter
lifetimes. The rows and columns labeled with specific values of Z and N are so-called “magic” numbers where nuclei
have enhanced stability.

and characterized by their differing chemical interactions, there are many different atomic nuclei
distinguished by the numbers of neutrons and protons that they contain. It is conventional to label
nuclei with the atomic symbol for the corresponding element, with a preceding superscript indicating
the atomic number A, equal to the number of protons plus neutrons, and a preceding subscript Z
indicating the number of protons. For example, the lithium-7 nucleus, %Li, is a bound state of three
protons and four neutrons. Figure shows a plot of known nuclear species (or nuclides), color
coded according to their stability (see the lifetimes in the legend). Useful interactive online versions
may be found at www.nndc.bnl.gov and atom.kaeri.re.kr E|

Protons have charge +e, precisely equal in magnitude but opposite in sign to the electron. Note that
this apparent ezact equality (except for the sign) between the proton’s electric charge and that of the
electron is a very important feature of our universe. We are built from atoms with zero net charge (to
a very good approximation, i.e. to better than one part in 10%!), and thus electromagnetic repulsion

2Note that most tables of nuclides, including the one at |atom.kaeri.re.kr], list atomic masses, not nuclear masses,
the distinction being that the atomic mass is the mass of the neutral atom. In other words, the atomic mass includes
the rest mass of all the electrons plus the mass of the nucleus, as well as the (negative) atomic binding energy.
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does not exclude us from sitting next to our fellow students. This situation clearly calls for some
fundamental explanation. So-called “GUTS”, or Grand Unified Theories, are intended to do just that
by postulating a “grand” underlying symmetry that relates quarks and leptons. This “relationship”
can then explain the exact equality of the magnitudes of the electric charges of electrons and protons.
The existence of such an underlying symmetry, even if badly broken at the energy scales we are used
to, would lead to interactions allowing the proton to decay (slowly, see below) into leptons. The
search goes on, but for now proton decay had not been observed and we have no real explanation of
why there is a single fundamental unit of electric charge.

The mass of a proton is measured to be
my, = 0.938 272 046(21) GeV /c?. (6.1.3)

This is about 2000 times larger than the mass of an electron. Neutrons, which are neutral (zero
electric charge) particles, are slightly heavier than protons,

my, = 0.939 565 379(21) GeV/c2. (6.1.4)

Neutrons, protons, and electrons are all spin 1/2 particles, where spin is measured in terms of the
fundamental quantum of spin, A. Looking ahead, it is essential (and we will discuss and use this
at several points) to recall that one way to classify particles is in terms of whether their spin is
one-half integer (as here) or integer valued (in units of /). The former are labeled “fermions” and
the later “bosons”. One way to think about the difference between these classes of particles is how
they transform under rotations. The familiar behavior (i.e., behaving like you do) is that of bosons.
After a rotation of 360 degrees, or 27 radians, about any axis a boson is unchanged (i.e., comes back
to where it started, e?™ = 1). Less familiar is the behavior of a fermion under such a rotation; it
does not come back to where it started but instead differs by a minus sign (i.e., its phase has changed
by 7 radians, e2mi/2 — gmi — —1) Of course, we are sensitive to such phases only in the context of
quantum mechanics. Thus the intrinsic difference between these two varieties of particles becomes
absolutely clear in the context of quantum field theory (QFT) where we must define operators to
represent these particles (and the fields that describe them). For fermions these operators must anti-
commute ({A,B} = AB+ BA =0 or AB = —BA), while for bosons the corresponding operators
must commute ([C, D] = CD — DC =0 or CD = DC). Thus, when we build states out of identical
fermions, the states must be anti-symmetric under the interchange of any pair of fermions. This
immediately leads to the Pauli Exclusion principle - no two identical fermions can reside in the same
state, since such a situation would necessarily be symmetric. On the other hand, a state constructed
of identical bosons must be symmetric under the interchange of any two of the bosons. Thus bosons
are “happy” to be in the same state as that guarantees symmetry (and lasers really do produce
beams of coherent photons, all in the same state). You will often see this connection between spin
and the interchange symmetry referred to as the Spin-Statistics Theorem.

Protons and neutrons are collectively referred to as nucleons. Recall that the masses of the neutron
and proton are very similar (see Egs. (6.1.3)) and (6.1.4))), suggesting that these two particles should be
related somehow (by a slightly broken symmetry?). Nucleons are known to have internal structure:
they may be regarded as bound states of three quarks. We will later be discussing quarks, and

3Recall that in our discussion in Chapter 5 of transformations abour the 3-axis by an “angle” « spin 1/2 systems
picked up a phase proportional to «/2 while spin 1 systems (vector systems) picked up a phase proportional to a. We
further noted that this result is true for a 27 “rotation” about any of the axes, Eq. (5.4.6).
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their possible bound states, in much greater detail. For now, we simply note that the observational
evidence for quarks is necessarily somewhat indirect. It turns out that scattering experiments with
nucleons cannot liberate free quarks. Why is that? Good question and we will have more on this
point later. This apparent disconnect between the degrees of freedom in the theory (the quarks) and
the degrees of freedom observed in the lab (the hadrons) has constituted one of the major intellectual
challenges in particle physics. The previous experience has always been that you could “take things
apart”, molecules — atoms, atoms — electrons and nuclei, nuclei — neutrons and protons. When
we try to take protons apart, we find more protons, plus pions and kaons, but no isolated quarks!
On the spatial resolution scales larger than a fermi, we believe that quarks are always “confined”
inside hadrons. We need to become comfortable with this new set of rules.

Interestingly, the “internal gear wheels” story currently ends here. No evidence for internal structure
within quarks, or electrons, has yet been found. If quarks and leptons are discovered someday to
be composite objects, bound states of some not-yet-known more fundamental constituents, then the
length scale on which this binding occurs must be at least three orders of magnitude smaller than
the femtometer (fm) scale of nucleons. This limit on the length scale is set by the corresponding
energy scale (TeV) of the experimental measurements at both the Tevatron and the LHC, which,
until now, have not exhibited any internal structure for quarks or leptons..

6.2 Stability of particles

Are protons, or electrons, or hydrogen atoms stable? Or can they spontaneously decay? In other
words, if one of these particles (or atoms) is completely isolated, in a vacuum, can it eventually,
spontaneously fall apart? It is important to recognize that this is a “bad” question. It is fundamen-
tally unanswerable — because feasible experiments must necessarily last only a finite length of time.
If there is no known evidence that a certain type of particle can decay, then the question one should
ask is what [imits can be placed on the stability of the particle.

For protons and electrons, we have no evidence whatsoever that these particles are unstable, and
experimental bounds on the lifetimes of these particles, if they do decay, are very long,

proton lifetime 7, > 2.1 x 10% yr, (6.2.1)

electron lifetime 7, > 4.6 x 10%® yr. (6.2.2)

We should be impressed with these limits, considering that they vastly exceed the age of the Earth (a
mere 4.5 billion years) and the Universe (over 13 billion years). Suppose, hypothetically, that protons
do decay with a lifetime of 10%° years. How could one ever know? The direct approach of watching
one particle for 103" years is obviously impractical. But if you can watch many identical particles
simultaneously, and detect if (and when) a single one of them decays, then extremely long lifetimes
can be measuredE] A cubic meter of water contains 2.7 x 10% protons (and the same number of
electrons). So if 7, = 103 yrs, then within a tank holding 100 cubic meters of water, 27 protons (on
average) will decay every year. The challenge is in designing and operating an experiment which can
detect the decay of individual protons within a large quantity of material. While the development

“The lifetime 7 of an unstable particle is, by definition, the time interval (in its rest frame) for which the probability
of the particle decaying is 1/e. If you start with No identical particles, then the mean number of particles which will
remain after time ¢ is given by N(t) = Ny e ¥/7. If Ny > 1 then, on average, one particle will have decayed by the
time t1 = 7/No, since N(t1) ~ No — 1.
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of such detectors (essentially instrumented large tanks of water) has not yet led to the observation
of proton decay, it has resulted in detectors capable of detecting the neutrinos from our sun and
from supernovas elsewhere in the galaxy. This is, in fact, a very nice story of the synergies that
drive science. The initial push was to detect proton decay (yielding only a limit until now), but the
technology developed contributed to the very exciting (and unexpected) discovery that neutrinos are
not massless!

Next consider neutrons, the other basic constituents of nuclei besides protons. Unlike protons, an
isolated neutron is known to be unstable, with a lifetime of about 15 minutes. The products of the
decay are a proton, an electron, and a less familiar particle called an electron antineutrino, denoted
Ue. This decay is represented symbolically as

n—p+e +7. (6.2.3)

This decay process is referred to as a beta decayﬂ and is a consequence of interactions known as weak
interactions, which will be discussed more fully in a later chapter. Neutrinos are nearly massless,
spin-1/2 particles which interact extremely weakly with ordinary matter and as a result are very
difficult to detect. They come in several different types (distinguished by the charged lepton with
which they are correlated by the weak interaction), and exhibit interesting quantum-mechanical
phenomena which we will also examine later.

Although a single free neutron is unstable, when neutrons bind with protons to form nuclei the
resulting bound states are, in many cases, effectively stable (meaning that their lifetimes, if finite,
are in excess of billions of years). Such stable nuclei include deuterium (3H) which is a bound
state of one proton with one neutronﬁ helium-3 (3He) which contains two protons and one neutron,
helium-4 (%He) consisting of two protons and two neutrons, and many progressively heavier nuclei
(recalljzll?igure up to bismuth-209 (2%Bi) which is the heaviest (known) nucleus that is essentially
stable

6.3 Nuclear decays

In addition to (apparently) stable bound states, there are many more unstable nuclei with lifetimes
that range from very long, billions of years, down to very short, less than femtoseconds. Stable
nuclei have roughly the same number of protons and neutrons (or in heavier nuclei, slightly more
neutrons than protons, recall Fig. . Many nuclei with an excess of neutrons, relative to the
number of protons, undergo beta decay. This converts a neutron within the nucleus into a proton,
while emitting an electron and an antineutrino. For example,

5This is a historical name which dates from the early 1900s, when three distinct types of radioactive decay, called a,
B, and ~y, had been identified. The different decay types were distinguished by the degree to which the particles emitted
in the decay could penetrate ordinary matter. Alpha decays produce particles with very little penetrating power which
were later identified as helium-4 nuclei. Gamma decays produce extremely penetrating particles, later identified to be
high energy photons (“gamma rays”). Beta decays produce particles which penetrate farther than alphas, but less than
gammas. These were subsequently identified to be electrons.

5Recall the notation for nuclei: the symbol 4Sy denotes the nucleus of the element “Sy” with A nucleons, of which
Z are protons.

"In fact, bismuth-209 has recently been found to alpha decay with a lifetime of 2 x 109 yr.
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B decay lifetime
SH — 3Hede + 17 17.8 yr,
SHe — SLi+e +7 1.16 s,
YBe — YB+e +1ue 2.18 Myr,
U — YBC+e +7e 18.0 ms.

Some nuclei with an excess of protons, relative to the number of neutrons, can convert a proton into
a neutron by capturing an electron from the cloud of electrons surrounding the nucleus, and then
emitting a neutrino which carries off the excess energy,

electron capture lifetime
Be+e™ — ILi+ue 76.9 day,
aCat+e” — HK+ve 1.50 Myr.

This mode of decay is only possible if the atom is not fully ionized, so that one or more electrons
are bound to the nucleus. If that is not the case, neutron-poor nuclei can convert a proton into
a neutron via positron emission. A positron, denoted eT, is a particle with the same mass as an
electron, but with charge +e instead of —e. It is an example of an antiparticle, discussed below.
(Actually we have already “snuck” in the concept of antiparticles by mentioning both neutrinos and
antineutrinos above.) The carbon-11 nucleus preferentially decays via positron emission even when
it has an orbital electron it could otherwise capture,

positron emission lifetime

1%0 — 1§B—|—e++1/e 29.4 min.

Since this process creates a positron rather than absorbing an electron as above, the energy released
by the change in the nucleus must be larger (to satisfy overall energy conservation).

Certain nuclei have multiple modes of decay with measurable rates. For example, potassium-40
(19K) has a lifetime of 1.8 billion years. In 89% of its decays, potassium-40 undergoes beta-decay
to calcium-40, but in the remaining 11% of its decays, potassium-40 decays to argon-40 via electron
capture or positron emission.

In addition to the above types of nuclear decay, in which a neutron is converted into a proton or
vice-versa, some nuclei which are very proton-rich decay by simply ejecting a proton, or in some
cases, an alpha particle. And some very neutron-rich nuclei simply eject a neutron.

Many excited states of nuclei decay to their ground states by emitting photons (just like excited
atomic states). But in the case of nuclei, excited state energies are typically in the range of several
MeV, so the photons emitted in nuclear decays are in the gamma ray portion of the electromagnetic
spectrum (to the far right in Figure [6.5).

6.4 Photons

One other elementary particle which plays a major role in innumerable aspects of everyday life is the
photon. Photons are quantized excitations of the electromagnetic field, and are the “force carriers”
for the electromagnetic interaction (we say that an electromagnetic interaction has occurred when
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Figure 6.5: Illustration of the spectrum of electromagnetic waves.

a photon is exchanged). They have no rest mass (unlike the other particles we have discussed so
far). The spectrum of electromagnetic radiation is illustrated in Figure from long wave lengths
(low energy photons) on the left to short wave lengths (large energy photons) on the right. Photons
carry one unit of angular momentum, in units of h. We typically express this point by the phrase
“photons are spin 1 particles.”

In everyday life, quantum aspects of the electromagnetic field are not readily apparent. For a great
many applications, a classical treatment of electromagnetism suffices, i.e., the number of photons
present is enormous and we cannot readily detect the emission or absorption of a single photon. But
the quantized nature of light is revealed in phenomena such as the photoelectric effect, the presence
of stimulated emission in lasers and masers, and the operation of sensitive photo-diodes which can
detect single photons[f|

6.5 Antiparticles

Early studies of cosmic rays revealed the existence of positrons, particles with the same mass as
electrons but opposite charge. When a positron collides with an ordinary electron, they can interact
and scatter like any two electrically charged particles. However, they can also under go a very special
process, allowed only for the case of particle and antiparticle. They can annihilate with each other
and produce (only) photons,

et +e — Y+

Accelerator-based scattering experiments have also revealed the existence of antiprotons and an-
tineutrons, denoted p and n, respectively. They can similarly annihilate with their ordinary partners
to produce photons,

p+p—7+7,
n+n—y+-y.

8Human vision, when fully dark-adapted, can nearly detect single photons of visible light. See, for example, the
classic paper Energy, Quanta, and Vision/ by Hecht, Shlaer and Pirenne.
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When one combines quantum mechanics and special relativity (leading to relativistic quantum field
theory), a remarkable theoretical prediction is that antiparticles must exist. Charged particles must
have distinct antiparticles with exactly the same mass and spin, but opposite electric charge. For
certain neutral particles, such as the photon, there is no distinction between particle and antiparticle
— one can say that the photon is its own antiparticle. At the moment it is unclear whether the
other really neutral particle, the neutrino, is its own antiparticle or not. Our friends at CENPA (the
UW physics laboratory on the other side of campus) are involved in the MAJORANA experiment
that will test this idea by looking for neutrino-less double beta decays. Such decays can occur only
if neutrinos are their own antiparticle (such self-conjugate fermions are called Majorana fermions).
(Note that, while electrically neutral, the neutron does carry another “charge” called baryon number
and is unambiguously distinct from the antineutron.) Although antimatter is not present in everyday
life (this is another mystery - why is the universe so antisymmetric between matter and antimatter,
which was presumably not the case at the time of the big bang?), antiparticles do exist, and the
laws of nature are almost, but not quite, symmetric under the interchange of ordinary matter and
antimatter. We will discuss these issues further in a later chapter.

6.6 Leptons

Electrons (e”) and electron neutrinos (v.) are members of a class of particles known as leptons.
Their antiparticles, the positron (e™) and electron antineutrino (%), are antileptons. Leptons (and
antileptons) are spin 1/2 particles. All leptons participate in the weak interactions (leptos is Greek
for weak) and the (electrically) charged leptons also participate in the electromagnetic interactions.
However, leptons do not participate in the strong or nuclear interactions (i.e., they are not bound
states of quarks). In addition to the electron, two other charged leptons are known, the muon (u™)
and the tau (7). As the superscripts indicate, these particles are negatively charged; their charge is
(apparently) identical to that of the electron. Their antiparticles are the antimuon (u*) and antitau
(71). There are distinct neutrinos associated, through the weak interactions, with each charged
lepton. In addition to the electron neutrino, there is a muon neutrino () and a tau neutrino (v;),
as well as the corresponding antineutrinos (7, 7). So an important question is - why 3 kinds of
leptons?

The basic properties of the leptons are summarized in Table[6.1]. The electric charge listed is in units
of |e|. Neutrinos have much smaller rest masses then the charged leptons, so much smaller that it is
extraordinarily difficult to measure neutrino masses (and we have not yet succeeded). On the other
hand, the observation of neutrino oscillations, which will be discussed in a later chapter, implies
that neutrinos must have non-zero masses. But at the moment only an upper bound on the actual
values of the neutrino masses is known. (Note that research groups within the UW Department of
Physics have played important roles in the experiments leading to our current understanding of the
properties of neutrinos, and continue to do so.)

As indicated in Table the “heavy” leptons decay into the light ones. The muon decays into
an electron plus an electron antineutrino and a muon neutrino. The heavier tau has more options,
decaying to both electrons and muons, and into a final state with hadrons (2 pions) and just the
single lepton (the tau neutrino). In all of these processes “lepton number” is conserved. Lepton
number, denoted L, is defined as the total number of leptons minus antileptons,

L = (# leptons) — (# antileptons) . (6.6.1)
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All known interactions conserve lepton numberﬂ In fact, the dominant interactions (but not, for
example, neutrino oscillations) conserve lepton number separately for each lepton “flavor”, electron,
muon and tau. So e~ and v, have L, = +1, while e™ and 7, have L, = —1. Similar definitions hold
for L, (+1 for g~ and vy, -1 for p* and 7,) and L, (+1 for 7~ and v,, -1 for 77 and 7). In the
decays noted in the table below we see, for example, u~ — e~ v.v,, with L, = 0, L, = 1 in both the
initial and final states (and similarly for the decays of the 7). We will see later that this structure
is built into the (perturbative) definition of the weak interactions.

particle rest energy lifetime dominant decay charge L
Ve <2eV ~ stable — 0 1
vy < 0.19 MeV = stable — 0 1
Vr < 18.2 MeV = stable — 0 1
e 0.511 MeV stable — -1 1
wo 105.7 MeV 2.2 us e Vel -1 1
T 1777 MeV 0.29 ps 7 10, e Do, 7Nz -1 1
Ue <2eV ~ stable — 0 -1
Uy < 0.19 MeV = stable — 0 -1
Uy < 18.2 MeV = stable — 0 -1
et 0.511 MeV stable — +1 -1
put 105.7 MeV 2.2 us e Ve, +1 -1
Tt 1777 MeV 029 ps 7l et ey, ptu,o, +1 -1

Table 6.1: Leptons and antileptons.

9 Actually, this is not quite true. The current theory of weak interactions predicts that there are processes which
can change lepton number. However, the rate of these processes is so small that lepton number violation is completely
unobservable.
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Chapter 7

Quarks and hadrons

Every atom has its ground state — the lowest energy state of its electrons in the presence of the
atomic nucleus — as well as many excited states, which can decay to the ground state via emission
of photons. Nuclei composed of multiple protons and neutrons also have their ground state plus
various excited nuclear energy levels, which typically also decay via emission of photons (plus a and
B radiation). But what about individual protons or neutrons?

It was asserted earlier that individual nucleons are also composite objects, and may be viewed as
bound states of quarks. And just as atoms and nuclei have excited states, so do individual nucleons.

The force which binds quarks together into bound states is known as the strong interaction, and the
theory which describes strong interactions (on distance scales small compared to a fermi) is called
quantum chromodynamics, often abbreviated as QCD. The quarks carry a corresponding charge,
the analogue of electric charge, which is labeled “color” charge, leading to the “chromo” in the
name. Unlike electric charge, for which there is only a single variety - either plus or minus (with
the underlying symmetry group U(1)), there are three possible ”colors” for the color charge of a
quark, along with the corresponding “anti-colors”. The group describing the underlying symmetry
is SU(3). E] We will have more to say about QCD as we progress. But the justification for the
validity of the following qualitative description of quarks and their bound states lies in the success of
QCD as a description of what is observed in the laboratory. Using this theory, one can do detailed
quantitative calculations of the masses and other properties of bound states of quarks and compare
with experimental results. The theory works. (In fact, the story of how this theory has been verified
in experiment, even though the theory has quarks as degrees of freedom, while experiment never
detects individual quarks, is an interesting one indeed. We will have only a limited opportunity to
discuss it this quarter, but I will note that an essential feature of this story is the emergence of “jets”
of hadrons in the final states of high energy collisions, and I have spent much of my scientific career
clarifying both the theoretical and experimental properties of these jets.)

In this Chapter we will introduce a variety of new concepts, which we will return to in more detail
in subsequent discussion. In particular, we will be using several techniques from group theory. Now
would be a good time to read both Chapters 10 and 11.

In the group theory language of Chapter 10 U(1) is an Abelian group and the particle corresponding to the
interaction, the photon, does not interact directly with itself, i.e., the photon has zero electric charge. SU(3), on the
other hand, is a non-Abelian group and the gluons, the analogs of the photon, come in 8 varieties and do interact
directly with each other, i.e., have nonzero color charge.
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7.1 Quark flavors

Quarks are spin-1/2 particles (fermions), which come in various species, (playfully) referred to as
flavors. Different quark flavors have been given somewhat whimsical names, as shown in Table
(values from the PDG). Note that the table includes values for the quark “masses”, but care must be
taken when interpreting these values as individual, isolated quarks are never observed experimentally.
On the other hand, it should be clear that the masses for different flavors vary substantially.

flavor symbol mass charge
up u ~ 2.310% MeV/c? 2 le|
down d ~ 4.8105 MeV/c? —1e]
strange s ~ 95+ 5 MeV/c? —1 el
charm c 1.275 4 0.025 GeV/c? 2 le|
bottom b 4.18 £0.03 GeV/c? —1e]
top t 173.07 £0.52 £ 0.72 GeV/c? 2 el

Table 7.1: Known quark flavors

Along with quarks, there are, of course, also antiquarks, denoted 1, d, 5, etc., with the same masses
but opposite electric charge as their partner. (So, for example, the 4 antiquark has charge —2/3 and
the d has charge 4+1/3 - note the non-integer values.) As suggested above, quarks are distinguished
from leptons by an additional quantum number that is called color, which takes three possible values:
say red, blue, or green (and anti-red, anti-blue and anti-green for the antiquarks). These names are
simply labels for different quantum states of the quarkE] Since quarks have spin 1/2, they can also
be labeled by their spin projection, 1 or |, along any chosen spin quantization axis. Hence, for each
quark flavor, there are really six different types of quark, distinguished by the color (red, blue, green)
and spin projection (up, down).

In addition to the curious names, two other things in Table[7.I]should strike you as odd: the enormous
disparity of masses of different quarks, spanning five orders of magnitude, and the fact that quarks
have fractional charge (in units of |e|). Both issues are at the core of ongoing research, including that
at the LHC, seeking evidence of the dynamics of mass generation (now apparently at least partially
clarified by the discovery of the Higgs boson) and the connection between quarks and leptons.

7.2 Hadrons

No (reproducible) experiments have detected any evidence for free, i.e., isolated quarks. Moreover,
there is no evidence for the existence of any isolated charged particle whose electric charge is not
an integer multiple of the electron charge. This is referred to as charge quantization. Consistent
with these observational facts, the theory of strong interactions predicts that quarks will always be

2These names are purely conventional — one could just as well label the different “color” states as 1, 2, and 3. But
the historical choice of names explains why the theory of strong interactions is called quantum chromodynamics: a
quantum theory of the dynamics of “color” — although this color has nothing to do with human vision!
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trapped inside bound states with other quarks and antiquarks, never separated from their brethren
by distances larger than about a fermiE| The bound states produced by the strong interactions are
called hadrons (hadros is Greek for strong).

Quantum chromodynamics, in fact, predicts that only certain types of bound states of quarks can
exist, namely those which are “colorless”. (This can be phrased in a mathematically precise fashion
in terms of the symmetries of the theory. More on this later. For now consider this situation as being
similar to that in atomic physics where the low energy states, the atoms, are electrically neutral.)
Recall that to make white light, one mixes together red, blue, and green light. Similarly, to make a
colorless bound state of quarks one sticks together three quarks, one red, one blue, and one green.
But this is not the only way. Just as antiquarks have electric charges which are opposite to their
partner quarks, they also have “opposite” color: anti-red, anti-blue, or anti-green. So another way
to make a colorless bound state is to combine three antiquarks, one anti-red, one anti-blue, and one
anti-green. A final way to make a colorless bound state is to combine a quark and an antiquark,
say red and anti-red, or better the truly colorless combination r7 + bb + gg. Bound states of three
quarks are called baryons, bound states of three antiquarks are called antibaryons, both of which are
fermions, while quark-antiquark bound states are called mesons and are bosons.

How these rules emerge from QCD will be described in a bit more detail later. For now, let’s just
look at some of the consequences. The prescription that hadrons must be colorless bound states says
nothing about the flavors of the constituent quarks and antiquarks. In the language of quantum
mechanics we say that color dependent operators and flavor dependent operators commute,

[color, flavor] = 0. (7.2.1)

Since quarks come in the multiple flavors of Table we can (and will) enumerate the various
possibilities for the hadrons. Similar comments apply to the spatial (orbital angular momentum)
and spin parts of the wave function (i.e., the dynamics of these various parts commute to a good
approximation), and we can think of the wave functions describing the hadrons, again to a good
approximation, as products of a color wave function, a flavor wave function, a spatial wave function
and a spin wave function. The most important violation of this assumption of the factorization of the
wave function arises due to the role of the Pauli Exclusion Principle for baryons, as we will shortly
see.

For the lowest mass hadrons we may assume that the quarks are essentially at rest (except for the
constraints of quantum mechanics) and that the orbital angular momentum vanishes, L = 0. Thus
the rest energy of such a hadron (like any bound state, although it is admittedly a bit more subtle
in this case) may be regarded as the sum of the rest energies of its constituents plus the energy
associated with the binding interaction. For the lowest mass hadrons, including nucleons, we will see
that most of their total rest energy (mass) comes from the binding energy, i.e., the “gluon cloud”,
the analog of the electromagnetic potential for an atom. But the masses of quarks also play a part.
Looking at the quark masses listed in Table[7.1], it is apparent that u, d and s quarks are quite light

compared to the mass (= 1 GeV/c?) of a nucleon, while the other quark flavors are considerably

3Except at sufficiently high temperatures. Above a temperature of T, ~ 2 x 10!2 K (or kKT ~ 170 MeV), hadrons
“melt” or “vaporize” and quarks are liberated. This is important in the physics of the early universe, since temperatures
are believed to have exceeded this value in the earliest moments after the big bang. Temperatures above T, can also
be produced, briefly, in heavy ion collisions. A nice overview of heavy ion collisions and quark gluon plasma may be
found at jwww.bnl.gov/rhic/physics.asp. There is also an ongoing heavy ion program at the LHC, i.e., some running
time is dedicated to accelerating and colliding heavy nuclei rather than protons.
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heavier. So it should not be surprising that the lightest hadrons will be those which are bound
states of u and d quarks. Further, since a proton is composed of wud while a neutron is udd (i.e.,
the difference is only lu — 1d), we are gratified to see that m,, is only slightly larger than m,, (see
Egs. (4.1.3) and (4.1.4)). Substituting a strange quark for a u or d quark should be expected to raise
the mass of the resulting bound by roughly 100 MeV (due to the larger s quark mass). And hadrons
containing the other quark flavors (c, b, or t) should be substantially heavier.

As noted above, when enumerating possible combinations of quarks that could form hadrons, we
must also consider the role of spin and flavor (electric charge, strangeness, etc.). For this purpose it
is helpful to recall what you have learned in Quantum Mechanics (recall Chapter 5) and then go a
step further to discuss how to combine spins (consistently with the principles of QM, see Chapter
11). In particular, combining the angular momentum of two spin 1/2 particles, in the case that
there is no orbital angular momentum (i.e., for L =0 in the ground state) can yield either spin 1 or
0. Importantly, the corresponding states have definite symmetry under the interchange of the two
spins (symmetric for the spin 1 state and antisymmetric for the spin 0). Three spin 1/2 particles
can combine to form either spin 3/2 or 1/2 (but not spin 1 or 0).

Let us review a bit of what you (may have) learned in your Quantum Mechanics course, some of
which was discussed in Chapter 5. The new issue here is the question of combining the spin and
flavor of the quarks to find the spin and flavor of the hadrons (see Chapters 10 and 11). (Your
QM course may have included a discussion of combining spin and orbital angular to yield the total
angular momentum.) The arithmetic of the construction of the combined spin states (i.e., the wave
functions) is encoded in the so-called Clebsch-Gordan coefficients ((sym1, soma|SM), where s; and
so are the two spins, m; and my are the spin components along say the &3 direction and S and M
are the combined (total) spin and 22 component). A table of these coefficients is included at the end
of this chapter. The action of the raising/lowering or “ladder” operators, S, allows us to change
the value of m for a fixed value of s. As derived in Chapter 5 these operators obey the relation (the
"ket” |s,m) represents a state of definite s and m)

Sils,m) =+/(s Tm)(stm+1)hls,m+1). (7.2.2)

Thus the (normalized) combined states of two spin 1/2 particles can be represented (in a hopefully
familiar and obvious notation) as

S, M) = [1,1) = | 1), [1,0) = (| 1)) + [ 11)) /V2, [1,-1) = 1), (7.2.3)

and

0,0) = (| 14) = [41) /V2. (7.2.4)

This notation makes explicit the fact that the spin 1 state is symmetric under the interchange of the
two individual spins, while the spin 0 state is antisymmetric. (Recall our theme that symmetries are
almost always the answer!). In the language of Group Theory and Representations (see Chapters 10
and 11, here we are thinking of representations of either SO(3) or SU(2), which are identical for our
current purposes) we call spin 1/2 a doublet representation (two states, spin up and spin down) and
label it as 2. Thus the combination and subsequent reduction (into irreducible representations) of

two spin 1/2 states can be written
202=3@1, (7.2.5)

where the triplet is the spin 1 state (corresponding to the 3 values of M) and the singlet is the spin
0 state (with only a single M value). The symbol ® tells us that we are combining the two doublets
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on the left-hand-side, while & means we are decomposing the result into irreducible representations
on the right-hand-side. Note that our naive algebraic expectations are met by the counting of states
in Eq. . The left-hand-side corresponds to 2 x 2 = 4 states while the right-hand-side again
has 3+ 1 = 4 states. Since the singlet representation has only 1 element, it is, as expected, invariant
under rotations as a rotation acts to transform the elements of a representation into each other (and
no transformation can occur for a single element). On the other hand, the 3 elements of the spin 1
(vector) representation can be transformed into one another by a rotation (as we discussed in some
detail in Chapter 5).

The corresponding expression describing the combination of 3 spin 1/2 states is
20202=402®2. (7.2.6)

Thus we obtain the expected spin 3/2 state (the quartet) and two spin 1/2 states, corresponding to
differing internal symmetry; think of combining two of the spins to yield either spin 1 or spin 0 as
above and then combine the third spin to yield spin 3/2 and two forms of spin 1/2 (two doublets -
either 3®2 =4@®2or L®2 = 2). (See the discussion in Chapter 11 for more about the “technology”

of combining multiplets of the SU(n) groups.) Again the total number of states is unchanged as
2 X 2 x 2 = 8 matches 4 + 2 + 2 = 8. Similarly to the structure in Eq. 1) the quartet state, 4,

is symmetric under interchange of any pair of the spins.

Combining electric charge is easy: the charge of a hadron is just the algebraic sum of the charges of
its constituent quarks. Combining the rest of the quarks’ flavor is more complicated but we can use
the same technology as we used to combine spin above (recall the words of the famous theoretical
physicist Richard Feynman, “The same equations have the same solutions.”). In particular, we can
treat the nearly degenerate (nearly equal mass) u and d quarks as being members of a doublet
representation of some underlying approximate SU(2) symmetry and combine as above to find the
corresponding flavor states. Since this structure parallels that for ordinary spin, the corresponding
quantum number was historically labeled isospin, and we will use it to understand the flavor structure
of the hadrons.

7.3 DMesons

Let us start with mesons and (for the moment) consider those “constructed” from just the lightest
two flavors of quarks and antiquarks, u,u and d,d. We know that the color wave function is the
trivial color singlet 77 4 bb+ gg (i.e., the singlet, 1, in the color SU(3) representation decomposition

3®3 = 8®1). For the lowest mass states again we expect that there is no orbital angular momentum

-

(L = 0) and the spatial wave function is trivial. From Eq. we know that the spin wave function
can be reduced to either a spin singlet (spin 0 or scalar particle) or spin triplet (spin 1 or vector
particle). Taking the u and d quarks to form an isospin doublet (as outlined above) we combine
to find 4 flavor states as outlined in the first line of Table where the lines are labeled by the
number of strange plus antistrange quarks. Using the isospin language (in just the same way as we
use the spin language - again “The same equations have the same solutions”) we can define these
states in terms of “total isospin I” and a single component 5. Historically the phases chosen for the
antiquark doublet are g7 = (—d, %) (note the minus sign which, although unmotivated here, does
lead to some attractive features and you will see it in the literature, although sometimes with the
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(#s)+ (#s) | Q=1 Q=0 Q=-1

0 ud uil, dd du
1 us sd, ds s
2 sS

Table 7.2: Possible light quark-antiquark combinations

minus sign attached to the @ instead of the d). Thus the corresponding mesons (of definite isopsin)
are defined as

11,13) = [1,1) = —|ud), |1,0) = (Jui) — |dd))/V2, |1,—1) = |da), (7.3.1a)
10,0) = (Ju@) + |dd))/ V2. (7.3.1Db)

With little extra effort we can expand this discussion to include the three lightest quark flavors, u,
d, and s, where we treat the s quark as an isospin singlet but carrying the “new” quantum number
strangeness. Since it was mesons with the s antiquark that were observed first (and labeled as having
strangeness +1), the s quark is actually defined to have strangeness -1! By simple counting we see
that we have added 4 extra possibilities to Table in the second and third lines. We can interpret
the states in Table more precisely if we take the 3 lightest quarks to be members of a triplet of an
approximate SU(3) flavor symmetry, which is apparently even more badly “broken” than the SU(2)
of isospin, i.e., the s quark mass differs by about 100 MeV /c2. Without further discussion here (see
Chapters 10 and 11) we will simply assert that, when we combine a triplet and anti-triplet of SU(3),
we obtain the expected 9 favor states in the form

3®3=8d1. (7.3.2)

(Note this is the same structure we asserted above for color SU(3) - the same equations have the
same solutions, only the labels change). In particular, one of the states is a singlet under this flavor
SU(3) and we see a new representation, the octet (8 different individual states characterized by
differing values of I, I3 and strangeness).

ASIDE As noted earlier, in “color space” ¢q includes both an color octet and a color singlet. The
latter is the singlet color state that we have claimed is the physical meson, while the former is precisely
the description of the coupling between a quark pair and a gluon, where gluons are members of the
octet, 8, representation (the so-called “adjoint” representation) of color SU(3).

As suggested by Table we want to be able represent the 8§ of meson flavor in a 2-D form using I3

(to the right) and strangeness (up) as the axes. So instead of the 1-D structure for the representations
of SU(2) in Eq. , described by the single quantum number m, for SU(3) the representations
are 2-D and labeled by the two quantum numbers I3 and S (strangeness). We illustrate this 2-D
idea first by (graphically) representing the quark and antiquark, 3 and 3, including the minus sign

in the antiquark in Table (on the next page).
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o
QL
N

Wl
0l

S
and ~ '

s U —d — I3
Table 7.3: Flavor Triplet quarks and antiquarks

Next the flavor § can be represented as

du (uti — dd)/+/2 —ud — I3
(uti + dd — 2s5)/\/6

st —sd

Table 7.4: Quark - antiquark octet

Finally we can combine the flavor (isopsin and strangeness) of the quark and antiquark in a meson
to find the flavor 1 in this notation as,

1 (uti + dd + s5)/V'3, (7.3.3)

which we recognize as having the basic structure as the SU(3) color singlet we mentioned earlier
(i.e., again “the same equations have the same solutions”).

Note that there are three orthogonal strangeness zero, I3 = 0 states. One is the SU(3) singlet
(Eq. (7.3.3))), one is the isoscalar (I = 0) state in the SU(3) octet (the lower line in the middle of
Table , and the last is the I3 = 0, I = 1 member of the SU(3) octet (the upper line in the middle
of Table [7.4)).

ASIDE To make the concept of orthogonal more explicit think of a 3-D vector space defined by

orthogonal “unit vectors” |uu), |dd) and |ss), where
(uitlua) = 1, etc., (ddjua) = 0, etc.. (7.3.4)

Then it follows that - -
(vt — ddjuu 4+ dd + s5) =1 —-1=0, etc.. (7.3.5)

Since we expect that both the SU(3) of flavor and the SU(2) of isopsin are “broken” symmetries in
nature, we should anticipate that the quark content of the physical mesons with zero strangeness and
zero electric charge may be mixtures of the combinations indicated above(as we will discuss shortly).

Summarizing the above discussion there are 3 x 3 = 9 different flavor possibilities for both spin 0 and
spin 1. The actual observed lowest-mass mesons do indeed fall into just this pattern. In the same
tabular form the names of the observed scalar mesons are indicated in Table The corresponding
“nonet” of vector mesons are labeled as in Table [7.6l

The “small print” associated with these tables includes the following. First, note that we have labeled
these multiplets in terms of the spin but with superscript “”, as in 0~ and 1~. This label serves
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0-8 KO K+ 19
T 70 (I =1) ot — I3
n(I =0)
K~ KO
0" 1 n'(=0,8=0)

1-8 K*0 K** 19
p- P’ (I=1) pt — I
w(l=0)
K* [_{*O
11 $(I=0,8=0)

Table 7.6: Vector mesons

to remind us, as we will discuss in more detail shortly, that these particles have negative intrinsic
parity. We will come to understand this as arising from the fact that fermions and antifermions
necessarily have opposite intrinsic parity. Thus a quark-antiquark pair with only trivial spatial wave
function (L = 0) must have negative parity. Next, as suggested above, mixing is observed between
the strangeless, chargeless states compared to the expectations expressed in Table[7.4l In particular,
while the scalar mesons seem to match Table [7.4] the physical ¢ state seems to be essentially pure
55, while the w is (u@ + dd)/v/2. As we will see, this last point is suggested by the fact that the ¢
decays dominantly into K K states. Finally the structure of decays of the neutral kaons is a special
story unto itself and illustrates the “near” conservation of the combined symmetry C'P (parity and
charge conjugation) by the weak interactions.

These states (particles) are listed again in Table for the scalars, along with their dominant decay
modes and quark content, while Table provides the same information for light spin one mesonsﬁ
These are the lightest mesons.

In general, and as expected, mesons containing strange quarks are heavier than those with no strange
quarks. But among the neutral, S = 0 mesons, it is noteworthy (and we have already noted it) that,
while the n and 1’ in Table have the naively expected quark content, the w and ¢ in Table do

4As noted earlier Tables and list parity odd mesons, as this is the parity of quark-antiquark bound states
with no orbital excitation. We will discuss parity assignments in the next chapter. Note that the mass values listed in
these and subsequent tables should really have units of MeV/c? (or the column should be labeled “rest energy” instead
of “mass”). We will become increasingly sloppy about this distinction, since one can always insert a factor of 2, as
needed, to convert mass to energy or vice-versa, and in the end we want to set ¢ = 1.
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meson mass lifetime dominant decays quark content
0 135.0 MeV 8.5 x 10717 s 1y %(uﬂ — dd)
T 139.6 MeV  2.6x107%s Wy ud
™~  139.6 MeV 2.6 x107%s W, dii
K+t 493.7 MeV  12x1078%s vy, mhrd us
K~  493.7MeV 12x107%s WDy, oY st
K9 K9 497.6 MeV ds, —sd
K$  497.6 MeV 8.95 x 107! s atr~, 7On0 %(dg — sd)
KP 497.6 MeV 51 x107% s 3a07xta= 70 nteFu,, 7¥ufu, \%(d§+ sd)
n 547.9 MeV 5.1 x 107 s vy, 7t a~ w0, 707070 R %(uﬂ + dd — 255)
n 957.8 MeV 3.3 x 10725 ata=n, pOy, n97% ~ %(uﬂ + dd + s3)

Table 7.7: Light spin

zero, parity odd mesons.

meson mass lifetime dominant decays quark content
pt,p% p~  T75.5MeV 44 x 1072 s s ud, %(uﬂ —dd), du
w 782.7 MeV 7.8 x 1072 s atr—n0 ~ %(uﬁ + dd)
K*t K*~ 891.7MeV 1.3x107% s Kn us, st
K*0 K0 8959 MeV 1.4x107%5s Kr ds, sd
® 1019.5 MeV 1.5 x 1072 s KTK~, KK ~ 55

Table 7.8: Light spin one, parity odd mesons.

not. This reflects the possibility of quantum mechanical mixing among states with identical quantum
numbers. In other words, eigenstates of the Hamiltonian can be linear combinations of basis states
which have similar quark content. The form of this mixing will be discussed in more detail later,
but the important conclusion here is that the basic description of mesons as bound states of quarks
works! The introduction of the flavor symmetry of the quark picture brought simplicity out the
previous chaos of all of the experimentally observed meson states

Finally It is also worthwhile noting the realization in Table of the previous comment about the
decays of the neutral kaons (K°, KV). As we will discuss in more detail shortly the weak interactions
(and these are weak decays, since we must change the flavor of the strange quark) approximately
respect C'P. Hence the neutral kaons dominantly decay through states of definite C'P. The “even”
CP state (C'P eigenvalue +1) is allowed to decay into 2 pions and decays more quickly. Hence the
label Kg(hort). The CP odd state (CP eigenvalue —1) labeled KE decays more slowly into 3
pions or the more familiar states with leptons.

(ong)
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7.4 Baryons

One can go through a similar exercise for baryons. The primary differences are the further algebraic
complexities of dealing with 3 instead of 2 quarks, and the fact that we are now dealing with 3
identical fermions. The exclusion principle now plays a role. In particular, the overall wavefunction
describing the 3 quarks must be anti-symmetric with respect to the interchange of (all of) the
quantum numbers of any pair of quarks. So, by way of introduction, we will quickly mention the
expected behavior in color, space, spin and flavor and then we will go through the construction of
baryons in more detail.

In the same notation we used for mesons (see Chapter 11), we find that combining 3 color triplets
yields
3R3®3=100808d1. (7.4.1)

Thus the expected 3% = 27 color states break-up into a “decuplet” (10), two octets (8), and a singlet
(1). The most important feature of these representations is that the decuplet is symmetric under

the interchange of the color quantum number of any pair of quarks, while the singlet is purely
antisymmetrioﬂ The two octets have (different) “mixed” symmetry for different quark pairs (see
the discussion below). Most importantly, by our rule that the only viable physical states are color
singlets, we choose to put the 3 quarks in the antisymmetric color 1. Since Pauli requires the

complete wave function to be antisymmetric, the remaining bits of the wavefunction must be overall
symmetric.

Since we are interested (first) in the least massive baryons, we take the spatial wavefunction to be
symmetric (and trivial) with L = 0. Thus, due to the statistics of fermions, the combined spin and
flavor wavefunctions of the lowest mass baryons must be symmetric under the interchange of any
pair of quarks.

Combining three spin 1/2 objects can yield either spin 1/2 or 3/2, or in our new notation
20202=46282, (7.4.2)

where the spin 3/2 is the quartet that is again the symmetric state. The two spin 1/2 doublets,
like the color octets above, are of mixed symmetry. To illustrate that point more explicitly we can
assemble the 3 quark state by first putting together 2 quarks. Now the spin arithmetic is the same
as for the quark-antiquark above, 2 ® 2 = 3 @ 1, where the triplet is symmetric under interchange

of the 2 quarks and the singlet is antisymmetric. To be explicit, label the first two quarks as 1 and

2,2 ®2 =3 &1 with S for symmetric and A for antisymmetric. Now include quark 3 to
1 T2 s12 - TA12
yvield3d ®2 =4 @2 andl ®2 =2 . The differing mized qualities of the resulting
Ss12 73 Ts123  TS12.3 A12 T3 TA123
symmetries for the doublets should be clear from the following more explicit version of Eq. ([7.4.2])

2 ®2 ®2 =4 D2 @2 . (7.4.3)
1 2 3 5123 512,3 A12,3

Similar mixed underlying symmetry is what distinguishes the SU(3) octets above.

®The structure of this antisymmetric 3-quark color wave function is the (hopefully) familiar antisymmetric form in
terms of the SU(3) structure constant, €;.1q;qrq (€;% is antisymmetric under the exchange of any pair of indices). We
can tell this is a singlet because there are no “left-over” indices and this state cannot be transformed.
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baryon mass lifetime dominant decays quark content
P 938.3 MeV stable — uud
n 939.6 MeV 8.8 x 102 s pe U udd
A 1115.7 MeV 2.6 x 10719 s pr—, na° uds
»t 1189.4 MeV  0.80 x 10710 g pr, nat uus
¥0 1192.6 MeV 7.4 x 10720 s Ay uds
> 1197.4 MeV 1.5 x 107105 nm~ dds
=0 13149 MeV 2.9 x 107105 Ar® uss
= 1321.7 MeV 1.6 x 107105 An~ dss

Table 7.9: Light spin 1/2, parity even baryons.

baryon mass lifetime dominant decays quark content
A7, A AT ATT 1232 MeV 6x 10724 s P, N ddd, udd, uud, vuu
DImiD Ml Vs 1385 MeV  2x 1072 s Am dds, uds, uus
z*, 540 1530 MeV  7x 1072 s =r dss, uss
O 1672 MeV  0.82 x 10719 s AK~, Erx S5

Table 7.10: Light spin 3/2, parity even baryons.

As expected the lightest observed baryons are, in fact, either spin 1/2 or spin 3/2. Tables and
list the lightest spin 1/2 and spin 3/2 baryons, respectively. The intrinsic parity of these states
is the same as the intrinsic parity as a quark, which, by convention, is chosen to be positive. Finally,
we must consider the SU(3) flavor structure. Again we note that “the same equations have the
same solutions” and we use the same representation structure as for the SU(3) of color above in
Eq. (74.1), 3®3®3 =10®8®8® 1. The only step remaining is to pull the various factors together

while ensuring overall antisymmetry under interchange of any 2 quarks.

We now discuss that final step in some detail (reviewing some of our previous discussions). Our goal
is to understand the experimental observations summarized in Tables and In particular,
Table shows that the ten lightest J = 3/2 baryons form a decuplet representation of the SU(3)
of flavor (the triangular structure in the left-hand column in Table [7.10)). This simply corresponds
to matching the symmetric spin state (the 4) with the symmetric flavor state (the 10) (with the

antisymmetric color 1 state and the trivial but symmetric L = 0 spatial state). From the masses

listed in Table one sees that the >* baryons, which contain one strange quark, are heavier
than the A baryons, which contain only u and d quarks, by about 150 MeV. The =* baryons, which
contain two strange quarks are heavier than the ¥* by an additional ~ 150 MeV, and the 2~ baryon,
containing three strange quarks, is yet heavier by about the same increment. This is consistent with
our expectations that substituting heavier quarks for lighter quarks should increase the mass of bound
states (by approximately the mass change of the substituted quark), since the binding dynamics due
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to the color interactions remains the same, independent of the quark flavors involved.

As Table shows, there are only eight light J = 1/2 baryons and they form a flavor SU(3), spin
1/2 baryon octet. There is only one combination of flavor octet and spin doublet with the correct
overall symmetric behavior, which we then combine (as above) with the antisymmetric color 1 state

and the trivial but symmetric L = 0 spatial state. As noted earlier, this difference between J = 3/2
and J = 1/2 bound states can be understood as a consequence of the Pauli exclusion principle.

7.5 Baryon wavefunctions

To understand how the fermionic nature of quarks produces the observed pattern of spin and flavor
for the baryons, we first review in more detail the structure of the color wave function. Our goal is
to characterize the form of the colorless bound state. What does this really mean? Just as you can
think of a spin 1/2 particle as having a wavefunction which is a two-component complex vector,

(ZI) B (Eﬂiii) ’ (7.5.1)

the wavefunction of a quark (of definite flavor and spin) is a three-component vector in “color-space”,

R (red[¢)
U=|1vs | =] (green|t)) | . (7.5.2)
U (bluefy))

The component 9, gives the amplitude for the quark color to be red, v is the amplitude to be green,
etc. The assertion that hadrons must be “colorless” really means that the multi-quark wavefunction
must not depend on the choice of basis in three-dimensional “color” space, i.e., is unchanged by
rotations in color space. Since the quark (color) wavefunction is a three-component vector, to build
a colorless state from three quarks qi, 42 and ¢3, one must combine the three color vectors describing
the individual quarks, ¢q1, @Z)QZ, and @Dqg, in such a way that the result is basis independent. In practice
this means that the three three-component color vectors must be combined to yield an expression
with no left-over color indices, i.e., no index on which a color transformation could act.

This may sound peculiar, but the mathematical problem is the same as asking how to build a
rotationally-invariant scalar from three (ordinary) 3-vectors A, B and 6_", in such a way that the
result is a linear function of each of the vectors. You already know the (essentially unique) answer,
namely the scalar triple-product of the three vectors, A (é X C") This triple product may be
expressed in a variety of ways, including as the determinant of the components,

A1 B Cq
A- (B X C) =det |Ay By Oy | = €ijk A; Bj Ch. (7.5.3)
A3 B3 Cs3

In the last expression ¢, is the (by now familiar) totally antisymmetric (3x3x3) tensor which equals
+1 when (ijk) is any cyclic permutation of (123), —1 when (ijk) is any cyclic permutation of (321),
and zero otherwiseﬁ Recall that a determinant changes sign if any two columns (or rows) are

5The geometric definition of a cross product only makes sense for real vectors, but the expressions involving com-
ponents of the vectors are equally well-defined for complex vectors.
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interchanged. Consequently, the triple product is antisymmetric under any interchange of two of the
vectors, which is encoded in the antisymmetry of the ;5 symbol. This is exactly the antisymmetric
character that we claimed above for the color singlet state that arises when we combine 3 color
triplets, 3®3®3 = 10®8®8d 1 (see footnote 5). As the unique 3x3x3 antisymmetric tensor it must

also be the structure constant for both of the groups SU(2) and SO(3), as discussed in Chapters 1,
5 and 10.3. Thus the color singlet state of 3 quarks has the form

W gqqsinglet = €ijk Va1, Yo, Vs, » (7.5.4)

where the W ’s are the 3-component quark color (triplet) vectors of Eq. (7.5.2)).

The complete wavefunction describing three quarks in a bound state must characterize not only the
color of the quarks, but also their flavor, spin, and spatial location. To a good approximation, the
wavefunction describing the lowest mass baryons will be a product of a color wavefunction (depending
only on the color vectors as in Eq. ), a spatial wavefunction (depending only on the quark
positions, or orbital angular momentum), and a flavor + spin wavefunction,

v = \Ilcolor X \Ijspace X \I’spin—i-ﬂavor . (755)

The essential point of the above discussion about triple products is that the color wavefunction for
three quarks is antisymmetric under any interchange of the color vectors of any two quarks. The
lightest hadrons which can be built from a given set of quark flavors will have a spatial wavefunc-
tion which is symmetric under interchange of quark positions, i.e., it will have no orbital angular
momentum. If this is not true (i.e., if the orbital angular momentum is nonzero) then the wavefunc-
tion will have spatial nodes across which it changes sign, and this behavior invariably increases the
kinetic energy of the state. The Pauli principle (or the fact that quarks are fermions) requires that
the total wavefunction must be antisymmetric under interchange of any two quarks — which means
simultaneous interchange of the positions, spins, flavors, and colors of the two quarks. Since the
color part of the wavefunction must be antisymmetric, while the spatial part should be symmetric,
this means that the flavor plus spin part must also be symmetric under permutationsm Thus the
symmetry properties of the spin and flavor wave functions must be matched to each other in order
to provide the overall symmetry. This is why the two quantities are coupled in Eq. (i.e., we
were planning ahead).

For a spin 3/2 baryon, such as the AT, the flavor structure of the wavefunction is trivial, and
totally symmetric, since all three quarks are the same type, namely wuu. For the S5 = 3/2 state,
the spin structure is also trivial, and totally symmetric, since all three quarks must individually
have S3 = 1/2 if the total spin projection is 3/ 2E| Therefore the combined spin+flavor part of the
wavefunction,

i avor ~ (wun) x (1) , (7.5.6)
satisfies the above condition of symmetry under permutation of quark spins and flavors. Analogous
spin+flavor wavefunctions may be constructed for all baryons (with any spin projection) in the spin

"This was actually an issue in the early days (~ 1970) when quarks had been postulated as the underlying degrees of
freedom but the color quantum number had not yet appeared. The spatial, flavor and spin wavefunctions that matched
the observed states are clearly symmetric, but the quarks are fermions. Where was Pauli? Then color appeared to save
statistics and provide the needed interactions!

8This ignores the possibility of further constituents in the baryon in addition to the three up quarks, e.g., gluons.
Using an improved description of the structure of baryons does not change the essential conclusions of the following
discussion.
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3/2 decuplet. Just like the example in Eq. (7.5.6]), these wavefunctions are independently symmetric
under permutations of quark spins, or permutations of quark flavors. For completeness the quark
content (in the same language as for the mesons) of the decuplet is presented in Table and the
particle names in Table (which agree with the results already included in Table [7.10]).

10 ddd ddu duu uuw TS

dds dus UUS — I3
dss Uuss

S8S

Table 7.11: 3 quark decuplet

A0 AT ATT + S
D) $*0 ot — I3

[\SJ[oV)

+
2!—‘
"

Table 7.12: Baryon decuplet

Note that, since both the 10 of flavor SU(3) and the 4 of spin are individually symmetric wave-

functions, there is no real coupling of spin and flavor in this case (the overall wave function is just
a simple product). But note also that the need to match the symmetry properties of the spin and
flavor wavefunctions means that, at least for the lowest mass baryons (with L = 0), there can be no
spin 1/2 flavor decuplets (10) and no spin 3/2 flavor octets (8).

For J = 1/2 baryons, the situation is more complicated. As noted earlier the two possible spin
doublets constructed from 3 spin 1/2 quarks have mixed symmetry with respect to interchanging
pairs of the quark spins. Luckily the two flavor octets that can be constructed from 3 flavor triplets
(quarks) have similar mixed symmetry and there is a combined spin 1/2, flavor octet 3 quark state
that is overall symmetric under the simultaneous interchange of both the spin and flavor quantum
numbers of any pair of quarks. To construct this state we recognize first that the case where all three
quarks have the same flavor is not possible in the mixed symmetry octet. A flavor wavefunction such
as uuw is totally symmetric. This explains why there are no light spin 1/2 baryons composed of three
up (or three down, or three strange) quarks, in contrast to the case for spin 3/2 baryons. But if there
are at least two distinct quark flavors involved, then it is possible to build a flavor wavefunction with
the required symmetry. As an example, let us build a spin+flavor wavefunction for the proton. We
need two u quarks and one d quark. A spin wavefunction of the form (1) — 1)1 describes a state
in which the first two quarks have their spins combined to form an (antisymmetric) S = 0 state,
so that adding the third spin yields a total spin of 1/2, as desired. Since this spin wavefunction is
antisymmetric under interchange of the first two spins, we need a flavor wavefunction which is also
antisymmetric under interchange of the first two quark flavors, namely (ud — du)u. If we multiply
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these, we have a spin+flavor wavefunction,

[(ud — duyu] x [ (14 — 1) 1] = (udu — duw) (141 — 111), (7.5.7)

which is symmetric under combined spin and flavor exchange of the first two quarks. But we need a
wavefunction which is symmetric under interchange of any pair of quark spins and flavors. This can
be accomplished by simply adding terms which are related to the above by cyclic permutations (or
in another words by repeating the above construction when it is the second and third, or first and
third quarks which are combined to form spin zero). The result, which is unique up to an overall
normalization factor, has the form

W avor = (udu — duw) (1)1 = 1) + (uud — udu) (1) — 1) + (wud — duw) (11 = 111).
(7.5.8)
To be explicit we can also write this wavefunction with the terms multiplied out and normalized as

Wgﬁgwmz\28puTqu¢+2qu¢uT+2d¢uTuT
—udutdt—utuldt—uldtut
—utdtul—-dtutul —dtulut]. (7.5.9)

You can, and should, check that these expressions satisfy the required condition of symmetry under
interchange of spins and flavors of any pair of quarks. It should be clear that in this case the spin
and flavor structures are truly intertwined. The wavefunction in Eq. represents, for the case
of 2 u quarks and 1 d quark, the unique member of an SU(3) flavor octet and spin doublet (with
S3 = +1/2) that is symmetric under the interchange of any pair of quarks.

For fun (e.g., in the HW) try to generate the following wavefunction for the neutron.

1
WSSE&%“&VM:71»8[2de¢u¢+2d¢u¢d¢+zu¢d¢dT

—dldtut—dtdlut—dlutdt
—dtutdl—utdtdl—utdld1]. (7.5.10)

Similar constructions can be performed for all the other members of the spin 1/2 baryon octet. The
expected quark content of the baryon octet is given in Table [7.13

8 udd uud TS

sdd sud (I =1) suu — I3
sud (I =0)

ssd SSU

Table 7.13: Baryon octet

The corresponding identification with the lowest mass baryons is provided in Table

One notable feature of the set of octet baryons, shown in Tables and [7.14], is the presence
of two different baryons whose quark content is sud, specifically the A and the X°. This is not
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3 8 n p +S
- YO (Ir=1) »t — I3

(1]
=

Table 7.14: Baryon octet

inconsistent. When three distinct flavors are involved, instead of just two, there are more possibilities
for constructing a spin+flavor wavefunction with the required symmetry. A careful examination (left
as a problem) shows that there are precisely two independent possibilities, completely consistent
with the observed list of spin 1/2 baryons.

The mass values in Table show that for spin 1/2 baryons, just as for spin 3/2 baryons, baryons
with strange quarks are heavier than those with only up and down quarks; each substitution of a
strange quark for an up or down raises the energy of the baryon by roughly 130-250 MeV.

7.6 Baryon number

Baryon number, denoted B, is defined as the total number of baryons minus the number of an-
tibaryons, similarly to how we defined lepton number L in Eq. (6.6.1). Since baryons are bound
states of three quarks, and antibaryons are bound states of three antiquarks, baryon number is the
same as the number of quarks minus antiquarks, up to a factor of three,

B = (# baryons) — (# antibaryons) = — [(# quarks) — (# antiquarks)] . (7.6.1)

W =

All known interactions conserve baryon numberﬂ High energy scattering processes can change the
number of baryons, and the number of antibaryons, but not the net baryon number. For example, in
proton-proton scattering, the reaction p+p — p+ p+n+n can occur, but not p+p — p+p+n+n.

7.7 Hadronic decays

Turning to the decays of the various hadrons listed in Tables [7.7H7.10|, it is remarkable how much
can be explained using a basic understanding of the quark content of the different hadrons together
with considerations of energy and momentum conservation. This is essentially the statement that
understanding the basic symmetry properties, ¢.e., the conserved quantum numbers, will get you
a long way in the world of particle physics. This discussion will also help to illustrate the basic
structure of the Standard Model (SM).

9This is not quite true. As with lepton number, the current theory of weak interactions predicts that there are
processes which can change baryon number (while conserving B—L). The rate of these processes is so small that baryon
number violation is (so far) completely unobservable in the laboratory. Of course, the observation that the majority
of the observable universe (the stars) seem to be baryonic and not anti-baryonic means that baryon number violation
must have been important at some point in the evolution of the universe (assuming a symmetric starting point).
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As an example, consider the baryons in the spin 3/2 decuplet. The rest energy of the A baryons
is larger than that of a nucleon by nearly 300 MeV. This is more than the ~ 140 MeV rest energy
of a pion, which is the lightest meson. Consequently, a A baryon can decay to a nucleon plus a
pion via strong interactions, which is the dominant way to produce pions as long as the process does
not change the number of quarks minus antiquarks of each quark flavor (i.e., the strong interactions
preserve the net flavor). Specifically, a A** can decay to prt, a A™ can decay to either pr¥ or n7t, a
A can decay to pr~ or nn®, and a A~ can decay to nm~. These are the (overwhelmingly) dominant
decay modes observed. The short lifetime of A baryons, 7 ~ 6 x 107%* s or ¢ ~ 1.8 fm, is also
indicative of a decay via strong interactions. (After all, “strong” should mean rapid interactions!)
To set the scale, note that the time for light to travel a fermi is of order 3 x 10724 s. The A baryon
barely has time to “figure out” that it exists before it decays.

ASIDE: Let us take this opportunity to both study the isopsin
1x1/2 Sfi 32 1/2 structure of the A decays in detail and utilize the Table of Clebsch-
[+ “:12_1/; 1;; ”2;; = Gordan coefficients appended at the end of this Chapter. This
0+1/2| 2/3-1/3|-172-172 table encodes in detail the way irreducible representations com-

0-1/2| 273 1/3] 372 i i i i il illus-
AR bine to form other irreducible representations. As we will illus

ZX‘]I 3 EEZEE trate below, this information can be obtained by application of
—+3] 3 El the “ladder” operators of Chapter 5. For the current purposes

the appropriate section of the Table is the upper left section, which is shown to the left. The la-
bel on this section, “1 x 1/2”, tells us this section describes in detail how to combine isospin (or
ordinary spin) 1 (a triplet representation) with isospin 1/2 (a doublet representation), 3 ® 2. We

know that the resulting combined representations are an isospin 3/2 quartet and an isospin 1/2
doublet, 3 ® 2 = 4 @ 2. This is precisely what we see along the uppermost line in each (funny

shaped) box, 3/2 or 1/2. The next row of labels down tells us the specific value of I3 (or J3) for
the joint representation. The labels to the left in the (funny shaped) boxes are the I3 (or J3) values
labeling the specific states we are combining. Finally the numbers in the central, shaded regions of
each of the (funny shaped) boxes are the actual Clebsch-Gordan coefficients. Strictly speaking, as
explained near the top of the Table, the actual coefficient is the square root of the number in the
Table, not including the sign. More specifically we interpret the upper left (funny shaped) box to
mean |1, I3) = |3,3) = [1,1)|3, 3) or, in our particular application, |[A*+) = |77)|p). There is only
one possible final state that conserves isospin and so the coefficient is necessarily one, i.e., we can
obtain this entry in the Table by “pure thought”, no calculation required.

Now consider the more interesting case in the second (funny shaped) box down. We read the Table

to mean |3, ) = \/g\l, 1|3, -1+ \/g|1,0>|%, 1) (no minus signs) or, in our case,

8% = 2+ 210 (17.1)

We can obtain this result by appropriate application of the lowering ladder operator from Chapter
5. The essential “new” observation is that, since the isospin of the A is the sum of the isospin of
the nucleon and the pion, the ladder operator for the A is the sum of the ladder operators for the
nucleon and the pion,

12 = pucleon 4 g7 (7.7.2)
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So, using the coefficients in Eq. (5.1.34), we have

33 35 31 3 1
IBATHY =125, Sy =py /oo — = = hV/3|AT
11 13 1, 1 1 1
Inucleon + Inucleonl 1 =2 — (YL IM= =2V =R +
meleon| ) |p) = | >|2 S =h/55 = 5 2>| , >|2, 2= Blx*)n)

I™ |7 ) |p) = I7|1,1)] —h\/fu 0)] —hxﬂw )p) s

31 1 1
ATy =|= = \[11— \[10 \[+ \[ ) (7.7.3)
= 1A% =15,5) = /5L D5 —5) + /3] ) ) + 4/ 317 01p) €

The corresponding isospin 1/2 state, the next column in the Table, can be determined (modulo an
overall sign ambiguity - the choice in the Table is a convention) by the constraint of defining an

“orthogonal” state. We have
2 1 1 1 11
=y =4/=|L, D=, —=) —1/=[1,0)|=, =) .74
\@I D5 =35 \/;I 015 3) (7.7.4)

In principle, using ladder operators and orthogonality we could fill out the Table of coefficients.
Being lazy but smart, we will simply use the Table.

Returning to the original discussion of A™ decay, we see that it decays (strongly) 1/3 of the time to

7n,
(T nlAn = V13 = (7.7.5)
and 2/3 of the time to 7%,

(| plAT)? = |v/2/3" = (7.7.6)

Note in particular that, in going from the amplitude with the Clebsch-Gordan coefficient (with
the square root) to the probability, which is the amplitude squared, we square the Clebsch-Gordan
coefficient.

The second column in the second (funny shaped) box describes the case with total isospin 1/2, which
plays no role here as we are considering the strong decay of an isospin 3/2 particle and isospin is
conserved by the Strong interactions. Next we move down to the third (funny shaped) box to learn

that |3, —3) = \/;]1 0)|5,—3 +f|1 —1)|3, 3) or, in our case,

129 = 20y 4 3eln). (7.7.7)

So a A% decays (strongly) 2/3 of the time to 7°n, while 1/3 of the time it decays to 7~ p. Finally the
last (funny shaped) box tells us that the A~ decays uniquely to 7~ n, as we have noted above. Being
able to read the Table of Clebsch-Gordan coefficients is an extremely useful skill and we should all
practice it.

Returning to the general discussion, we note that the lifetime of the A corresponds to a decay (or
resonance) width I'a = h/7 ~ 120 MeV, which is 10% of the rest energy of this baryon. We can
think of the m — p scattering amplitude as having a pole in the complex energy plane at the mass of
the A, where the pole is off the real axis by the amount I'n. (Those readers not familiar with the
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language of resonances looked at as poles in the complex energy plane, i.e., if this was not covered
in their Physics 227 class, are encouraged to read Lecture 5 from my version of 227 available here.)

While there is a potential issue concerning how long a particle must live in order to be called a
particle, we should rather focus on the point that almost all the particles (states) we know about
decay eventually (i.e., nearly all of the poles are somewhat off the real axis). The real issue is the
practical, experimental one. Does the state live long enough to be detected in the detector before it
decays? Or is the lifetime so short that we see evidence of the state’s existence only from a bump in
an interaction rate (i.e., we literally detect the pole in the complex energy plane). This is essentially
the distinction in the tables provided by the PDG. In the former case, lifetimes are reported, while in
the latter case the width (of the peak) is reported. Thus the PDG reports what is actually measured.

The ¥* and Z* baryons also have very short lifetimes, on the order of a few times 10723 s. The £*
contains one strange quark. The ¥*’s mass of 1285 MeV /c? is larger than the 1116 MeV/c? mass of
the A, the lightest baryon containing a strange quark, by more than the mass of a pion. So strong
interactions can cause a X* to decay to a A plus a pion, which is the dominant observed decay.
Similarly, =* baryons, containing two strange quarks, can decay via strong interactions to a = (the
lightest doubly strange baryon) plus a pion.

Looking ahead to Chapter 8.9 on parity, it is worthwhile noting a characteristic feature of these
strong decays of members of the flavor decuplet (the flavor 10) into a member of the nucleon octet

(the flavor 8) plus a pion. In J¥ notation (spin and intrinsic parity) we have a %+ going into a %Jr

plus a 07. Thus naively neither the spin nor parity match, % =+ % + 0 and + # + x —. But total
angular momentum is conserved by all interactions and so we conclude that there must be one unit
of orbital angular momentum in the final state, L = 1/ (the proton and pion do not have zero impact
parameter). This now allows the final state to have total angular momentum %(: % + 1) and adds
an extra parity factor of (—1)Y = -1. Thus everything works for a strong decay, conserving both

angular momentum and parity.

The final member of the J = 3/2 decuplet, the Q~ baryon, cannot decay via strong interactions to
a lighter baryon plus a pion, because there are no lighter baryons containing three strange quarks
(and strong interactions preserve the net number of strange quarks). It could, in principle, decay
via strong interactions to a = baryon (containing two strange quarks) and a K meson (containing
one strange quark) — but it doesn’t have enough energy. Its mass of 1672 MeV/c? is less than
the sum of = plus K masses. In fact, the 2~ baryon cannot decay via any strong interaction
process. Nor can it decay via electromagnetic processes, which also preserve the net flavor. But
weak interactions are distinguished by the fact that they can change quarks of one flavor into a
different flavor. Consequently, the 2~ baryon can decay via weak interactions to a lighter baryon
plus a meson with only 2 strange quarks remaining. The dominant decays involve the conversion
of one strange quark into an up quark, leading to final states consisting of a A baryon plus a K~
meson, a ZY baryon plus a 7, or a = plus a 7. The Q~ was, in some sense, easy to detect due to
its characteristic “cascade” decay (first seen in a bubble chamber photograph)

QO —2%~
N, A0
NP (7.7.8)
So overall the process in Eq.(7.7.8) is @~ — pa~ 7~ 7", but occurs in 3 distinct steps. Note that
these final states conserve baryon number and electric charge, and are allowed by energy conservation.
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The 107! s lifetime of the Q™ is much longer than a typical strong interaction decay time, and is
indicative of a weak interaction process.

Similar reasoning can be applied to the J = 1/2 baryons. The proton is (apparently) stable, while
all the other members of the octet decay via weak interactions — except for the 9 which can decay
to a A plus a photon via electromagnetic interactions. Note that the 7 x 10720 s lifetime of the X° is
much shorter than a weak interaction lifetime, but is longer than typical strong interaction lifetimes.
(In a very real sense the electromagnetic interactions are stronger than the weak interactions but
weaker the the strong interactions.) The lifetimes of the A, =, and X% baryons are all around 1010
s, typical of weak interaction decays. The 900 second lifetime of the neutron is vastly longer than
a normal weak interaction lifetime. This reflects the fact that neutron decay is just barely allowed
by energy conservation. The mass of the final proton plus electron (and antineutrino) is so close to
the mass of the neutron that only about 8 MeV, or less than 0.1% of the rest energy of neutron, is
available to be converted into the kinetic energy of the decay products.

Before ending this discussion, we can test our newly acquired understanding of conserved quantum
numbers and decays by applying it to the case of mesons. Just like the spin 3/2 baryons tend to
have strong interaction (i.e., fast) decays into the spin 1/2 barons plus a pion, the vector mesons
of Table have strong decays into the corresponding scalar mesons (i.e., the states with the same
number of strange quarks) plus a pion. Note, in particular, that all of the lifetimes are of order 10~22
to 10724 seconds, typical strong (short) lifetimes. Again we should consider the correlation of spin
and parity for the decay of a 1~ meson into two 0~ mesons. As with the strong baryon decays above
we need 1 unit of orbital angular momentum to allow the conservation of total angular momentum,
1 =0+ 0+ 1, which is again just what we need to conserve parity, —1 = —1 x —1 x —1.

Also worthy of note is that the zero-strangeness, isoscalar state w decays into 3 pions, while the
similar zero-strangeness neutral member of the isovectors, the pU, decays into 2 pions. There is a
combined transformation of charge conjugation (C') plus an isospin rotation (historically called “G-
parity” and described in more detail in the next Chapter) under which pions and the w are odd (-1),
while the p’s are even. Since the strong interactions respect this symmetry, the decay of the p® must
be into an even number of pions, while the w decays into an odd number of pions. More generally
a qq state made of u and d quarks has the following eigenvalue under G (depending on the orbital
angular momentum, L, spin, S, and total isospin, I),

Glqq(u,d), L, S, I) = (=1)**H|qq(u,d), L, S, 1), (7.7.9)

which yields, as noted above, (-1) for pions (L =S =0, = 1), (+1) for the p (L =0,S=1=1),
and (-1) for thew (L=1=0,5=1).

21117115 173 3/5. A further detail t sh licitly in Table [7.8]) is that th
1x1 > :] o ARy Wy urtner dadetal (HO snown explicitly 1m la e 1S a (]

+2[ 2 1| | ox1] 2/5 172 1710 two pion decay of the neutral p is po — 7t 4+ 7~ and not
LTl 1)1 1111 p0 — 70 4 79 This is an interesting realization of the how

w1 o[z 172[ 2 1 0o 0 0[3 X . . .
0+1[1/2-1/2 0 0 0 -1+1/1 two isovectors (the pions) combine to form another isovector
+g) —g) ;;g 1/(?3 12 — (the p). It supplies another opportunity to look in detail at the
11612 3l-1 o | table of Clebsch-Gordan coefficients that appears at the end
o-1/1/2 1/2| 2|  of this Chapter. The appropriate subsection (middle left) of

Y, "= (=1)mY™ |21 01/2-1/2|-2

the table is shown to the left here. For the case of two vectors
combining to form another vector (1 x 1 — 1) where we want
to consider the neutral state of the final vector (M = 0), we focus on the middle column of the
middle (funny shaped) box. We see from the 0 at the center of this box that there is no coupling to

[ =11
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the neutral states of the original vectors (m; = mg = 0), i.e., p° - 7 + 70, Instead there are equal
couplings, up to the sign, to the 2 charged states,

) = \/}mm - @ﬂrm. (7.7.10)

ASIDE: Another way to look at the absence of this decay, p® - 70 + 7%, which illustrates again
the “beautiful” self-consistency of physics, is to consider the symmetry required for identical bosons
(see problem 11.1 in Das and Ferbel). We already noted that the two pion final state in p decay
must correspond to L = 1 in order to conserve both total angular momentum and parity. Further, a
two particle state with relative orbital angular momentum 1 is antisymmetric under the interchange
of the two particles. This is why it adds a factor of (-1) to the overall parity of the state. On the
other hand a two 7¥ state must be symmetric under the interchange of the 2 7%’s, since they are
identical bosons. Hence there can be no L = 1 two 7V state and the decay cannot occur. For the
state composed of two oppositely charged pions both the isospin wave function of Eq. and
the L = 1 spatial wave function are antisymmetric under the interchange of the pions yielding the
required overall symmetric state.

For the scalar mesons of Table energy conservation rules out any strong decays. The (neutral)
70, n and 7 all exhibit electromagnetic decays with photons in the final state and lifetimes of order
1072 seconds (like the ). The kaons need to convert a strange quark into an up or down quark
and so decay weakly with a 10~® second lifetime (except the Kg, which is still a weak decay but
slightly faster). Finally the charged pions decay weakly into leptons only with a similar 10~ second
lifetime.

To complete this discussion of decays we summarize in Table the various additive and multiplica-
tive quantum numbers and which interactions conserve them. We will discuss the related symmetries
in more detail in the next chapter.

You are encouraged to look at the much more extensive listing of information about known mesons
and baryons at the Particle Data Group website. Pick a few particles which have not been discussed
above, and see if you can predict the dominant decay modes using the ideas we have discussed in
this chapter.

It is worthwhile emphasizing again what ”conserving” means in this context. Consider the decay
of one particle into 2 particles, A — B + C. For the scalar quantities like electric charge, baryon
number and lepton number (or 4-vectors like energy-momentum) conserving means that the value
of this quantity for particle A is equal to the simple sum of these quantities for particles B and
C. For more complex quantities like angular momentum, isospin and quark flavor (with nontrivial
group theory structure), we need to think a bit harder. Now conserving means that the “total”
quantum number like .J? (i.e., defining the representation) and the simple additive quantities like .J3
(i.e., defining the individual element of the representation) must match before and after the decay.
Since the total angular momentum before the decay is just the spin of A, this representation must
match one of the possible angular momentum representations that arise when we combine the spin
of B with the spin of C' and any possible orbital angular momentum of the BC pair. We have
introduced the techniques of Young diagrams (see the sample problems in the next sub-chapter and
Chapter 11) preciously so that we can calculate which angular momentum representations can be
present in the final state when we combine the spins of B and C' and the orbital angular momentum
(S8 ® 8¢ @ LBY). Likewise, if we specify the spin polarization (S4') in the initial state, it must be

matched by that in the final state. Here the arithmetic is simple addition, S§' = S& + S8 + LBC.
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Conserved quantity Strong EM Weak

Additive

Energy-momentum Yes Yes Yes
Angular Momentum Yes Yes Yes
Electric Charge Yes Yes Yes
Baryon Number Yes Yes Yes
Lepton Number Yes Yes Yes
Quark Flavor Yes Yes No
Isospin Yes No No

Multiplicative
Parity - P Yes Yes No
Charge Conjugation - C Yes Yes No

Time Reversal - T' (or C'P) Yes Yes ~ 1073 viol

CPT Yes Yes Yes
G - parity Yes No No

Table 7.15: Conserved quantum numbers.

For isospin the calculation is very similar to angular momentum, since it again involves only SU(2)
representations (i.e., the same equations have the same solutions). In fact, it is even simpler because
there is mo analogue of orbital angular momentum in isospin space! The specific element of the
isospin representation is specified by I3, which satisfies I§4 = If + I3C . For the SU(3) of quark flavor
(for the u, d and s quarks) we must match representations of SU(3) before and after the decay. The
additive conservation is now of 2 quantum numbers, typically I3 and strangeness (the number of
strange quarks).

7.8 Sample calculations

At several points in this Chapter we used results for the combinations of multiplets of both SU(2)
and SU(3). The “slickest” technique for calculating these results is the method of Young diagrams
described in Chapter 11. Here we present a brief summary of those results and the reader is strongly
encouraged to read Chapter 11 now! This will allow you to understand the (somewhat peculiar)
notation used below.

Consider first combining 2 fundamental multiplets (representations) as in Eq. (11.2.7). In the Young
diagram language we have (“multiplying” the boxes in the obvious 2 ways)

D@Dsz@H. (7.8.1)

To proceed we put the appropriate integers in the boxes, evaluate and divide by the “hooks”, and
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calculate. For the SU(2) case of adding 2 doublets (e.g., 2 spin 1/2 fermions) we have

l\3

-3 -1

2]
202 =[2]®[2]= [Ij@E% I“[I“I@iiI! e =3el. (7.8.2)
1]

—_

In words, combining 2 spin 1/2 particles yields one spin 1 state (the 3) and one spin 0 state (the 1).

For combining 2 triplets of SU(3) (of color or flavor) we have

\)

3- 3-

3]
3w3=[3]0[3]= [I]®E} .“mI“I®IiI! 1 Ey =003 (7.8.3)
1]

S
—_

Note the (symmetry) distinction here between 3 and 3 (H versus [] and the corresponding distinction
illustrated in Table V versus A) that does not exist for the SU(2) 2 and 2, which are identical

(O versus ). This means that in the SU(3) case we can obtain something new and different from
combining a 3 and 3 (i.e., as distinct from combining two 3’s). We have

‘ 34‘ 3-4-2 3-2-1

o - 5 T 3.4 2.1

§®§—D®H— @@— I3 119 /—3'1.1693.2‘1—569! (7.8.4)
1]

Next consider combining three fundamental representations, where we must immediately distinguish
SU(2) and SU(3) (we cannot antisymmetrize 3 objects if there are only 2 different kinds). For SU(2)
(3 fermions) we have, as in Eq. (7.4.2]),

Pe@e@- ((JeH) s~ e H e

23] 2]3
_[2[3]4] 1 1 :2-3-4 2.3.1 2-3.1
TR Bm®s B 321%5 0105101
1 1
=40202. (7.8.5)

For the distinct case of three SU(3) triplets we have instead, as in Eq. (7.4.1), (note the differences
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from the SU(2) case above)

Meme-((e[]) e0-CTTIe[ e @@

3[4] 3]4]
B grme ieme famet
1 1]
3-4.5 3-4-2 3.4.2 3.2-1
_3~2-1@3-1-1@3.1.1@3-21
=1008®8d 1.

(7.8.6)
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40. CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONICS,

AND dFUNCTIONS
J J
Note: A square-roct sign is to be understood over every coefficient, e.g., for —8/15 read —/8/15.  Notation: | . o
1/2x1/2] ! e M M2
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|-1/2 +1/2]1/2-1/21-1 Yll el sin § et® +2_1/2| 1/5 4s5] 572 372 .
[17272) 1 4 +1+172| 4/5-1/54+1/2 +1/2
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Figure 40.1: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley (The
Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 1957),
and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif., 1974).
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Chapter 8

Symmetries

8.1 Quantum dynamics

Let us begin this topic by reviewing some “quantum mechanical” notation (recall Chapter 5). The
state, or ket, vector |¢) of a physical system completely characterizes the system at a given instant.
The corresponding bra vector (1| is the Hermitian conjugate of |¢)). Properly normalized states
satisfy the relation that the “bra-ket” is unity, (¢[¢)) = 1. We are imagining that [¢) is defined in
a “vector space” of states that is spanned by some complete set of appropriately chosen (see below)
linearly independent (typically orthogonal) basis states (or vectors), |i,,), such that any state vector
can be expressed as a sum of these basis vectors,

) = ;cn\@m (8.1.1)

(exactly analogously to the way we think of expressing an ordinary 3-vector as the sum of coefficients
times the usual unit vectors &1, 22, #3).

Let |¢(t)) denote the state of a system at time ¢. Given an initial state |¢(0)), the goal of quantum
dynamics is to predict |1 (t)) for ¢ # 0. The superposition principle of quantum mechanics implies
that there is a linear operator U(t), called the time-evolution operator, which maps any state at time
zero into the corresponding state at time ¢,

[¥()) = U(t)[1(0)) - (8.1.2)

Time evolution must map any properly normalized state at one time into a normalized state at
another time, i.e., probability is conserved. This implies that the time evolution operator is unitary,

1= (O] (t) = @O)U@RTU@)[(0)) = (¥(0)4(0)) = U®) = U1)~". (8.1.3)
Here we are assuming that the system under study is “isolated” in the sense that no probability can
be added or leak away, i.e., (1)(t)|1(t)) is a constant.

It is often convenient to consider a differential form of time evolution. The time derivative of any
state must again (by the superposition principle) be given by some linear operator acting on the
state. That linear operator, times ¢h, is called the Hamiltonian, denoted H. In other words,

o d
i 0(6)) = H () (8.1.4)
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This is the (time dependent) Schrédinger equation. It is a linear first order differential equation,
whose solution can be (formally) written immediately (through the wonders of the functions of
mathematical physics in Chapter 1) in terms of an exponential (defined as an operator by its power
series expansion),

() = e~ M 1 (0)) - (8.1.5)
ASIDE To make this discussion more concrete we recall the explicit forms of some Hamiltonians
of interest. For a free, non-relativistic particle of mass m moving in one dimension the classical
Hamiltonian is H = p?/2m = mi?/2. Quantum mechanically (p — —ihd/0x) we have H =
—(h?/2m)0?/0z%. For a (non-relativistic) harmonic oscillator (w? = k/m) the classical Hamiltonian
is H = p?/2m + kx?/2, while the quantum mechanical version is H = —(h?/2m)0?/0z? + mw?22 /2.
Comparing with the definition , one sees that this exponential of the Hamiltonian
(times —it/h) is precisely the desired time evolution operator,

U(t) = e M (8.1.6)
The Hamiltonian must be Hermitian, HT = H, in order for U(t) to be unitary,
Ut = et ' o UitU () = 1 = 0 = eHiH =H)t/h (8.1.7)

Typically we choose our basis states to be the eigenstates of the Hamiltonian,

HWW = En’¢n> ) (8.1.8)
as they have particularly trivial time dependence
[ (t)) = e~ Fnt/ [y, (0)) . (8.1.9)

Since H is Hermitian (for our isolated, probability conserving system), its eigenvalues, the E,, are
real and the time dependence is simply a phase that changes linearly with time. This is what ensures
that the normalization measured by (¢ (t)[1)(t)) does not change with time. Such states are often
referred to as stationary states (since the time dependence is trivial).

In principle, we have just solved all quantum dynamics! Of course, actually evaluating this expo-
nential of the Hamiltonian can be (and usually is) a challenge. A quantum system whose space of
states is N-dimensional (i.e., n above runs from 1 to N) will have a Hamiltonian which is an N x N
matrix. Most systems of interest will have a very large, or infinite, dimensional space of states.

8.2 Symmetries

We have spent much of this quarter discussing the analysis “power” associated with symmetries.
Now we want to develop some of the formalism associated with symmetries. (See also Chapter 10
on Group Theory.) A general linear transformation 7' (not to be confused with the time reversal
operator - see Section 8.12), which maps an arbitrary state |¢) into some different state |¢)) = T'|¢)),
is called a symmetry if T is unitary, 7T = T, so that probability is conserved, and T commutes
with the time evolution operatorE

TU(t)=U(t)T or [T,U(t)] =0. (8.2.1)

!This definition applies to time-independent symmetry transformations. A more general formulation is required for
Lorentz boosts and time-reversal transformations, which have the effect of changing the meaning of time.
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To understand this, consider some arbitrary initial state [¢(0)), and imagine that you have worked out
how this state evolves in time so that you know [(t)) = U(t)[1)(0)). Applying the transformation 7'
to the initial state [t/(0)) will, in general, produce a different state [1)(0)) = T'|+)(0)). This transformed
initial state will evolve in time into |¢(t)) = U(t)[x)(0)) = U(t) T|1(0)). But, if condition
is satisfied, then one can interchange U(t) and T and write this result as [¢(t)) = T U(t)[1(0)) =
T|¥(t)). In other words, if T is a symmetry transformation, transforming and then time-evolving
any state is the same as first time-evolving, and then applying the symmetry transformation. This
is summarized by the diagrarﬂ

B(0) — [9®)
U(t)T U(t)T (8.2.2)
[(0)) —— [%(0))

showing that |4 (t)) can be constructed from |1(0)) by following either path.

The condition (8.2.1)) that the transformation 7' commute with the time evolution operator is equiv-
alent to the condition that 7" commute with the Hamiltonian,

[T,H|=TH-HT=0. (8.2.3)

Symmetries have many useful consequences. One class of applications follows directly from the
basic definition embodied in the diagram — if you understand how some state i) evolves
in time, you can immediately predict how the transformed state |¢)) will evolve. For example, we
will be discussing a transformation known as charge conjugation which interchanges particles and
antiparticles, e.g., turning a proton into an antiproton, a 7 into a 7, etc. Charge conjugation is
a symmetry of the strong and electromagnetic interactions (recall the table at the end of Chapter
7). This symmetry directly implies that the rate at which a AT baryon decays to a proton and a
7+, which is a strong interaction decay, is the same as the rate at which the A=~ antibaryon (the
antiparticle of the A™") decays to an antiproton and a 7—. And it implies that the cross section
for mT scattering on protons must be the same as the cross section for 7~ mesons to scatter on
antiprotons. So we have understood a lot about the strong interactions, knowing only one of its

symmetry properties, but no other details about the dynamics.

A second category of applications follows from the commutativity of a symmetry transfor-
mation with the Hamiltonian. Recall, from linear algebra, that two matrices (or linear operators)
are simultaneously diagonalizable if and only if they commute. Consequently, if T is a symmetry
then there exist states {|¢y)} which are simultaneous eigenstates of the Hamiltonian and of the
transformation 7',

H W}n> =E, \%) ) (8.2.43,)
T [¢hn) = tn |thn) - (8.2.4b)

The eigenvalue E,, of the Hamiltonian is the energy of the state |i,) — as noted above the Hamil-
tonian eigenstates are called energy eigenstates or stationary states. As already noted the time-
dependent Schrodinger equation implies that the time evolution of an energy eigenstate is
just [ (t)) = e Ent/P 4, (0)). Hence, an eigenstate of the Hamiltonian is also an eigenstate of the

2Mathematicians call this a commutative diagram.
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time evolution operator U (t), with eigenvalue e ~*#»t/" and the state is stationary in time except for

the overall phase. Finally we have also noted that, since the Hamiltonian is a Hermitian operator,
its eigenvalues E,, must be real (no decays included yet).

Because the symmetry transformation 7' is also a unitary operator, its eigenvalues t,, must also be
(simply) phase factors, t, = e'** for some real phase ¢n The simultaneous diagonalizability of H
and T implies that energy eigenstates can also be labeled by an additional (quantum) number, ¢,
(or equivalently ¢,,), which characterizes the effect of the symmetry transformation 7" on the state.
Phrased differently, the eigenvalues of a symmetry transformation 7" define a quantum number which
distinguishes different classes of eigenstates, and we can make use of this more detailed labeling of
the states. Note also that the eigenvalues of T" are constants of the motion, i.e., are unchanged under
the time dependence specified by U(t) and correspond to conserved quantities.

There are many examples of this. A particle moving in a (one dimensional) square well potential,

oo, otherwise,
symmetry, since the potential is unchanged by this transformation. Consequently, energy eigenstates
in this potential can be labeled by their parity; their wavefunctions must either be even, ¥, (z) =
Un(—x), or odd, ¥, () = =, (—x), under x — —zx.

More generally, real particles (in infinite, empty space) can be labeled by their momentum and
energy, as well as their angular momentum (spin), electric charge, baryon number, lepton number
and intrinsic parity. As we have discussed several times before (and will again), these are all examples
of quantum numbers which are associated with specific symmetries.

0, | < L/2; . . . . .
V(z) = { =1 / is an example of a system in which a parity transformation, x — —z, is a

A third category of applications of symmetries involves time evolution of states which are eigenstates
of some symmetry 7' but which are not (simple) eigenstates of the Hamiltonian (i.e., can exhibit
nontrivial time dependence). Let [ii,) be some initial state which is an eigenstate of the symmetry
T with eigenvalue t;,. Let |tout) be some final state which is an eigenstate of the symmetry T
with eigenvalue ¢o,;. For example, think of |i;,) as the initial state of some scattering experiment
involving two incoming particles of types a and b, while [ioy) is a final state describing outgoing
particles of types ¢ and d. Can the scattering process a + b — ¢+ d occur? In other words, can the
matrix element (Yout|U(t)|%in), giving the amplitude for the initial state to evolve into the chosen
final state, be non-zero? The answer is no — unless the symmetry eigenvalues (i.e., the conserved
quantum numbers) of the initial and final states coincide. Written mathematically we have

<¢out|U(t)W]in> =0 if tin 7é tout . (825)

To see that Eq. (8.2.5) must be true we use the fact that T is unitary to write 1 = T1T. Inserting
the identity operator changes nothing, so

<¢0ut‘U(t)’win> = <wout|TTTU(t)’¢in> = <¢0ut‘TTU(t)T‘¢in> . (826)

The last step used the condition that 7" is a symmetry to interchange T and U(t). By assumption,
|t)in) is an eigenstate of T', T'|[1)in) = tin|tin), and similarly T'|Yout) = tout|%out). Taking the Hermitian
conjugate of this last relation gives (1iy|TT = (¢i|tf,. Use these eigenvalue relations for |¢/;,) and

3To show this, multiply each side of the eigenvalue condition (8.2.4b) by its Hermitian conjugate to obtain
(| TTT|00n) = thtn(Wnlthn). The left hand side is just (¢, |in) since T is unitary, so this condition can only be
satisfied if |tn| = 1.
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(Yout| to simplify (thout|TTU (£)T)thin). The result is
<¢Out|U(t)|¢in> = téut tin<¢out|U(t)|¢in> . (8.2.7)

Note that exactly the same matrix element appears on both sides. To satisfy this equation either
¥t tin must equal 1, or else the matrix element (out|U (¢)|in) must vanish. Because the eigenvalues
of unitary T are pure phases, it follows that ¢}, = 1/tout. Hence the condition that ¢} ¢, = 1 is
the same as the statement that ¢, = towt. The interested reader may be more familiar with the
corresponding statement about the eigenstates of the corresponding Hermitian generator ) of the
transformation T, T = e'Q%. Such eigenvectors constitute an orthogonal set of basis states and the
eigenvalues of the Hermitian operator ) are real. That is precisely what we have just proved. If
the eigenvalue of @ is gy, then t, = €' is the required pure phase, t; = e~¥"% The symmetry
respecting physics in U(t) will not change the eigenvalue of either T' or @) in going from the “in”
state to the “out” state. States corresponding to different eigenvalues of the symmetry operators are
orthogonal, (¥, |1n) = 0 for ¢, # ¢n, and remain so as they evolve in time!

The key point here is that symmetries can be used to understand what types of final states can,
or cannot, occur in many scattering experiments and decays, even without detailed knowledge of
the dynamics. Conservation laws for energy, momentum, angular momentum, electric charge, and
baryon and lepton number (and more) can all be viewed as particular cases of this general result.

A final type of application (related to category 2 above) concerns sets of multiple symmetry trans-
formations. Suppose transformations 77 and 75 are both symmetries, and hence both commute with
the Hamiltonian. But suppose that 77 and 75 do not commute with each other. (As an example,
discussed in detail below, let 71 be J3, angular momentum along the 3-axis, and T, be Jj or Js, or
one of the ladder operators Jy - recall Chapter 5.) Then one cannot simultaneously diagonalize the
Hamiltonian and both T and 15, although one can find a basis in which H and, say, T} are diagonal.
Let [1,) be one of these basis states, so that H|¢y) = Ey|¢y) and T1|¢,) = t1,|tn). Applying
the symmetry transformation T to the state [i,) will produce some state ]{bvn% which must also
be an eigenstate of the Hamiltonian with exactly the same energy Enﬁ It may be a linearly inde-
pendent state, i.e., |1Zn> need not be proportional to |¢,). Consequently, the existence of symmetry
transformations that do not mutually commute can lead to degenerate energy levels, i.e., multiple
linearly independent states with exactly the same energy. Further these energy degenerate states
will comprise complete representations of the underlying symmetry group. This is necessarily true
because there are (symmetry) transformations that move us around within the representation while
simultaneously commuting with the Hamiltonian. Angular momentum eigenstates provide a familiar
example of this. In any theory which is rotationally invariant, every energy eigenstate with non-zero
angular momentum must be part of a degenerate multiplet. If the (total) angular momentum is jh,
then the multiplet will contain (2j + 1) states, since the projection of the angular momentum along
a(n arbitrarily) chosen quantization axis can take any of 25 4+ 1 values, {—j, —j+1,--- ,7—1,3j}, but
the energy cannot depend on the value of this projection else it would not be rotationally invariant.
Thus, knowing something about the symmetries of a given physical system, already tells us a good
deal about the possible states of the system. The mathematics of symmetries and the associated
representations is called Group Theory and we will present a brief introduction in this class. The
representation with 25 4+ 1 elements, which we just described, is a representation of the symmetry
group SO(3), and the nearly identical group SU(2). Hopefully you have learned something about

iThis follows from the given assumption that 7> is a symmetry, so that it commutes with H. Consequently,
Hlpn) = H (T2|¢pn)) = T2 (H|tpn)) = To (Enltn)) = En [¢hn).
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these groups either in your quantum or classical mechanics classes or in math methods (or in Chapter
5). Symmetries, and the corresponding conserved quantities, are important for understanding both
classical and quantum physics, but probably more useful in the latter. We will apply the techniques
from Chapter 5 at the end of this chapter to the 3-quark spin wave functions that we discussed in
Chapter 7.

We can apply similar ideas to the SU(3) (approximate) flavor symmetry. The statement that QCD
is flavor symmetric means that the eigenstates of QCD, the hadrons, should appear in complete
representations of SU(3), the (now) familiar 8’s and 10’s. If the masses of the u,d, s quarks were

identical and we ignored the weak and electromagnetic interactions, all members of the same repre-
sentation would have the same rest mass. However, as we discussed in Chapter 7, the s quark mass
is substantially larger than the u and d quark masses (although still much smaller than a typical
hadron mass). Thus the full flavor SU(3) symmetry is broken and the masses of hadrons within
the same flavor SU(3) multiplet (i.e., representation) are not quite degenerate, but exhibit a small
breaking that depends linearly on the number of s quarks. On an even smaller scale, the d quark
mass is slightly larger than the u quark mass leading to a tiny breaking of isospin symmetry. Note
that in the case of SU(3) the representations are 2-D and the individual states are labeled by the the
“total SU(3) quantum number”, e.g., 8 or 10, along with isopsin I, I3, and the strangeness content

S. Also there are 2 linearly independent sets of ladder operators typically chosen as the ones for
isospin, I, and one of the sets of operators that move us along the diagonals, typically labeled Uy
and Vg, d.e., SU(3) contains 3 SU(2) subgroups with ladder operators but only 2 sets are linearly
independent. (The existence of the 3 subgroups is related to the 3-fold symmetry of the graphical
forms of the representations in Chapter 7.)

8.3 Continuous symmetries

Continuous symmetries are symmetries which depend (continuously!) on some parameter that con-
trols the magnitude of the transformation. Examples include translations and rotations. Let T'(a)
denote a continuous symmetry transformation depending on the real parameter a. Assume (without
loss of generality) that a = 0 corresponds to doing nothing, so that 7(0) equals the identity (no
change) operator. One can always choose to define the parameterization so that (T'(a/2))? = T(a),
or more generally that (T'(a/N))™ = T(a) for any N. Here we are appealing to our intuitive expec-
tation that rotating twice through an angle 6/2 [(T'(6/2))?] about some axis is equivalent to rotating
once through angle 6 [T'(0)] about the same axis. This implies that T'(a) depends exponentially on
the parameter a (as we have already suggested), so that one can write

T(a) = €97 (8.3.1)

for some operator @), which is called the generator of the symmetry 7'(a). (See also the discussion
in Chapters 1, 5 and 10. We are here discussing the structure of the Lie Groups, of which we have
discussed U(1), SU(2) and SU(3).) In order for T'(a) to be unitary (as required), the generator
@ must be Hermitian. Note that the relation between T'(a) and @ is completely analogous to the
relation between the time evolution operator and the Hamiltonian; the Hamiltonian (divided by —#)
is the generator of time evolution.

The condition (8.2.3) that T'(a) commute with H implies that the generator @ of any continuous
symmetry must also commute with the Hamiltonian,

[Q,H]=0. (8.3.2)

126



Particles and Symmetries CHAPTER 8. SYMMETRIES

Once again, this implies that () and H are simultaneously diagonalizable.

Note that, given some continuous symmetry transformation 7'(a), one can extract the associated
generator @ by performing a Taylor series expansion of T'(a) about a = 0. Keeping just the first
non-trivial term gives T'(a) =1+ iQa + - - -, so that

d
=—i—1T(a . 8.3.3

Q=i g T@)| (33.3)
Alternatively, given any Hermitian operator () which commutes with the Hamiltonian, one can
construct a unitary symmetry transformation by exponentiating i@ (times an arbitrary real number),
as in . So one can regard either the generator @, or the finite transformation 7'(a), as defining
a continuous symmetry. In the language of Group Theory, as outlined in Chapter 10, T'(a) is an
element of the underlying symmetry group (a Lie Group) while @ is an element of the algebra
corresponding to the group.

8.4 Spacetime symmetries

Spacetime symmetries are symmetries which characterize the underlying geometry of Minkowski
space. Translations in both space and time, spatial rotations, and Lorentz boosts are all con-
tinuous spacetime symmetries. These are symmetries of the laws of physics, as currently un-
derstood. As we have already suggested, associated with those continuous symmetries that com-
mute with the Hamiltonian, there are additive conserved quantities or quantum numbers (and cor-
responding conserved Noether currents - see Chapter 10 and the NYT article on our webpage,
http://courses.washington.edu/partsym/14Spr/Noether.pdf), such as linear momentum, en-
ergy and angular momentum.

ASIDE In addition to continuous transformations certain discrete transformations are also useful as
we have already mentioned, e.g., parity (P:Z — —Z), charge conjugation (C:particle — anti-particle)
and time reversal (T:t — —t). These symmetries are associated with multiplicative quantum num-
bers. While these symmetries are not exact symmetries (i.e., do not commute with all of the
interactions), they do provide useful approximate symmetries (i.e., commute with “most” of the
interactions), as we will discuss later.

Returning to continuous spacetime symmetries, the total momentum operator P (divided by h) is the
generator of spatial translations (—iV). Hence, the unitary operator Tiyans(AZ), which has the effect
of performing a spatial translation through a displacement AZ, is an exponential of momentumﬁ

Ttrans(A£> = eiﬁ.Af/h- (841)

In any translationally invariant theory, the total momentum P commutes with the Hamiltonian
(and hence with the time evolution operator). Therefore, conservation of momentum is a direct
consequence of spatial translation invariance.

Recall that in single particle quantum mechanics in, for simplicity, one dimension, the coordinate representation of
the momentum operator is 2 -2 So acting with exp(iPAxz/h) = 14+ iPAz/h— 3(iPAz/h)*+--- on an arbitrary state
|¥) is the same as acting with exp(Ama%) =1+ A:ca% + %(Aaca%y + -+ on the wavefunction ¥(z). This produces
U(z) + Az V' (z) + 5 (Az)*¥”(2) 4 - - - which is a Taylor series expansion of the translated wavefunction ¥(z + Az).
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The Hamiltonian H (divided by —h) is the generator of time translations, and the associated unitary
operator which has the effect of performing a time translation through an interval At is precisely the

time evolution operator ‘
U(At) = e HHA (8.4.2)

The Hamiltonian commutes with itself, and therefore it satisfies the conditions defining the generator
of a symmetry. Since the Hamiltonian is the operator which measures energy, this shows that
conservation of energy is a direct consequence of time translation invariance.

A general spacetime translation with displacement Az = (Az®, AZ) is just a combination of a spatial
translation through AF and a time translation through At = Az%/c. The unitary operator which
implements this spacetime translation is the product of Tiyans(AZ) and U(At)ﬁ Defining P’ = H/c
allows one to write this as a single exponential of a Minkowski space dot product,

Ttrans(Ax) - Ttrans(Af) X U(AQTO/C) = eiiPMAxu/h . (843)

The total angular momentum J (divided by k) is the generator of rotations. The unitary operator
which implements a rotation through an angle 6 about an axis defined by a unit vector n is an
exponential of the component of angular momentum along 7,

Tiot (0, 1) = ™/ (8.4.4)

The total angular momentum J commutes with the Hamiltonian in any rotationally invariant theory.
Hence, conservation of angular momentum is a direct consequence of spatial rotation invariance.

One can also define operators G which are the generators of Lorentz boosts, so that the unitary
operator which implements a boost along some direction 7 can be written as an exponential,

Tboost(y7 ﬁ) = eiyﬁ-é/h . (845)

The parameter y, which, as we have noted earlier, is called rapidity, is not the velocity of the boost,
but it determines the boost velocity via v/c = tanhy. If we consider a particle whose motion (energy
E, momentum p) is characterized by this boost, we have tanhy = pc/E. In contrast to the situation
with rotations and translations, the boost generators G do not commute with H because Lorentz
boosts change the meaning of timem Because of this, invariance under Lorentz boosts does not lead
to any additional conserved quantities analogous to momentum or angular momentum.

ASIDE: Since in this class we often discuss physics as it is being studied at particle colliders, e.g.,
the LHC, we should note that, in the context of such experiments, the term rapidity is typically used
for boosts only along the direction of the beams, say the &3 direction. Thus one will often see (as

5Because Tirans(AT) commutes with U(At) (or equivalently, because P commutes with H), the order in which one
performs this product doesn’t matter.

"The boost generators G depend explicitly on time, and the required condition that they must satisfy turns out to
be & G +i[H,G] =0.
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we did in the HW) rapidity defined via

P! =(E/c,p1,p2,p3)

pr =1/P} + 1)
E =y/m?c* + p2.c? coshy
p3 =\/m2c® + pZsinhy

tanhy =ps3c/E, y=0.5In[(E + ps3c)/(E — psc)]. (8.4.6)

Thus the 3-momenta of particles are characterized by the “transverse” momentum (transverse to the
beam) pr and the rapidity y, where the 2-vector direction of pr is described by the azimuthal angle
¢. Note that making the 23 direction “special” in this sense is reasonable as the initial state (beams
colliding along the 22 direction) clearly breaks the overall rotational symmetry and the final states
clearly exhibit this lack of symmetry. The many particles produced at the LHC are observed to be
distributed approximately uniformly in the rapidity defined in Eq. but are restricted to small
values of the transverse momentum, pr (of order a few GeV/c). In those rare events which produce
particles at large pr, the large pr particles are observed to cluster into localized (in rapidity and
azimuthal angle ¢) “jets” of particles and are interpreted to arise from the large angle scattering of
the underlying quarks and gluons. (These jets as a characteristic feature of high energy collisions is
a topic I have studied for much of my scientific career.)

8.5 Charge, lepton, and baryon number

The electric charge () is an operator which, when acting on any state containing particles with
individual charges {¢;} (¢ =1,---, N ), measures the sum of all these charges,

QIY) = grot|¥) (8.5.1)

with gt = Zfi 1%- So, as its name suggests, () measures the total electric charge of any state.
More precisely, each g; should be understood as the charge of a particle in units of |e|. The electric
charges of all known particles which can be produced in isolation at distances large compared to a
fermi (i.e., not including quarks) are integer multiples of |e|; this is known as charge quantization.
Hence the operator Q will always have integer eigenvalues.

Maxwell’s equations are inconsistent if electric charge is not conserved. Therefore, () must commute
with the Hamiltonian (or with the time evolution operator), and hence @ is the generator of a
continuous symmetry,

To(a) = 9. (8.5.2)

Applying this transformation to any state (of definite charge) multiplies the state by a phase pro-
portional to its electric charge, Tg(a)|¥) = e?%t|¥). Note that this is also a continuous symmetry
(characterized by the continuous parameter «) that operates not in spacetime like translations, but
simply in the space of complex numbers. In the group theory language of Chapter 10, the invariance
of electromagnetism is described by the group U(1). The corresponding conserved additive quantum
number is just the charge got-
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In precisely the same fashion, one may regard baryon number B and lepton number L [E_;] as quantum
operators which measure the total baryon number or lepton number, respectively, with underlying
U(1) symmetries. And one may exponentiate either of these operators to form continuous symmetry
transformations generated by B and L,

Tp(a) = B | Ty () = ok, (8.5.3)

8.6 Approximate symmetries

There are many circumstances where it is useful to consider transformations which are almost, but
not quite, symmetries of a theory. Consider, for example, a hydrogen atom in a weak background
magnetic field. If the magnetic field were zero, then the Hamiltonian describing the dynamics of
the atom would be rotationally invariant. As noted above, this implies that energy eigenstates with
non-zero angular momentum must form degenerate energy levels. Turning on a magnetic field breaks
three dimensional rotation invariance, since the Hamiltonian will now contain terms which depend
on the direction of the background magnetic field. (More precisely, turning on a magnetic field
reduces the symmetry from three dimensional rotation invariance down to one dimensional rotation
invariance with respect to rotations about the direction of the magnetic field.) The presence of the
magnetic field will perturb the energy levels of the atom, and lift the degeneracy of energy eigenstates
with differing angular momentum projections along the direction of the field. But, if the magnetic
field is sufficiently weak, the energy splitting induced by the field will be small (compared to the
spacings between the non-degenerate energy levels in the absence of the field). In this circumstance,
it makes sense to regard the Hamiltonian of the system as the sum of a “large” rotationally invariant
piece Hy, which describes the atom in the absence of a magnetic field, plus a “small” perturbation
AH, which describes the interaction with the weak magnetic field,

H = Hy+ AH. (8.6.1)

One can systematically calculate properties of the atom as a series expansion in the size of AH, or
more correctly in the size of AH divided by the appropriate eigenvalue of Hy, since the expansion
parameter must be dimensionless. The starting point involves ignoring AH altogether and under-
standing the properties of Hy, including the properties of its eigenstates. And when studying the
physics of Hy alone, one can use full three dimensional rotation symmetry to characterize the corre-
sponding energy eigenstates. These eigenstates, in turn, provide a complete, orthogonal set of basis
states useful for analyzing this system even when the perturbation, AH, is included.

Exactly the same approach can be applied to particle physics to separate the effects of weak and
electromagnetic interactions (small) from those of strong interactions (large). Similarly we can
study the effects of the (small) symmetry breaking due to the quark masses on the flavor SU(3)
symmetric limit. In fact, this approach of using “perturbation theory” to analyze a system in terms
of perturbations around a simple, completely analyzable symmetric limit, is an extremely important
tool to have in your physics toolbox!

8Note that we are (perhaps unfortunately) using the same symbol L for both lepton number and orbital angular
momentum. The meaning in any specific situation will (hopefully) be obvious from the context.
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8.7 Flavor symmetries

Strong interactions, as described by quantum chromodynamics, preserve the net number of quarks of
each flavor. Strong interactions can cause the creation or annihilation of quark-antiquark pairs of any
given flavor, but this does not change the number of quarks minus antiquarks of each flavor. This is
also true of electromagnetic interactions, but not weak interactions. Consequently, in a hypothetical
world in which weak interactions are turned off, operators which measure the number of quarks
minus antiquarks of each flavor,

N, = (# u quarks) — (# @ quarks), (8.7.1a)
Ny = (# d quarks) — (# d quarks), (8.7.1b)
Ng = (# s quarks) — (# 5 quarks), (8.7.1c)
N, = (# ¢ quarks) — (# ¢ quarks), (8.7.1d)
= (# b quarks) — (# b quarks), (8.7.1e)

= (# t quarks) — (# t quarks), (8.7.1f)

all commute with the QCD (and EM) Hamiltonian. Therefore, all these operators may be regarded
as generators of continuous symmetries. Note that baryon number equals the total number of quarks
minus antiquarks, divided by three,

B = § [(# quarks) — (# antiquarks)] = 3 ) Ny, (8.7.2)
f=u,d,s,c,b,t

since baryons contain three quarks, while antibaryons contain three antiquarks. For historical rea-
sons, it is conventional to refer to strangeness as the number of strange anti-quarks minus quarks,

= — N, = (# 5 quarks) — (# s quarks). (8.7.3)

This definition assigns strangeness +1 to the (originally observed) K meson (with a § antiquark),
and this convention predates the development of QCD and the quark model of hadrons.

In a world without weak interactions, m mesons would be absolutely stable because there are no
lighter strongly interacting hadrons into which pions could decay. Kaons (K mesons) would also be
stable, even through they are over three times heavier than pions, because K mesons are the lightest
hadron with nonzero strangeness (and strangeness is conserved by strong interactions). Similarly, the
Q™ baryon, containing three strange quarks, would be stable because there is no other combination of
hadrons it might decay into that has lower energy, together with baryon number one and strangeness
minus three.

Completely analogous arguments apply to hadrons containing the heavier charm and bottom quarks.
In the absence of weak interactions, there would be many additional stable hadrons containing
nonzero net “charmness”, or net “bottomness” (or “topness”).

8.8 Isospin
Figure[8.1]graphically displays the mass spectrum of light mesons and baryons. Looking at this figure,

or the tables containing information about hadrons in the previous chapter, many degeneracies or
near-degeneracies are immediately apparent. For example, the masses of the 7+ and 7~ mesons are
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the same, while the mass of the 7° meson is only slightly different. The mass of the neutron is quite
close to that of the proton. The masses of the X7, ¥° and ¥~ baryons are all different from the
other hadrons, but very close to each other. And likewise for many other “multiplets” of mesons and
baryons. As we have noted several times earlier, the most obvious “near degeneracy” is that due to
isospin symmetry, a topic which we discuss again and more completely in the following.

Comparing the quark content of various hadrons (and referring to Tables 7.7 - 7.10 as needed), one
sees that the near-degeneracies are all associated with substitutions of u for d quarks, or vice-versa.
For example, the ¥ baryon has two up and one strange quark. Replacing one up quark by a down
converts the ¥ into a ¥°, whose mass is larger than that of the ¥+ by 3.3 MeV/c?, which is less
than 0.3% of the ¥ mass (a true “near degenarcy”). Replacing the remaining up quark by a down
converts the X0 into a ¥~, whose mass is an additional 4.8 MeV/c? larger.

The mass differences among the three ¥ baryons, the three m mesons, between the neutron and
proton, or within any of the other nearly degenerate multiples, must arise from some combination of
two effects. First, the masses of up and down quarks are not quite the same. The mass of a down
quark (c.f. Table 7.1) is a few MeV/c? larger than that of an up quark. This mass difference is tiny
compared to the masses of hadrons, but it is comparable to the few MeV/c? mass splittings within
the various near-degenerate multiplets.

Second, while the color interactions of up and down quarks are identical, the other interactions are
different. They have differing electric charges (2/3 for u, and —1/3 for d), which means that their
electromagnetic interactions are not the same. Their weak interactions also differ. But, as far as
hadronic masses are concerned, the effects of weak and electromagnetic interactions are numerically
small perturbations on top of the dominant effects due to strong interactions, and strong interactions
are flavor-blind. In a hypothetical world in which weak and electromagnetic interactions are absent,
and in which up and down quarks have the same mass, these near-degeneracies would all become
eract degeneracies.

As we have discussed many times, you are encouraged to interpret this situation as being similar
to angular momentum multiplets (because it is very similar - the same equations have the same
solutions). In any rotationally invariant theory, every state with angular momentum Jh is part
of a multiplet containing 2J + 1 degenerate states. A rotation transforms the different states in
the multiplet into linear combinations of each other. The simplest non-trivial case is J = %h,
the so-called fundamental representation, whose multiplet contains two (linearly independent) states
conventionally chosen to have angular momentum up or down along some given axis, and represented
by [1) and |}). The action of a rotation corresponds to a linear transformation,

(5)-»()

For a rotation about an axis 7 through an angle #, the matrix M has the form (note especially the
factors of 1/2 in the angle and the representation of the operator I = &/2)

M = el = (i0/27F _ (cosg +in -0 sin g) , (8.8.2)

with ¢ denoting the Pauli matrices, o1 = ((1) é), o9 = (? _é), and o3 = ((1) _?)ﬂ You can easily

(and should) check that M is a unitary matrix with determinant equal to one. As noted earlier, the

90f special interest are the combinations o4+ = (o1 & i02)/2 which provide a realization of the ladder operators of
Eq. (5.1.11): oy = ( 83), o_ = ((1) 8) . The former turns | | ) into | T ) and the latter does the opposite.
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space (or group) of such 2 x 2 matrices is called SU(2), the Special Unitary Group in 2 dimensions.

In the limit that the w and d quarks are degenerate in mass (and weak and electromagnetic interac-
tions are turned off), there is an analogous symmetry which transforms up and down quark states
into new linear combinations of the two flavors,

(%) =M QZ;) : (8.8.3)

where M is any 2 X 2 unitary matrix with determinant one. This is the formal definition of the
symmetry called isospin (or isotopic spin) with M an isospin “rotation”.

The mathematical structure of isospin rotations is completely analogous to spatial rotations (although
isospin has nothing to do with ordinary spatial rotations, but, as usual, “the same equations have the
same solutions”). There are three generators of isospin rotations, I, I and I3. Their commutation
relations have the same form as the commutation relations of angular momentum operators (which
are the generators of spatial rotations, E

Lo, 1] = i€ape L - (8.8.4)

Total isospin is denoted by I, and can have either integer or half-integer values. An up quark has
Is = +1/2, while a down quark has I3 = —1/2. Hence an up quark behaves (with respect to isospin
rotations) just like an up spin does (with respect to spatial rotations). This parallel is the origin of
the names ‘up’ and ‘down’ for the two lightest quarks. For antiquarks, the assignments are reversed,
a % quark has I3 = —1/2 while a d has I3 = —|—1/2B

When we build states containing multiple up and down quarks (or antiquarks), the addition of isospin
works just like adding angular momentum. For example, combining two isospin one-half objects can
yield either isospin 0 or isospin 1, i.e., 2® 2 = 3@ 1. An antisymmetric combination of u and d

quarks,
(ud — du), (8.8.5)

gives I = 0 isospin singlet, while a symmetric combination gives the isospin one triplet state(s).
Hence, the three I = 1 flavor states of two quarks are

(uu), (ud+ du), (dd), (8.8.6)

with I3 for these states equaling +1, 0, and —1, respectively. Similarly, when three u or d quarks are
combined (as in a baryon), the resulting isospin can be either 1/2 or 3/2, i.e., 202®2=4®2 2.

Looking back at the nearly degenerate set of particles shown in Figure, the 7+, 7% and 7~ mesons
form an I = 1 multiplet, whose masses would be exactly equal were it not for the perturbing effects

10 A5 discussed in the Group Theory Lecture in Chapter 10, the two groups SO(3) and SU(2) are intimately related
with exactly the same “algebra”. Thus it is no surprise that the current discussion looks like the (hopefully) more
familiar case of angular momentum.

"This is just the statement that the two groups have the same algebra as already noted in the previous footnote.

— _ N
274 is (note the now familiar minus sign) ( |d>) which transforms in the same manner as (' >) , namely ( | >) =

- ) @) )
v(h)
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of weak and electromagnetic interactions and the up and down quark mass difference. Similarly, the
K+ and K° mesons (whose quark contents are us and d3, respectively) form an isospin 1/2 multiplet
with strangeness one, while the K~ and K% mesons (with quark content s and sd) form another
I = 1/2 multiplet with S = —1. The three rho mesons form another / = 1 multiplet. Turning to the
baryons, the two nucleons (i.e., the proton and the neutron) form an I = 1/2 multiplet (as do the =
baryons), while the three 3 baryons have I = 1 and the four A baryons have I = 3/2.

Conservation of isospin (by the strong interactions) can also be used to explain a variety of more
detailed hadronic properties, including the fraction of AT decays which yield pr® versus nz™, or the
fraction of different pion pairs produced by p decays. While the total rate of AT or p° decays will
depend on the details of the QFT version of the strong interactions, the relative branching ratios
into differing particle-pair states, e.g., pr¥ versus n7 or 7°7° versus 777~ will (in the limit of
conserved isospin) be determined by the corresponding Clebsch-Gordan coefficient. Recall that a
table of C-G coefficients was included at the end of Chapter 7. We will work through some detailed

examples in the HW.

Isospin conservation can also be used to explain the absence of many unseen decay modes. For
example, the A(1690) is an excited state of the A(1116) baryon (still I = 0, but JZ = %_, i.e., 1 unit
of orbital angular momentum), with 1690 MeV rest energy and quark content uds. Roughly 25% of
the time, a A(1690) decays to a A(1116) plus two pions. But it never decays to a A(1116) plus a
single pion, despite that fact that more energy would be available for conversion into kinetic energy if
only a single pion were produced. To understand why decays to a A(1116) plus two pions are favored,
note that the A(1116) baryon, and its excited states like the A(1690) have I = 0, while pions have
I =1. So the decay A(1690) — A(1116) + 7 would have AI = 1 — an initial state with isospin zero
and a final state of isospin one. Thus this strong interaction decay is not allowed, since the strong
interactions conserve isospin. But in the final state of the observed decay A(1690) — A(1116) 47+,
the total isospin is the combination of two I = 1 pions plus the I = 0 A(1116) baryon. Adding two
isospin one objects can yield isospin two, one, or zero. So, if the final pions combine to form zero
isospin, then isospin will be conserved in this decay, and a strong interaction decay is allowed. The
two pion decay can conserve isospin, while the single pion case cannot. Similarly we can understand
why the A(1690) can decay into a ¥ (I = 1) and one or two pions.

Because isospin is only an approximate symmetry, predictions one can make using isospin invariance
are not exact results in the real world. However, because the up and down quark mass difference
is so small, and weak and electromagnetic interactions are much weaker than strong interactions,
predictions which follow from isospin invariance are quite accurate — violations are typically at or
below the 1% level.

8.9 Parity

The most familiar of the relevant discrete symmetries with multiplicative eigenvalues is parity. A
parity transformation, denoted P, has the effect of reversing all spatial coordinate axes. Therefore,
a parity transformation acting on a state of a single particle located at some spatial position &
produces a state in which the particle is located at —#. Fourier transforming to the momentum
representation, one can equally well say that a parity transformation acting on a single particle state
with momentum p will produce a state with momentum —p. Written symbolically, this suggests that
if |p) represents a state of some particle with momentum p, then the parity transformed state should
be P |p) = |—p). This is not quite right, however, as the unitary transformation P can also produce
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a change in the overall phase of the state. Therefore, in general one must write

Pp) =np|-p), (8.9.1)

where np is some phase factor which can depend on the type of particle under consideration. A
parity transformation does not change the spin or angular momentum of a particleﬁ

Applying two parity transformations amounts to reversing the directions of all spatial coordinate
axes, and then reversing them all over again. This overall transformation has no net effect. Hence,
as an operator, parity must square to the identity, P? = 1. This implies that the phase np appearing
in Eq. must square to one, 7712) = 1, so either np = +1 or np = —1. This sign is called the
intrinsic parity of a particle. Some particles (such as protons and neutrons) have positive intrinsic
parity, while others (such as pions and photons) have negative parity. One can show (from relativistic
quantum mechanics) that for particles which are bosons, the intrinsic parities of antiparticles are the
same as the corresponding particles, while for fermions, antiparticles have intrinsic parities which
are opposite to the corresponding particle.

For multiparticle states, the form of the wavefunction describing the relative motion of the particles
also affects the behavior of the state under a parity transformation. If two particles A and B (viewed
in their mutual center-of-momentum frame) have orbital angular momentum L, then an additional
factor of (—1)* appears in the result of a parity transformation@

POty = ngng (—1)F [witP), (8.9.2)

where nf;‘. and 771]3 are the intrinsic parities of the individual particles. Note, as claimed earlier, that
the resulting total response to the parity transformation is the product of the individual bits.

Intrinsic parities can be assigned to particles in such a way that parity is a symmetry of the strong
and electromagnetic interactions. In particular, the light mesons in Tables 5.7 and 5.8 are all parity-
odd (i.e., they have negative intrinsic parity)m The photon is also parity-odd. The baryons listed
in Tables 5.9 and 5.10 are all parity-even corresponding to the conventional choice that the lowest
mass baryons and the quarks have positive intrinsic parity, while the lowest mass antibaryons and
the antiquarks have negative intrinsic parity. The excited baryons, with nonzero internal orbital
angular momentum, can have negative parity (e.g., the J = %_, isospin % baryon with mass 1520

MeV/c? or the A(1690) mentioned above).

Physics became much more interesting when it was realized that parity is not respected by all
interactions. In particular, parity is not a symmetry of the weak interactions, and the discovery that
all interactions do not respect parity was a BIG deal historically (the 1957 Nobel Prize in Physics).
This will be discussed further in the next chapter. Thus parity is an approximate symmetry, useful
for understanding strong or electromagnetic processes, but is not a true symmetry of all nature.

3Recall that L = 7 x p. Since a parity transformation reverses both 7 and p, the (orbital) angular momentum L
does not change. The intrinsic spin transforms in the same fashion as L. We label vectors like L that do not change
sign under parity as axial or pseudo-vectors (in contrast to the more familiar polar vectors that do change sign).

“This factor comes from the behavior of spherical harmonics, which describe states of definite orbital angular
momentum, under the transformation & — —Z, namely Y= (—2) = (=1)* Y™ (%).

15 A1l these mesons are s-wave quark-antiquark bound states, so they have no orbital angular momentum. Their neg-
ative parity reflects the opposite intrinsic parities of fermions and antifermions, here applied to quarks and antiquarks.
Higher energy even-parity mesons do exist; these may be understood as bound states with non-zero orbital angular
momentum.
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8.10 Charge conjugation

A charge conjugation transformation, denoted C|, has the effect of interchanging particles and an-
tiparticles, C|A) = |A). So, for example, charge conjugation turns a proton into an antiproton, an
electron into a positron, and a 7 into a 7. For particles which are their own antiparticles (“self-
conjugate” particles), such as the photon and 7°, there can also be an overall (eigenvalue) phase

factor,
C|A) =nc|A) (self-conjugate particles). (8.10.1)

Similarly to the parity transformation, applying charge conjugation twice takes us back to where
we started so that 77% =1, n. = £1. These phases, which again depend on particle type, can be
defined in such a way that charge conjugation is a symmetry of the strong and electromagnetic
interactions (and match conventional choices for the phases - recall the minus sign in our definition
of the antiquark doublet). However, charge conjugation is not an invariance of weak interactions. So
charge conjugation is only an approximate symmetry, like parity, but is very useful when considering
strong or electromagnetic processes.

Charge conjugation has no effect on momenta or spins of particles, but the electric charge and
other (additive) flavor quantum numbers (B, L, S, I3) all have their signs changed by the charge
conjugation transformation. Hence, only particles which are neutral (and whose strangeness, I3,
baryon, and lepton numbers all vanish) can be self-conjugate.

The photon is charge-conjugation odd (i.e., its phase no = —1). To understand why, consider a
classical electromagnetic field produced by some charge or current density. A charge conjugation
transformation would change the electrically charged particles which are the source of the electro-
magnetic field into their oppositely charged antiparticles. In other words, the charge and current
densities appearing in Maxwell’s equations would change sign. Since Maxwell’s equations are linear,
this implies that the electromagnetic field itself would change sign. The photon is a quantized exci-
tation in the electromagnetic field. Its behavior under charge conjugation reflects the behavior of a
classical EM field: it changes sign.

Since a single photon is charge-conjugation odd, a multi-photon state containing N photons is charge-
conjugation even if N is even, and charge-conjugation odd if N is odd. The neutral pion (dominantly)
decays to two photons, while 7° decay to three photons has not been observed. Neutral pion decay
is an electromagnetic process, for which charge conjugation is a symmetry. Hence, the neutral pion
is charge-conjugation even.

As an example of the utility of charge conjugation symmetry, consider positronium (as we did in
the HW, but here using slightly different tools). This is the name given to bound states of an
electron and a positron. Since an electron and positron have opposite electric charges, they have
an attractive Coulomb interaction, and consequently form Coulombic bound states — just like the
electron and proton in a hydrogen atom. Relative to hydrogen, there are two noteworthy differences.
First, because the positron mass equals the electron mass (instead of being much much heavier
like a proton), spacings between energy levels in positronium are half the corresponding spacings
in hydrogen (the reduced mass is smaller by a factor of 2). More importantly, positronium is not
stable. Unlike a hydrogen atom, the electron and positron in positronium can (and eventually will)
annihilate into photons.

Consider positronium in its 1s ground state. How many photons will be produced when it decays?
Answering this requires a consideration of symmetries, not hard calculations. Energy and momentum
conservation forbid decay into a single photon since the photon has zero rest mass and positronium
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does not. To understand whether decay into two photons is possible, we need to specify the initial
state more carefully. Since the electron and positron each have spin 1/2, the total spin of positronium
can be either S =0 or S = 1. Since a 1s state has no orbital angular momentum, the total angular
momentum is the same as the spin. The singlet (S = 0) state of positronium is known as para-
positronium, while the triplet (S = 1) state is called ortho-positronium. Recall that when two spins
are combined to form S = 1, the spin wavefunction [either 11, (1| + 1), or ], depending on the
value of S3] is symmetric under interchange of the two spins. But the singlet spin wavefunction,
(14 — 1), is antisymmetric under interchange of spins.

Charge conjugation operating on positronium interchanges the types of the two fermions, without
affecting their spins or positions. Interchanging the positions of the electron and positron flips their
relative separation, ¥ — —7. Since a ls state has a rotationally invariant spatial wavefunction,
swapping the positions of the electron and positron does not change the value of the spatial wave-
function. In the S = 1 spin triplet (ortho-positronium), swapping the two spins also does not change
the value of the spin wavefunction, since the spin wavefunction is symmetric. Hence, the action of
charge conjugation on ortho-positronium is the same as completely interchanging the two particles
(because the state is symmetric under interchange of positions and spins). Finally, similarly to our
discussion of the intrinsic parities of fermions and antifermions, the anticommutation properties of
the corresponding creation (and annihilation) operators introduces an extra factor of (-1). Conse-
quently, ortho-positronium must be charge-conjugation odd. In contrast (but by the same reasoning),
in the S = 0 spin singlet (para-positronium), the action of charge conjugation differs from that of a
complete interchange of the two fermions by an extra minus sign coming from the antisymmetry of
the spin wavefunction. Therefore, para-positronium is charge-conjugation even.

More generally a fermion-antifermion pair with definite values of orbital angular momentum (L) and
total spin (S) has the following property under C,

C|ffpair, L, S> = (_1)L(_1)S+1(_1)|ffpaira L, S> = (_1)L+S|ffpaira L, S> ) (8102)

where the middle expression explicitly displays the corresponding behavior of the spatial wavefunc-
tion, the spin wavefunction and the intrinsic phase. Thus, as already noted, the 1s ortho-positronium
state (L =0, S = 1) is C odd, while para-positronium (L =0, S = 0) is C even.

We noted above that a multi-photon state is charge conjugation even or odd depending on whether
the number of photons is even or odd. Hence, charge conjugation invariance (of electromagnetic
interactions) implies that para-positronium must decay to an even number of photons, while ortho-
positronium must decay to an odd number of photons. Every additional photon in the final state
decreases the rate of decay (by at least one factor of the fine structure constant «). Therefore, singlet
positronium should decay to two photons, while triplet positronium should decay, more slowly, to
three photons. This is precisely what is observed. The lifetime of spin singlet para-positronium is
125 ps = 125 x 10712 s, while the lifetime of spin triplet ortho-positronium has the much larger
value 142 ns = 142 x 1079 s. Recall that we found this same distinction between the decays of the
positronium states in our analysis in the HW, although there we made use of detailed considerations
of angular momentum conservation.

Similarly applying Eq. [8.10.2| to the neutral (quark-antiquark) 7° (L = S = 0) tells us that the 7°
is an eigenstate of C' with eigenvalue +1, consistent with the fact that it decays into 2 photons (via
the C' conserving electromagnetic interactions).

Finally we return briefly to the topic of G-parity introduced in the previous chapter. This transfor-
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mation is the product of both C' and an isospin rotation of 7 radians about the 2-axis,
G = Ce™2 (8.10.3)

Since the strong interactions respect both C and I, G is a symmetry of the strong interactions and
is helpful in organizing multi-pion states. The analog of Eq.[8.10.2]is

G|f fpair, L, S, I) = (—1)T5*| f fpair, L, S, 1) , (8.10.4)

i.e., the isospin rotation (by 7) generates an extra factor (—1)! as the analog of the more familiar
(1)L from an ordinary rotation. For example, the pion, L = 0, S = 0, I = 1, has odd ((—1)!)
G-parity, as does the w, L =0, S = 1, I = 0. Hence the strong decays of the w must involve odd
numbers of pions (3 in this case). On the other hand, the p, L =0, S =1, I = 1, has even ((—1)?)
G-parity and decays into 2 pions.

8.11 CP

As we have discussed the charged current part of the weak interactions (i.e., the exchange of the
charged W’s) explicitly and separately violate C' and P, coupling only to left-handed particles and
right-handed antiparticles. On the other hand this very structure is connected by the (simultaneous)
operation of C'P, which turns a left-handed particle into a right-handed antiparticle. Until the 1960’s
it was believed that the weak interactions conserve the eigenvalue of the combined operator CP. As
already mentioned the interesting structure seen in the decays of the |[K?) — |K?) system explicitly
confirms the importance of C'P conservation. Combining the results of the previous two Sections
tells us that for a fermion - anti-fermion system, like the 7V, the C'P eigenvalue is defined by

C’P|ffpair, L, S> = (_1)L(_1)S+1(_1) * (—1)(—1)L|ffpair, L, S) = (_1)S+1|ffpaira L, S> :

(8.11.1)
Thus the 7° is CP odd and the decay of a state of definite CP into 7%’s will be determined by the
initial CP, even CP — an even number of 7*’s (typically 2) while odd CP — an odd number 7°’s
(typically 3). Further, in this argument, we can replace a pair of 7°’s by a 7¥7~ pair with L = 0,
which dominates at low energies. As we consider in some detail in the HW, this means that the C'P
even combination of [K°) and |K°) can decay (rather quickly) to 2 pions, while the CP odd state
decays (more slowly) to 3 pions. So these definite C'P states are labeled Kgort, or Kg, and Kjgyg, Or
K. Note also that the mixing of |[K°) and |K") can happen via the weak interactions because the
weak interactions do not conserve the strange quark number. Finally note that with our conventions
C|K") = (+1)|K?) (although this is not uniformly true in the literature) and thus, similarly to the
neutral pion, CP|K°) = (—1)|K"). This means the CP eigenstates are proportional to |[K%) F |K")
with the minus sign corresponding to even CP.

ASIDE: A relevant way to think about the K° system is in terms of 2 sets of basis vectors. The
kaons are typically produced via the strong interactions where the strangeness conserving basis is the
appropriate one, while the decay process via the weak interaction is more simply viewed in the CP
eigenstate basis,

Strangeness: <;§2§> vs CP: <{[I§ii) = \}i <{§2; J_r {gﬁ;) : (8.11.2)

These two choices of basis are clearly related by a simple rotation.
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Finally we must note that in the 1960’s it was learned that the weak interactions, in fact, do not
precisely conserve C'P, but rather exhibit a tiny (1 part in a thousand) violation. The experimental
observation of C'P violation in the neutral kaon system led to the 1980 Nobel Prize in Physics. This
is an extremely interesting story, now being repeated at the LHC in the bottom quark sector, but
we do not have time to discuss it more fully here.

8.12 Time reversal and CPT

Time reversal, denoted T, is a transformation which has the effect of flipping the sign of time,
t— —tE So time reversal interchanges the past and the future. If some state |¥;) evolves into
state |Wy) after a time interval At, then the time-reversed final state T'|¥y) will evolve into the
time-reversed initial state T'|W) (after the same time interval At) — if time reversal is a symmetry
of the dynamics.

As with C and P, time reversal is a symmetry of strong and electromagnetic interactions, but not
of weak interactions. However, the product of charge conjugation, parity, and time reversal, or
CPT, is a symmetry of all known interactions. In fact, one can prove that any Lorentz invariant
theory (which satisfies causality) must be C'PT invariant. This is one of the deepest results which
follows from combining special relativity and Lorentz invariance, and essentially follows from analytic
continuation applied to Lorentz transformationsm Note finally that C'PT invariance implies that
the violation of time reversal invariance is intimately related to C'P violation. Considerable effort,
including locally at the UW, is now going into directly detecting 71" violating observablesm

8.13 Sample calculations

Let us illustrate the use the technology of the ladder operators to determine the various 3-quark spin
wavefunctions for the baryons we discussed in Chapter 7. We start by combining the notation of
the raising/lowering operators of Chapter 5 with the arrow notation (for the individual quarks) of
Chapter 7 and applying them to the symmetric spin % state,

33

55 =11T11). (8.13.1)

For a single quark state operated on by the lowering ladder operator we have

11 1 1 1 1 1 1 1 1
Talh ) = h\/(2 + 2) (2 o 1) 5 =5 =hl5.—3) (8.13.2)

16Because this transformation changes the meaning of time, it is not represented by a unitary operator which
commutes with the Hamiltonian. In fact, unlike all other symmetries discussed so far, time reversal, in quantum
mechanics, is not represented by a linear operator, but rather by an “anti-linear” operator. Such operators do not
satisfy the defining relation of linear operators, O(c1|¥1) + c2|¥2)) = ¢1 (O] V1)) + ¢2 (O|V¥2)). Instead, for anti-linear
operators, O(c1|¥1) + c2|¥2)) = c1 (O|¥1)) + ¢35 (O|¥2)).

1"The Wikipedia entry on |CPT symmetry has a nice sketch of the proof of the CPT theorem, together with a
summary of its history.

18 Results from the BaBar experiment reported in autumn 2012, Phys. Rev. Lett. 109, 211801 (2012), and describing
the B°B? system exhibit the expected correlation between C'P and T violation with very good precision.
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or
J_a| Ty =Hhl1). (8.13.3)

To apply to the 3-quark state we just need to note that, although for the total angular momentum
we need to understand how to add representations, for the components it is just the ordinary (linear,
algebraic) sum,

J3tot = J31+ 32+ J33 and  Jijor =J41 +HJLo+Ji3. (8.13.4)

The overall normalization is given by Eq. (5.1.33) via

Tl ) = h\/<;’+§) <§—§+ )@ H=malh) (8.13.5)

Applying the total lowering ladder to the explicit spin state we have
J_tot| 111 ) = J-1 )+ )+ s M) =R ([ IT) + [N +[11)) . (8.13.6)

Combining we have the desired result for the normalized spin wavefunction (note that the A factors

cancel)

31 1

oi3) = = . 13.

530 = g LA+ 1)+ 111)) (8.13.7)
Repeating this process while being explicit about the terms generated and the normalization, we
have

31 3 1 3 1 3 1 3 1
I-totlyr 5) = h\/<2 -+ 2) (2 -5+ 1) |5 =5 =2hl5,—3) (8.13.8)

and (recall that the lowering operator yields zero when applied to a spin-down state)

Jotor—= (1) + 1) +114)

\f
h
=5 O L)+ L)+ LD + 0+ 1) + 1AL ) +] 14) +0)
2h
=5 O+ HT )+ 1)+ 1) (8.13.9)
which combine to give the expected result (i.e., the factors of i and 2 cancel),

3 1 1
575! = g W+ + 11 ). (8.13.10)

Finally the last step is given by

31 3 1\ /3 1 3 3 3 3
Ctotlm =) =hy (2= ) (24 +1)]2,-2) =V3Bh2, -2 13.11
Towatlg, =3) \/(2 2> <2+2+ )’2 >/ V3 373 (813.11)

U+ )+ )

and

J— tOt f

h
=5 0+ 0+ L)+ 0+ 4L ) +0+ | L) +0+0)

=V3h| 111 ), (8.13.12)
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which combine to give the expected result (i.e., now the factors of i and v/3 cancel),

3 3

-, —=) = . 8.13.13

I3 -2y =114 (813.13)
Note that each of these states is symmetric under the interchange of any pair of quarks.

Recall from Eq. (7.4.2) that when we combine 3 spin % quarks there are two resulting total spin
1

5 representations, which we distinguished in Eq. (5.4.3) by whether the states were antisymmetric
in quarks 1 and 2 (i.e., quarks 1 and 2 have pair spin 0) or symmetric in quarks 1 and 2 (i.e.,
quarks 1 and 2 have pair spin 1). (Note that the choice here to focus on quarks 1 and 2 is another
arbitrary labeling choice, and eventually in Chapter 7 there was a sum over all choices in the overall
wavefunction.) Further we know that both possibilities must be orthogonal to the corresponding
spin % wave function in Eq. . In the last Chapter we choose the former case (antisymmetric
in 1 and 2, recall we made this choice to match the mixed symmetry of the flavor wave functions),
which has the normalized wave function

11 1

\57 §>A12,3 G (1) =141, (8.13.14)

which is clearly orthogonal to the wavefunction in Eq. (8.13.7). The spin down version, which can
be obtained easily with the lowering operator (and noting the cancelations), is

1 1 1
’57 _§>A12’3 = ﬁ (‘ /N/\l/ > - ’ \L/N/ >) ) (81315)

which is orthogonal to the wavefunction in Eq. (8.13.10)). Finding the other total spin % wavefunction
takes a bit more thought, but it must be orthogonal to the two we have already defined (and be
symmetric in quarks 1 and 2). Except for the question of the overall sign it must look like

11 1

3 siza = g (1) + 11D = 21100)) (813.16)

which has the correct symmetry properties and is orthogonal to the previous versions. Applying the
lowering operator we quickly obtain
1 1 1

5 —glsia = g QLD = [0~ 14D (8.13.17)
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Chapter 9

Weak interactions

As already discussed, weak interactions are responsible for many processes which involve the trans-
formation of particles from one type to another. Weak interactions cause nuclear beta decay, as well
as the decays of muons, charged pions, kaons, and many other hadrons. All processes which involve
production or scattering of neutrinos, the conversion of quarks from one flavor to another, or the
conversion of leptons from one type to another, involve weak interactions.

p T
—— ~ =
et vy, Ve put v u d u u d
wt d wu u d s
—— ——
at A

Figure 9.1: Depictions, at the level of quarks and leptons, of the weak decays u* — et + 7, +ve, 77 — ut +v,, and
A—=p+7n.

Figures[0.1]and [0.2]depict, at the level of quarks and leptons, some of these weak interaction processes.
As these figures illustrate, every weak interaction vertex (the black dot in the figures) involves four
fermions (where here we are counting fermions and antifermions equally), either one fermion turning
into three (as in muon decay) or two incoming fermions scattering and producing two outgoing
fermions (as in neutrino scattering in Fig. . As the A baryon decay in Fig. illustrates, there
can also be spectator quarks which are constituents of the hadrons involved but not direct participants
in the weak interaction process.

The complete Hamiltonian which describes particle interactions can be written as a sum of contri-
butions from strong, electromagnetic, and weak interactions,

H = Hstrong + HEM + Hweak . (901)
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Ve 7 Ve e

Uy e Ve e
Figure 9.2: Left: inelastic neutrino scattering, v, +e~ — ve+p~ . Right: elastic neutrino scattering, ve+e~ — ve+e™.

Because weak interactions are truly weaker than strong or electromagnetic interactions, it is useful
to think of Hyeak as a small perturbation to the dynamics generated by strong and electromagnetic
interactions.

9.1 Muon decay

Consider (anti)muon decay, u* — e + 7, + ve, in Fig. Let the ket | (p=0)) denote an initial
state containing a single ;1 at rest. Let the bra (e™(p,) 7,(P5) ve(py)| denote a final state describing
a positron with spatial momentum p,, a muon antineutrino with momentum pj3, and an electron
neutrino with momentum p;,. The existence of muon decay means that the time evolution of the
initial state [ " (p=0)) will have a non-zero projection onto the final state (et (pe) 7,(P5) ve(py)|. This
can only happen if the Hamiltonian, which generates time evolution, has a non-zero matrix element
connecting these states. And this can only be due to the weak interaction part of the Hamiltonian.
In other words, the existence of muon decay implies that the amplitude

M = (e*(p.) Uu(p) ve(P)| Hwear |l (5=0)) (9.1.1)

is non-zero. The rate of decay must be proportional to the square of this amplitude. Because there
are many different final states corresponding to different values of the final momenta p., pz and p,,
the complete decay rate I' will involve a sum over all possible final states. Schematically,

I~ > [MP (9.1.2)

final states

The amplitude M, when properly defined (see footnote below), will include momentum conservation,
i.e., the constraint that p. + py + p, = 0. When momentum is conserved, py will equal — (5, + pe),
so M may be regarded as function of two independent momenta, p. and p,. This amplitude can,
in principle, depend in some complicated fashion on these two final momenta. But the simplest
possibility is for the amplitude to have minimal dependence on the outgoing momenta. Physically,
this corresponds to a point-like interaction, for which the spatial variation of wavefunctions (due to
their momentum) plays no role.
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This approximation (that the weak interaction occurs essentially at a point) turns out to work
remarkably well, and we will shortly discuss how we can understand this perhaps surprising result.
If the amplitude M is momentum independent then, with just a little calculation, one can perform
the sum over final states in Eq. (strictly speaking, the 3-momenta are continuous variables
and the sum is really an integral) and predict the muon decay spectrum as a function of either the
positron energy or momentum. The spectrum is the fraction of decays in which the positron has
energy between E and E + dFE, or momentum between p and p+ dp with E = /p? + m2. Figure
shows the comparison between experimental data for the decay spectrum versus momentum and the
result of this calculation. The agreement is excellent.
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Figure 9.3: Energy spectrum of positrons emitted from decays of positively charged muons. The solid curve is the
theoretical prediction; data points are shown with error bars. [From M. Bardon et al., Phys. Rev. Lett. 14, 449
(1965)]].

To characterize the value of the amplitude M, it will be useful to begin with some dimensional
analysis. To make this as easy as possible, it will be convenient to use “natural units” in which
h = ¢ =1 (recall the discussion in section 3.7). Since ¢ has ordinary dimensions of [length/time],
setting ¢ = 1 means that we are regarding length and time as having the same dimensions. Since &
has dimensions of [energy X time], setting & = 1 means that we are regarding energy and frequency
(or inverse time) as having the same dimensions. Setting both £ and ¢ to unity means that we are
treating length and inverse energy as dimensionally equivalent. After using natural units in any
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calculation, one can always reinsert factors of & and ¢ as needed to restore conventional dimensions.
In particular, the value hc ~ 197 MeV fm may be regarded as a conversion factor which allows one
to convert lengths measured in femtometers into lengths measured in MeV~!, 1 fm = 19%7 MeV L.

The Hamiltonian is the operator which measures energy. Its eigenvalues are the energies of stationary
states. Therefore, the Hamiltonian must have dimensions of energy. If |¥) is any physical, normalized
state, then the matrix element (V|H|¥) is the expectation value of the energy in state |¥). Hence,
matrix elements of the Hamiltonian, such as the muon decay amplitude M in Eq. , also
have dimensions of energy, provided the states appearing in the matrix element are appropriately
normalized as we will now discuss.

The wavefunction describing a particle with definite momentum p’is proportional to the plane wave
eP#/h  To normalize such a state, it is convenient to imagine that space is not infinite, but rather is
limited to some finite, but arbitrarily large region V. The condition that a state is normalized then
becomes

= 3y 7)|? 1.
1_/Vd ()2, (9.1.3)

where the integral only includes the interior of the region V. For simplicity, suppose that this region
is a cube whose edges have length L (and hence volume L3). A normalized state describing a particle
with momentum p will thus have a wavefunction

U(7) = P32 (9.1.4)

The absolute square of this wavefunction gives a constant probability density of 1/L? whose volume
integral over the region V equals one, as desired.

Now consider the muon decay amplitude M. The initial muon, with zero spatial momentum, will
have a constant wavefunction, ¢, (Z) = 1/ L3/2. The final positron, with momentum p,, will have
a plane-wave wavefunction (&) = e #/"/[3/2 and similarly the final neutrino and antineutrino
will have wavefunctions v, (Z) = e»#/"/L3/2 and Yy, (L) = P T/h [ 1312 respectively.

Since the point-like weak interaction event can occur at any point in space, the complete amplitude
will involve an integral over space with an integrand that is the product of the amplitude v, (%) to
find the muon at some point Z, times the product of conjugate wavefunctions . (Z)* 1., (%)* ¥z, (Z)*,
giving the amplitudes for the created positron, neutrino, and antineutrino all to be at (the same)
point &, all multiplied by some overall constant which will control the rate of this process,

M= [ / 0 9e()* 1, (2)* o () ()| X (const.). (9.1.5)
%

For the weak interaction the overall constant is known as the Fermi constant, G, divided by v/2.
(Including this factor of v/2 is merely a convention, but is required so that G'r matches its historical
definition.) The integrand appearing in this matrix element is just a constant,

o~ i(Fet B to) &/

(72 =L% (9.1.6)

$e(Z)" Py, (2)" Pr, (2)" Yu(Z) =

provided the momenta satisfy conservation of 3-momentum, p, + py, + pz = 0. E| Integrating over the

!The mathematically astute will recognize that the integral over all (3 dimensional) space of an expression like the
one in Eq. (9.1.6)) produces precisely the Dirac delta function that ensures 3-momentum conservation, i.e., translational
invariance means integrating over all space which yields the momentum conserving delta function.
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region V thus simply yields a factor of the volume, L3, of this region. Hence, we find

_ Gp/V?

M= "5 (9.1.7)

We noted above that the decay amplitude M must have dimensions of energy. Since 1/L? has
dimensions of energy cubed (having set h = ¢ = 1), we learn that the Fermi constant G must have
dimensions of 1/(energy)?.

The value of the Fermi constant G may be fixed by demanding that the muon decay rate I' calculated
from Eq. agrees with the experimentally determined value. The decay rate is just the inverse of
the lifetime, soI' = 1/7, = 1/(2 ps). Performing the sum over final states in Eq. involves inte-
grating over the final momenta subject to the constraints of energy and momentum conservation. De-
tails of this calculation, which is straightforward, will be omitted. One finds that I’ = G% mz /(19273).
Note that the resulting natural units from G% mz = energy “energy® = energy = time™!, just what
we expect for a rate of decay. Equating this with the inverse of the experimentally measured decay
rate and solving for G yields

Grp=1.16637(1) x 1075 GeV 2~ 1.2x 1075 GeV 2 =12 TeV 2. (9.1.8)

9.2 Neutrino scattering

The significance of the determination of the Fermi constant described above comes from the fact that
a factor of G will appear in every weak interaction amplitude. Consider, for example, the inelastic
neutrino scattering process,

Vyte —vetpu, (9.2.1)

depicted on the left in Fig. in which the “flavor” of the charged lepton changes. With sufficient
experimental skill and resources, this is a measurable process. The cross section for this scattering
process equals the rate of scattering events divided by the incident flux of neutrinos and the density
of target electrons. For a neutrino beam with constant flux, the scattering rate is just the probability
of scattering in time At¢, divided by At. And the probability, as always in quantum mechanics, is the
absolute square of a probability amplitude which involves a matrix element of the weak interaction
Hamiltonian between the relevant incoming and outgoing states, M = (out|Hyeax|in). This weak
interaction amplitude must also be proportional to G, so thatﬂ

oo |MP? x G%. (9.2.2)

Now do some more dimensional analysis. A cross section is an area, with dimensions of length squared
or (in natural units) [energy]~2. The Fermi constant G also has dimensions of [energy] =2, but G
appears squared in the cross section. Therefore the cross section must equal G% times “something
else” with dimensions of [energy]?. What can this “something else” depend on? One possibility,
which is surely relevant, is the neutrino energy. But the energy of a particle is frame-dependent.
Since the cross section is an invariant concept (effectively the “size” transverse to the direction of the

?In fact, analytic continuation in the four-momenta relates the amplitude for inelastic neutrino scattering, v, +e~ —
Ve + pu~, to the amplitude for u decay. This relation, which involves replacing particles in the initial state by their
antiparticles in the final state (or vice-versa) is known as crossing symmetry.
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beam, which is not changed by boosts along the beam), we must be able to express the cross section
in terms of Lorentz invariant quantities. A Lorentz invariant measure of the scattering energy is
5 = (pu, + pe)? = (po, + pu)? = E%M At low energies, the value of the cross section will also depend
on the electron and muon masses. After all, if Foy < muc2, then the reaction v, + e~ — v + p~
cannot possibly occur. So by “pure thought” we conclude that it must be possible to express the
cross section in the (dimensionally consistent and invariant!) form

2 5 x f(”\}i 73&) (9.2.3)

where f is some dimensionless function of the dimensionless ratios me/Ecy and my,/Ecm. Further
we expect (by energy-momentum conservation) that this function will be non-vanishing only when
both arguments are less than one.

The simplest regime to consider is large energy relative to the muon mass, Ecy > ’I’)’L“CZ. In this
domain, the ratios m./Ecy and m,/Ecm are both tiny. Since the cross section can be expressed in
the form , understanding the behavior of the cross section when the energy is large is the same
problem as understanding the behavior of the cross section in a hypothetical world where the value
of the electron and muon masses are arbitrarily small (compared to some reference mass scale).

A crucial observation is that there is no reason to expect anything dramatic, or singular, to happen
in the limit of vanishingly small electron and muon mass (at fixed energy Ecy). In the relativistic
relation between (total) energy and momentum, the zero mass limit is perfectly smooth, and just
leads to the energy-momentum relation of a massless particleﬁ

2
= VP2 +m?=pl+ %ﬁ S 5 (9.2.4)

Similarly, the massless limit of the function f(™ L \/2) appearing in the cross section (9.2.3]) should

be expected to be finite and non-zero, so that A = f(0,0) is just some pure number like 2 or m. A
detailed calculation shows that, for the process (9.2.1)), the number A is 1/7. Therefore, the inelastic
neutrino cross section is given by

2 2
GF ECM
T )

g

vueT —vepT T (925)
when Ecoy > mM02(>> m602). This quadratic rise of the cross section with center-of-mass energy
(for energies above the relevant particle masses) also applies to other weak interaction scattering
processes, including neutrino scattering with nucleons and elastic neutrino-electron scattering. In
the latter example, the cross section is

¢ By

O e = 0551 ~F

(9.2.6)
Recall, as we have already mentioned and will discuss in more detail in the next section, the weak
interactions involve not only the exchange of the electrically charged W bosons (the so-called “charged
current” weak interaction), as happens in the inelastic process of Eq. (9.2.5]), but also the exchange of

3In contrast, the non-relativistic (kinetic) energy Exr(p) = p2/(2m) is not well-behaved if m — 0 for fixed momen-
tum p.
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the electrically neutral Z boson (the so-called “neutral current” weak interaction), which contributes
also to the elastic process in Eq. (see the Feynman diagrams in Fig. . The differences in
the two processes (one being only W exchange and the other both W and Z) leads to the different
coefficient in Eq. (9.2.6)) versus Eq. . The coefficient decreases by a factor of about 2 due to
destructive interference between the W and Z exchanges (recall that quantum physics is all about
interference).

For completeness we should also note the elastic cross section for the related (by crossing) process
with antineutrinos,
2 12
Gr Egm
T

0-1756_*)1766_ — 0231 (927)

This cross section is smaller by approximately a factor of 3, which arises from the further fact (not
present in our original simple point model) that the W (but not the Z) couples only to fermions of
a definite spin projection. The W couples only to “left-handed” fermions (spin projection opposite
the direction of motion) and “right-handed” antifermions (spin projection along the direction of
motion). (Recall this is why the weak interactions violate both P, which transforms left-handed to
right-handed, and C, which transforms particle to antiparticle.) In particular, this means that for the
elastic neutrino-electron scattering process of Eq. we have a left-handed neutrino scattering
from a left-handed electron. Thus, viewed in the CM frame, the two spins are oppositely oriented and
we have (total) J3 = 0 for both the initial and final states. Thus angular momentum conservation
imposes no constraints. In contrast, the anti-neutrino elastic scattering process of Eq. (9.2.7) involves
a right-handed antineutrino scattering from a left-handed electron. Hence we have (total) J3 = 1
along the direction of motion of the antineutrino in both the initial and final states. Hence “back”-
scattering of the antineutrino (and the electron) is not allowed by angular momentum conservation,
since it would require turning J3 = +1 into J3 = —1. In fact, compared to the neutrino process,
the scattering cross section of the antineutrino process is reduced at all scattering angles except
exactly forward (f = 0). Thus the “handedness” in the weak dynamics explains both why the weak
interactions do not respect parity and the extra factor of about 1/3 in Eq. .

These predictions of neutrino cross sections increasing with increasing energy, which arise directly
from our simple picture of the weak interactions as a point interaction, have been confirmed exper-
imentally for energies in the multi-MeV to multi-GeV rangeﬁ But the prediction of quadratically
rising cross sections raises an immediate puzzle: can cross sections really grow with increasing energy
forever? Or is there some point at which the behavior must change?

In fact, cross sections cannot become arbitrarily large. The number of scattering events in any
scattering experiment is proportional to the cross section. But ultimately, the number of scatterings
cannot be larger than the total number of projectiles! A quantum mechanical analysis shows that
for point-like (or so-called s-wave) scattering, the cross-section must satisfy the bound

)\2

o< — =

™
9.2.8
4 p2’ ( )

where A = 27h/|p] is the de Broglie wavelength of the projectile in the center-of-mass frame. This is
referred to as a unitarity bound.

4See, for example, the plots of the (anti)neutrino-nucleon total cross section at the particle data group website (see
Figure 48.1) . Note that for neutrino scattering on a nucleus, the lab frame energy is proportional to the square of the
center-of-mass energy, Ei.p & EZy, when Elap, is large compared to the target mass. So the quadratic rise of the cross
section with Ecwm is equivalent to linear growth as a function of Ei.p, and a constant behavior for o/FEiap, as plotted.
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For an ultra-relativistic scattering, viewed in the center-of-mass frame, the energy of each particle
is almost the same as the magnitude of its momentum (times c), and hence Ecy ~ 2|p|. Equating
expression for the neutrino cross section with the unitarity bound , one finds that the
cross section violates the unitarity bound when the center-of-mass energy exceeds

B = )25 ~ 700 GeV. (9.2.9)
Gr

Therefore, at some energy below 700 GeV, something must dramatically change the behavior of weak
interaction cross sections to stop their quadratic rise with increasing energy. In fact, before we reach
this energy the weak interactions begin to exhibit the fact that they do not really correspond to a
point interaction, but rather to the exchange of the aforementioned W’s and Z’s.

9.3 Weak gauge bosons

At energies somewhat below E*, weak interaction cross sections become comparable to electromag-
netic cross sections. At this point, one might anticipate significant changes in the behavior of both
electromagnetic and weak interactions. This turns out to be true. Figure[9.4 shows the cross section
for electron-positron annihilation into hadrons as a function of /s = Ecy. At energies below about
50 GeV, one sees that the cross section generally decreases with increasing energy (note the logarith-
mic scale). Since the electromagnetic coupling is dimensionless (unlike the weak interactions, there
is no symmetric breaking for EM and no mass scale), the same dimensional analysis we applied to
the weak interactions yields electromagnetic cross sections that behave like a?/s (instead of G%s)
and this is the general fall-off we see in the upper plot in Figure [9.4] The lower plot in Figure (9.4
shows the ratio between eTe™ — hadrons and ete™ — u™ ™, which cancels out the 1/s behavior.
In fact, the levels of the various “flat” sections in this plot are easily understood in terms of sum
over the squares of the electric charges of the quarks to which the photon couples, with the scale of
the charge e? canceled out by the charge (squared) of the muon in the denominator. Thus at low
energies, where only u, d, s quarks are produced, the ratio is

2 2 2
me=s|(3) 4 (5) + (3)]
4 1 1
=3 [94—9—1—9] =2. (9.3.1)
In this expression the preceding factor of 3 accounts for the fact that quarks come in 3 colors, which
contribute equally to the coupling to photons but are distinct and do not interfere (i.e., you square
the amplitude for each color first and then sum over colors). As the energy increases, quarks with
larger masses contribute and the value of R takes a step up at each threshold (to produce a new flavor
pair). At the ¢ quark threshold (where we also see the ¢¢ bound state resonances J/v¢ and 1(25))
we add an additional 3 x 4/9 and R increases to 10/3. At the b quark threshold (marked by the bb
T resonance) R is increased by 3 x 1/9 to 11/3. The fact that this simple picture of quarks with
the specified (if peculiar) fractional electric charges and in 3 colors is in such good agreement with
the data was an essential step in the general acceptance of the current Standard Model of particle
physics.

The other dramatic feature of Figure is the appearance of the various spin one, parity odd
hadronic resonances — the broad p and p’, the narrower w and ¢, and the very narrow “spikes”
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Figure 9.4: Top: Cross section for eTe™ annihilation to hadrons as a function of V8 = Ecm.. Bottom: Ratio of cross
sections for eTe™ annihilation to hadrons versus annihilation to muon pairs, R = T+ e —shadrons/ Te+e— —pu+pu—- particle
data group website (see page 5).]

associated with ¢z and bb heavy quark states (already mentioned above). The .J/+ and 1)(2s) are c¢
bound states with energies close to twice the charm quark mass, while the upsilon (Y) states near
2my, are bb states. But then, at a much higher energy near 90 GeV, there is a very large resonance
which is something new and relevant to our current discussion. This is not a quark-antiquark bound
state, but rather a new type of particle which is called the Z boson. The same resonance appears
in neutrino scattering. There is also a closely related pair of charged particles known as the W+
and W~. These are not seen in Figure because a single W' or W~ cannot result from ete™
annihilation — this would violate charge conservation! However, the W bosons are present in those
interactions where a quark or lepton changes type (i.e., flavor) and they can be pair (W* + W ™)
produced in et + e~ annihilation at energies above 2Myyc?, i.e., off the above plot to the right..
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Figure 9.5: Feynman diagrams for Coulomb scattering: e"e~ — e~ e~ (left), and electron-positron annihilation to
Te~ — ptp~ (right).
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Figure 9.6: Feynman diagrams for inelastic neutrino scattering: v, + e~ — ve + =~ (left), elastic neutrino scattering:
Ve + e~ — ve + ¢ (middle), and the weak interaction contribution to eTe™ — p*p™ (right).
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Figure 9.7: Depictions of the weak decays ut — et + 7, +ve (left), 7t — u* + v, (middle), and A — p+ 7~ (right),
showing the exchange of weak gauge bosons.
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Together, the W* and Z are known as weak gauge bosons. E| They are spin one particles with masses

my = 80.385 £ 0.015 GeV , mz = 91.1876 + 0.0021 GeV . (9.3.2)

The simplest current picture is that these masses for the weak gauge bosons arise from the interaction
between the weak gauge bosons and the (apparently now found) Higgs boson, which itself is assumed
to have a nonzero “vacuum expectation value” or (0|h|0) # 0. (The data from the LHC suggest
pretty clearly that a Higgs boson with the expected properties and a mass of about 125 GeV/c?
has been detected.) The weak gauge bosons mediate the weak interactions, in the same sense that
the photon is responsible for mediating electromagnetic interactions. Coulomb interactions may
be viewed as resulting from the exchange of photons between charged particles, and a process like
ete™ — putpu~ may be regarded as occurring via the annihilation of the electron and positron into a
(virtual) photon, which lives only a very short time before converting into the final 4™ and p~. The
diagrams of Figure [9.5] depict these electromagnetic processes.

In the same fashion, weak interactions may be regarded as arising from the exchange of W and Z
bosons. Figure depicts the same weak interaction scattering processes illustrated in Figure [9.2
plus the weak interaction contribution to eTe™ — u*pu~, explicitly showing the exchange of weak
gauge bosons. Figure does the same for the weak decays of Figure[9.1]. These diagrams illustrate
the fact that the (lowest order) weak interactions are not really “point” interactions, but rather
localized to a small, but nonzero scale of order 1/My; ~ 2 x 1073 fermi. For particles with de Broglie
wavelengths short enough to probe this sort of distance (i.e., £ > 100 GeV), the character of the
weak interactions is moderated and the cross section stops increasing quadratically with the (CM)
energy (and eventually decreases as 1/E2,,). Note also that it is the difference between the left-hand
diagram and the middle diagram in Figure [9.6] that explains the difference between the cross sections
in Egs. (9.2.6) and (9.2.5)).

The diagrams of Figures|9.5H9.6|are examples of Feynman diagrams (named after the theorist Richard
P. Feynman who introduced them). They actually do more than merely depict some process — these
diagrams encode precise rules for how to calculate the quantum mechanical amplitude associated with
each process. But developing this in detail (e.g., in QFT) will have to be left for a subsequent class.

With this brief sketch of the current understanding of weak interactions, we must conclude our
introduction to particles and symmetries. Hopefully it has whetted your appetite to learn more
about this subject.

®The word “gauge” appears here because the underlying (broken) SU(2) symmetry is of a type called a “gauge
symmetry”.
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Chapter 10

Introduction to Group Theory

Since symmetries described by groups play such an important role in modern physics, we will take
a little time to introduce the basic structure (as seen by a physicist) of this most interesting field of
study. We will first define groups in the abstract and then proceed to think about their represen-
tations, typically in the form of matrices. In physics we are typically interested in ”real” operators
that act on ”real” states, which provide concrete representations of the more abstract concept of
groups. The underlying arithmetic will be familiar from your previous experience with matrices.

10.1 Definitions

Group (G): A set of (perhaps abstract) elements (i.e., things) - g1, ..., gn, plus a definition of the
multiplication operation, i.e., a definition of the product or combination of two of the elements, such
that

1. gi®g; = gr € G - products of elements are also elements of the group (a property of groups called
closure),

2. the multiplication operation is associative - (g; ® g;) ® g = g; ® (g; ® g),

3. the identity element exists as an element of the group, 1 € G, where 1eg; = g; 81 = g; (sometimes
the left and right identities are distinct, but not generally in the context of physics),

4. the group includes a unique inverse for each element, g; € G = g, 1€ G such that 9i®g; - 9; log; =
1 (as with matrices the inverse is sometimes defined separately for left and right multiplication but
this situation will not arise in this discussion).

Note: it is not necessary that the multiplication be commutative (and the interesting cases are those
that are not commutative):

e if g; ® gj = g; ® g; (commutative), the group is an Abelian group, Abelian group

e if g; ® gj # g; ® g; (non-commutative), the group is a non-Abelian group. non-Abelian group
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10.2 Finite Groups

If the number of elements n is finite (n < oo), then the group is called a finite or discrete group
of order n. Finite groups are commonly used in the study of solid state physics where discrete
symmetries arise regularly. There is a trivial group corresponding to n = 1 with ¢ = 1 only. Clearly
the group properties are all satisfied but in a trivial way.

How about n = 2? Call the elements of the group 1 and P. Evidently P! = P, PeP =1
in order to satisfy the condition of being a group. There are, in fact, two related and physically
interesting realizations of this group. One case is the reflection group where P is a reflection in a
plane (i.e., one of the 3 possible planes in 3-D space). For example, reflection in the zy plane means
Pf(z,y,2) = f(z,y,—2) so that P e Pf(z,y,2) = Pf(z,y,—2) = f(z,y,2) as required. Another
n = 2 group corresponds to reflection through the origin (in 3-D space), P(z,y,2) — (-, —y, —z).
Again PeP =1, PeP(z,y,2) = P(—z,—y,—2) = (z,y,2). This is the parity operation that (as
we will see) plays an important role in the context of atomic, nuclear, and particle physics. Another
(simpler) representation of the group of order 2 are the numbers (1,—1) coupled with ordinary
multiplication. The multiplication table for all of these order 2 groups is given in Table where
the notation is that a given entry is the result of multiplying the column label on the left by the row
label (and the fact that P acts like (—1) is made explicit).

Table 10.1: Order 2 Group multiplication table

Since the structure of all of the order 2 groups (the multiplication table) is identical, we say that the
groups are isomorphic (the formal mathematical term for identical). Note that the order 2 group
is (trivially) Abelian, as must be the case if it can be (faithfully) represented by numbers (without
needing matrices).

Next consider the representation afforded by the 3 complex numbers (1, e2mi/3 gimi/ 3) = (1, A, A2),
which serve to define a order 3 group. Again the multiplication table, as in Table is unique and
Abelian (the reader is encouraged to prove this).

1 A A?
1|1 A A?
A A A2 1

A2 A 1 A

Table 10.2: Order 3 Group multiplication table

Groups of order n of the form (1, A A% AN = 1) are called cyclic groups. So Table indicates
that the n = 3 group is cyclic. For n = 4 the cyclic group has one representation provided by the
set of numbers (1,4, —1, —i), where (i)~! = —i and (=1)~! = —1. The multiplication table for the
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n = 4 cyclic group is indicated in Table including the just mentioned explicit representation.

1 A(l)  A?%(=1) A3(—i)
1 1 A(D)  A%(—1) A3(—i)
A(i) A()  A%(=1) A3(—i) 1
A2(=1) | A%(=1) A3(—i) 1 A(i)
A3(=i) | A3(=d) 1 A(l)  A%(-1)

Table 10.3: Order 4 Cyclic Group multiplication table

However, for the case of n = 4 there is a second possible multiplication table as indicated in Table[10.4]
This group, often called the 4’s Group, is still Abelian, but is not cyclic. While it is still true that
we have AB = BA = C (or AA? = A2A = A3 in the cyclic case), we now have A2 =B*=C?=1
(instead of A% = A2, (A?)2 =1 and (A3)2 = A?).

Q w » =

QW » ==
B Q= » | »
> = Q W
A B ol Ne!

Table 10.4: 4’s Group multiplication table

Note that the above groups are all Abelian (the elements commute and the multiplication tables are
symmetric about the diagonal) and they can be represented by ordinary (complex) numbers. Faithful
representations (i.e., representations of the group that are faithful to its properties) of non-Abelian
groups will require the use of matrices in order to exhibit nonzero commutators.

In general a group will contain subgroups, i.e., subsets of the elements which themselves form groups.
The full (original) group and the unit element are called the trivial subgroups, while other subgroups
are called proper subgroups. Clearly the elements (1,—1) = (1, A2) constitute a proper subgroup of
order 2 of the order 4 cyclic group. In the study of finite groups the concepts of conjugate elements,
classes and characters play an important role. Two elements, A and B, of a group are conjugate if
B = C 'AC with C another element of the group. The set of elements conjugate to A when the
element C is allowed to vary over all members of the group form a class, i.e., they are all related
by a similarity transformation. The elements of a class can be thought as representing the same
transformation but for differ choices of the basis vectors (recall that a similarity transformation takes
us to a different basis set). Since the trace of a matrix is unchanged by a similarity transformation,
the traces of all matrices in a single class must be equal. This common trace is called the character
of the class. Thus the characters help us to classify the structure of finite groups.

It is also useful to ask whether, through a judicious choice of basis (corresponding to a special sim-
ilarity transformation), we can make all the matrices representing a group block diagonal. These
sub-matrices will also constitute representations of the group, and we say that the original repre-
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sentation is reducible. If this diagonalization process is not possible, the original representation is
said to be irreducible. Clearly life is easiest if we can work with the lowest dimension (faithful)
irreducible representation. This is called the fundamental representation. The various fundamental
representations play a special role in the process of labeling the multiplets of particles that appear
in particle physics.

10.3 Lie Groups

In many (most?) circumstances the groups of interest in physics have an infinite number of elements,
but the individual elements are specified by (i.e., are functions of ) a finite number (N) of parameters,
g = G(z1,...,xy). Of particular interest are those groups where the parameters vary continuously
over some range. Thus the number of parameters is finite but the number of group elements is
infinite. If the range of all of the parameters is bounded, the group is said to be compact, e.g.,
the parameter space of the compact group SO(3) (rotations in 3-D as discussed in Chapter 1) is
(the interior of) a sphere of radius . On the other hand, the group of linear translations in 3-D
is non-compact, i.e., the magnitude of the translation can be arbitrarily large. Further, the groups
we employ in physics often have the added feature that the derivatives (0g/dz;) with respect to all
parameters exist. Groups with this property are called Lie Groups. Lie Groups play an essential
role in our understanding of particle physics and we will pursue this discussion of Lie Groups a bit
further.

First we focus on the behavior near the origin of the parameter space. By definition the group
element at the origin in parameter space,

g(0,..,0) =1, (10.3.1)

is the identity element. Near the origin of the parameter space the group elements correspond
to infinitesimal transformations (arbitrarily close to the identity operator) and the derivatives are
especially important. As a result they have a special name - the generators Xy, (as already mentioned

in Chapters 1 and 5),
dg .

The factor i in the previous equation (and subsequent equations) arises from the conventional choice
to deal with Hermitian generators represented by Hermitian matrices. Since the generators are finite
in number (kK = 1 to N), it is easier to discuss the generators than the infinite number of group
elements (we are lazy and smart). The generators serve to define a N-dimensional Lie algebra (a
vector space) where both addition (of elements of the algebra) and multiplication by constants are
defined. The general element of this Lie algebra can be expressed as a linear combination of the
generators,

N
X =3 Xy, (10.3.3)
k=1

This is analogous to the familiar 3-dimensional vector space except that here the generators are the
basis vectors (instead of Z, g, 2). Further, we can think of the generators as allowing a ” Taylor series”
expansion of the group elements near the origin. General group elements can be obtained from the
elements of the algebra via exponentiation.
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The algebra also supports the definition of an outer (or vector) product (like the familiar cross
product) that produces another element of the algebra, i.e., the algebra is closed under this operation.
This “product” is just the familiar commutator

[Xk, Xl] = Xle — Xle = iCklme . (1034)

The tensor Clyy, is called the structure constant(s) of the algebra. It fully specifies the structure
of the algebra and therefore of the structure of the group itself near the origin of the parameter
space. For example, the Pauli matrices provide a representation of the unitary group operating on
2-D vectors, or SU(2) (as discussed in Chapter 5). Thus the algebra of SU(2) is given by

oj Okl _ . Ol (01 (0 —i (1 0
[57?] =Gkl 01 = <1 0>702— <z O>,U3— <O _1>, (10.3.5)

with the structure constant equal to the (now familiar) fully antisymmetric 3x3x3 tensor €z (the
Levi-Civita symbol). In fact, this is the unique such 3x3x3 antisymmetric tensor and all Lie groups
with 3 generators must have the same structure constant and thus the same Lie algebra. In particular,
the group of rotations in 3D, SO(3) (as discussed in Chapter 1), has the same algebra,

[Jjs Jk] = i€y, (10.3.6)

with the J; standing for the generator of rotations (we are taking A = 1 in this discussion). In
quantum mechanics this operator will become familiar as the angular momentum operator. An
explicit form for these matrices (appropriate for the rotations of ordinary location 3-vectors as in
Chapter 1) is given by the following (and the reader is encouraged to check the commutation relations
in Eq. ,

0 0
—t],Jo=1|0
0 —1i

0 — 0
1 0 0
0 0 0

Ji = (10.3.7)

o O O
S OO
o O O

7
0, J;=
0

While the precise form of these matrices may not be intuitively obvious, the general form should be
clear from our understanding of how ordinary rotations work. For example, a rotation about the
l-axis is a rotation in the 2-3 plane. It should serve to mix the 2 and 3 components of an ordinary
3-vector. Modulo the issue of phases, this is precisely what the form of the J; matrix in Eq.
does. It transforms a 3-component into a 2-component and a 2-component into a 3-component.

Since the algebras of SU(2) and SO(3) are identical, it is amusing to ask how the groups themselves
differ. This issue is addressed below.

While it will not be demonstrated here, a very important concept is the connection between the
symmetries of a physical system and the conserved quantities which characterize its dynamics. For
example, if a system is rotationally symmetric, i.e., invariant under the operation of the group ele-
ments of SO(3), its motion will exhibit a constant, i.e., conserved, angular momentum. Translational
invariance in space implies conserved linear momentum, while translation invariance in time implies
energy conservation. These connections are realizations of Noether’s Theorem (i.e., symmetries mean
conserved quantities, see http://courses.washington.edu/partsym/14Spr/Noether.pdf).

To complete this introduction to group theory we will look in general terms at the two Lie groups
that seem to arise most often in physics - the Orthogonal group SO(n) and the Unitary group SU (n).
The former appears in the study of real n-D vector spaces, e.g., Euclidean space-time, and are defined
by being transformations of the vector space that preserve the length of vectors or, more generally
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preserving any scalar product (appropriately defined, if there is a nontrivial metric). Thus, if two
vectors have zero scalar product in one reference frame, i.e., they are orthogonal, they will remain
orthogonal in the rotated frame - hence the name of the group. The Unitary group appears in the
study of complex n-D vector spaces, e.g., quantum mechanics, and are defined by again preserving
the length of (state) vectors, i.e., probability. [Note that in both cases scalar products are those
products that “use” all indices - nothing is left to “operate on”. Hence scalar products are left
unchanged by the transformations.]

To see what the properties of the groups these statements imply consider first a n-D real vector and
its square, r; and rq er| = r{rl. Now consider the same vector in a transformed reference frame (or
after transforming the vector) where the transformation (rotation) is represented by a real matrix A
(not a boost here), r; = Ar;. We demand for the Orthogonal group that ro e 71 be preserved by the
transformation for any rq, ro,

7”2T7’i = (A’]‘Q)T )\7’1 = TgATArl = T'gT1 5 (1038)

which leads us to
ATA =1, A7t = AT, (10.3.9)

So the characteristic feature of the Orthogonal Group is that it is represented by real orthogonal
matrices, i.e., matrices whose inverses are their transposes. If the scalar product is defined with a
non-trivial metric g, as with the Lorentz transformations of the group SO(3,1) (where the argument
(3,1) reminds us of the plus/minus signs in the metric) we have instead (where det[g]?> = 1)

réTgrll = (Ar)" ghry = 1T AT gAry = 1 gry, (10.3.10)
or
ATgh =g, A7 =gATyg. (10.3.11)
Note that it follows from these equations and the properties of determinants that
det [ATA] = det [AT] det [A] = det [A]* = 1, det [A] = £1, (10.3.12)
or
det [gAT gA] = det [g]? det [AT] det [A] = det AP =1. (10.3.13)

Recall that typically we want only the ”Special” (hence the “S” in the label of the group) or uni-
modular group (no reflections) and we require that the determinant of A be +1 (i.e., a -1 means that
a reflection is present in the transformation).

Using (complex) exponentiation (recall Eq. (10.3.2))) to go from the algebra to the group, we write
A = €% where « is a real parameter and, in order for A to be real, S is a purely imaginary nxn
matrix (recall Eq. (10.3.7)). The orthogonal form means

(e8)" = 8T = (¢o8) T —gmieS — T — _5— " — gt — (9T = g (10.3.14)

Thus (with our choice of i factors) the generator of a real, orthogonal transformation is represented
by a Hermitian matrix (again recall the matrices in Eq. ) The constraint we imposed on the
determinant of A translates into a constraint on the trace of S (the reader should convince herself
of this result)

det [¢%] = +1 = Tr [S] =0, (10.3.15)
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which is trivially satisfied by an anti-symmetric matrix (e.g., any purely imaginary, Hermitian matrix;
recall this property for the J; matrices above). For the more general case of a scalar product defined
with a metric g, S is still traceless and satisfies gS7¢g = S*, i.e., S displays mixed symmetry as
defined by g.

As an explicit example for SO(3) (recall Chapter 1) consider a rotation by an angle # about the 3 (or
z-axis). It follows from the properties of the matrices in Eq. (10.3.7)) that powers of these matrices
(like the Pauli matrices) are simple,

10
Jim=101 L JEth = (10.3.16)
00

o O O

Thus a rotation matrix defined by the exponential form A = e’ is given by its power series expansion
as

_ gy _ — (i6.J3)"
n=1
000 100\ o ,.2n 00 . n2ntl
(10) (10)
=loo0o0]+fo10]> + I3 o
00 1 000/5 (2n)! = (2n+1)!
000 100
=({000])+([010]cosf+iJssind (10.3.17)
001 000
cosf sinf O
= | —sinf cosf 0

0 0 1

We recognize that, as expected, this transformation does not change the 3 (or z) component of a
vector, while the 1-2 (z — y) components are mixed in the just the way we expect for a rotation of
the basis vectors in the 1-2 plane. (Note that our choice of signs yields a “passive” rotation, we are
rotating the basis vectors not the physics vectors.)

Next we can determine the number of independent components of S, i.e., the dimensionality of the
corresponding algebra (also called the order of the Lie group). A purely imaginary Hermitian matrix
(7 times a real, anti-symmetric matrix) has zeroes on the diagonal and all components below the
diagonal are determined by (-1 times) those above. Thus we want 1/2 the number of off-diagonal
elements in an nxn matrix. Hence the algebra of SO(n) has dimension

n?—n n(n-—1)

N[SO(n)] = g = 5
n=2 1

N |n=3|=3. (10.3.18)
n=4 6

The corresponding discussion for the Unitary group now involves complex numbers and complex
conjugation in the scalar product. Thus, if the unitary transformation is described by a matrix U,

we have
"r’éT"r’ll _ (UTQ)T Ury = T;UTUTl = 7’57'17 (10.3.19)
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i.e., U is a unitary matrix. In (complex) exponential notation (where T is not necessarily purely
imaginary as U is not real, but £ is real)

U=efT U= e~ BTT _ =1 _ —iT
=TT =T. (10.3.20)

The generator is again represented by a Hermitian matrix, as we expect from our earlier discussion.
We also have
det [UTU] — det [U]* det [U] = 1, det [U] = +1 (10.3.21)

and we focus on the Special version of the group, SU(n),

det[U]=1=Tr[T] =0. (10.3.22)

As an explicit example consider the analogue of the rotation in Eq. 110.3.17 ), but now replacing the
generator J3 with the corresponding Pauli matrix o3/2 (recall Eq. (10.3.5))). These definitions yield
the following expressions

1039/2 1 Z Z9/2 27‘L 32 Z9/2 27'L+1

2 +1
:10050/2+z0351n9/2
_ [cosB/2 +isinb/2 0
a < 0 cos@/Z—isinG/Q) (10.3.23)

ei0/2 0
= < 0 ei9/2> .

So the 2-components of the 2-spinor (for a spinor quantized in the z-direction, recall Chapter 5)
are just multiplied by a phase (proportional to the component of the spin, +1/2). Note that the
transformation is just a factor of -1 for § = 27. Unlike the rotation of “real” vectors, where a rotation
angle of 27 always brings you back to where you started, for spin 1/2 we end up at -1 times where
we started! We need to rotate through 47 to get back to where we started (see below).

So we conclude that the algebra of SU(n) is defined by traceless, Hermitian (but not necessarily
imaginary) matrices in the appropriate number of dimensions. In n-D a nxn complex matrix has 2
times n? components. Being Hermitian reduces this by a factor of 2 and the constraint of zero trace
removes another degree of freedom. Thus the order of the special unitary algebra in n-D is

N(SUMm)] = 2 1 =1,
n = 1(really U(1)) 1
N n=2 =3. (10.3.24)
n=3 8

Note that the algebras of U(1) and SO(2) have the same (trivial) dimension (1). You might expect
that they are related and they are! They are identical or isomorphic as groups, U(1) = SU(2).
This becomes obvious when we recall that rotations in a (single) plane, SO(2), can be performed
in any order, i.e., SO(2) is an Abelian group like U(1). You might have thought that SO(2) had
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2-D representations, unlike U (1), but, in fact, these representations can, by an appropriate choice
of basis vectors, be reduced to the canonical 1-D representations €™, which are the irreducible
representations of U(1). Another way to see this is to note that 2-D problems, i.e., SO(2), can
always be mapped onto the complex plane, i.e., U(1).

The groups SO(3) and SU(2) are also related. As mentioned earlier the algebras are identical since
there is a there is a unique choice for the anti-symmetric tensor Cjz;. It must be equal to €j3; since this
is the only 3x3x3 fully antisymmetric tensor - an application of the “what else can it be?” theorem!
This implies that these groups must be identical near the origin of the 3-D parameter space. On the
other hand, the groups are not isomorphic (identical) when we consider the full parameter space.
Instead SU(2) is, in some sense, a larger group. For every element of SO(3) there are two elements
in SU(2). This relationship is called a homomorphism with a 2 to 1, SU(2) to SO(3), mapping.
Another way to think about this is that the parameter space of SO(3) is like the interior of a sphere
of radius 7 (think about this!). Next consider how the parameter space maps onto the group space.
Each point inside the sphere specifies a direction from the origin, which is the axis of the rotation,
and a distance from the origin, which is the magnitude of the rotation. When we get to the surface at
7, we must identify antipodal points, a rotation through 7 in one direction is equivalent to a rotation
of m about the exactly opposite direction. This means we can define a path in both the parameter
space and the group space by starting at the origin, going out to 7 in one direction, hopping to
(exactly) the other side of the sphere, and coming back to the origin. This is a closed path in the
group space that cannot be shrunk to zero in the parameter space! Thus the space is not simply
connected. On the other hand for SU(2) we define a similar picture but the sphere extends to 27
and now, no matter what direction we left the origin along, we reach the transformation -1 at 27
(recall that, when we rotate a spin 1/2 state by 27, we don’t get back to the original state but to
minus the original state). Thus the entire surface at 27 is identified as a single point in group space
(the group element -1 with no issues about only antipodal points in this case). All closed paths can
be shrunk to zero and the group space is simply connected. SU(2) is called the covering group for
SO(3).

Before we finish this discussion, let’s think just a bit more about the representations of groups. Just
as in our initial discussion of finite groups, we need the concept of reducible and irreducible. If a
representation (i.e., the matrices) of the group elements can be reduced to block diagonal form by

some choice of basis vectors,
1 o0 0 ]

" [ ] " : (10.3.25)

then that representation is reducible. If it cannot written in this form, it is irreducible. In fact, the
irreducible representations of Abelian groups are all 1-D. The smallest dimension representation that
faithfully represents the group, i.e., displays all of its structure (the commutation relations), is called
the defining or fundamental representation. All groups have 1-D (scalar) representations but they are
not faithful for non-Abelian groups. [Recall that 1-D representations are just numbers, which must
commute unlike matrices.] For SO(3) the fundamental representation is the vector representation,
3. For SU(2) the fundamental representation is the spinor representation, 2. The half-integer spin
representations (J = 1/2,3/2,...), are often referred to as the spinor representations of SO(3) but
they are strictly the representations of SU(2). The fundamental representation of the algebra of
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SU(2) and SO(3) are provided by the matrices in Egs. (10.3.5)) and (10.3.7)), respectively.

Interestingly we can also interpret the algebra itself as providing a representation of the group, called
the adjoint representation. The generators themselves are the basis vectors. The transformation of
a basis vector by a generator is defined as the commutator of the generator with the “basis vector”
(i.e., the other generator). Hence the structure constants, the Cjy;, define a matrix representation
of the algebra and the group (by exponentiation). For SO(3) the adjoint representation and the
fundamental representation are identical, i.e., the matrices in Eq. can be written in the
form [J;],, = i€ji, where it is important to note the order of the last two indices. Thus for SO(3)
the adjoint representation provided by the structure constants (properly defined) is identical to
the fundamental representation. Similarly the generators of SU(2) provide not only the adjoint
representation of SU(2) but also form a fundamental (and adjoint) representation of SO(3), i.e., the
Pauli matrices transform like a 3-vector under rotation.
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Chapter 11

Multiplets and Young Diagrams

11.1 Basic Definitions

For the question of decomposing products of SU(N) representations into irreducible representa-
tions(e.g., N = 2 for spin or N = 3 for color or flavor), the most efficient notation is that of Young
diagrams. These are just left justified arrays of boxes with a specific set of (seemingly ad hoc) rules
for their manipulation and interpretation. Without derivation the rules include the following.

1. Each horizontal row of boxes is at least as long as the horizontal row below it.

2. We can think of the horizontal direction as symmetrization (with respect to some internal index)
and the vertical direction as anti-symmetrization. There are at most N rows for the case of SU(N).

3. For the SU(3) representation (p,q) the first row has p more boxes than the second row and the
second row has q more boxes than the third row. Thus we have

L) =8= @0=6=[T16.0=10=]1] (11.1.1)

4. The counting of states within a given representation (Young diagram) involves three steps. First
you “fill in” the boxes starting with the upper left hand corner based on the symmetry group. For
SU(N) you put N in the upper left corner box and then increase the number when moving to
the right and decrease the number when moving down (see the examples below). For example, for

SU(3) the diagram | becomes

3[4]
I

N

(11.1.2)

The next step involves again putting numbers in the boxes but this time the number correspond to
the length the “hook” that has that box as the “elbow” of the “hook” (this is the most confusing
part of this game). For each individual box in the Young diagram we count the number of boxes to
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the right of the starting box in the same row and the number of boxes below the given box in the
same column. The sum of these two integers, plus 1 for the original box, is the length of the (right)
“hook” with the original box at the “elbow”. We put this length (i.e., this integer) in the box
and proceed until all boxes contain the lengths of the associated hooksE] As an example, consider

again the diagram ‘ Applying the hook rules just defined populates the Young diagram in the
following way, o
| ? 1] (11.1.3)

Without proof, we state that the number of states in the representation corresponding to a Young
diagram is given by the product of all of the numbers in the boxes based on the N of the symmetry
divided by the product of all the numbers in the boxes corresponding to the lengths of the hooks.
For the example above for SU(3), we have

314 3.4.2
N( )=2 IBT=511=% (11.1.4)
-

as expected. Two other examples to test your understanding are

: :3.2'1:
N@ /3]=332.1°- L

_[3]4]5 _3-4-5_
N(D:D)_/_ o =10. (11.1.5)

11.2 Combine Multiplets

To actually combine multiplets, i.e., define a product of representations, we need to carefully label
things. Here we use the notation of the PDG.

(See http://pdg.1bl.gov/2013/reviews/rpp2013-rev-young-diagrams.pdf.)
Consider the product of 2 octets defined with the following notation

8®8 = o Z a (11.2.1)

where we use boxes to represent the first octet and lettered boxes for the second (with“a” for the
first row, “b” for the second row, etc.). Now we proceed to “add the boxes” with the following rules.

1. Start with the left-hand Young diagram (the empty boxes) ‘

"We thank auditor Hanan Bell, Spring 2014, for suggesting this description of the hooks. Several other descriptions
are possible.
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2. Now add the “a”’s in all ways that produce a valid Young diagram, but with no more than a single

“a” in each column (initially symmetric labels cannot be antisymmetrized)

[a]
|| | lalaly aa\@i Smry (11.2.2)

- a a

3. Starting in the second row (where the “b”’s were initially) add the “b”’s subject to the constraint
that, reading from right to left starting at the right end of the first row and then moving on to the
second row, the number of “a”’s must be > the number of “b”’s (> the number of “c”’s, etc.) at
each point in the reading process. Thus, when reading through the boxes in the prescribed fashion,
we can come to the first “b” only after we have passed at least one “a”. We come to the second “b”
only after passing the second “a”, etc. The allowed Young diagrams for our current example are

o [ Talal 1 J [T Tdl
@ @ @ |a| @ bl @
b = alb

— P @ o T @ : (11.2.3)

4. Using the rules noted earlier we can work out the multiplicity of each of these irreducible represen-
tations (using the notation introduced above).

[ [ | |
| ‘@7 ® “ o ®
3/4]5]6]
3/4]5]6] 2] 3[4]5
_|2]3 1 3[4]
I5Ta2[1] % 6T3]2[1] € T4]3]2
2[1 2] 3[2]1
1]
314]5] 314]5] 314
203 2[3 2[3
1 1 12
o= rm®s B as
3[1 3[1 32
1] 1] 2|1
_3-4-5-6-2-3@3-4-5-6-2-1@3.4-5-2-3-4
" 5-4-2.2-1-1 6-3-2-2-1-1 4-3-3-2-2-1
@3'4'5'2'3'1@3'4'5'2'3'1@3'4'2'3'1'2
5.3-3-1-1-1 "5-3-3-1-1-1 4-3-3-2-2-1
=27T0109p10D8D8® 1
=(2,2)@(3,0)®(0,3)® (1,1) ® (1,1) @ (0,0). (11.2.4)

Note that, as we have seen before, the “a-b” notation makes clear that the internal symmetry
structure of the 2 octets is different. So finally we have the result that

8R8=27010D10D8®8® 1 (11.2.5)
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Looking ahead to the application to the SU(3) of color we can reproduce some other results that we
have already used. Consider the product of a quark and antiquark,

e — T [Tal—

=8 1. (11.2.6)

Next consider the product of 3 quarks, but begin by first looking at 2 quarks,

§®§:D®D:DJ@H:§@§. (11.2.7)

With the third quark we have

5@3@@=(@@3)®3=(D]@H>®D

[T TeH e e

—1008®8d 1. (11.2.8)

In the context of color we are interested only in the color singlets for the mesons and baryons
respectively. Note, as already discussed, that the singlet is the completely antisymmetric state.
Applied to the SU(3) of flavor, we see again that the mesons should appear in octets and singlets
while the baryons should form decuplets, octets (of differing internal permutation symmetry) and
singlets of flavor. However, not all of these states can be combined (with space, color and spin wave
functions) to yield states with the required overall asymmetry under permutations. For example, the
antisymmetric color wave function requires net symmetry in the other quantum numbers. For the
ground state we expect the space wave function to be symmetric. The spin wave function is either
symmetric (S = 3/2) or mixed (S = 1/2). Thus only the flavor symmetric 10, with spin 3/2, and

the appropriately mixed symmetry 8, with spin 1/2, can appear in the baryon ground state.

For further discussion (including how to connect the integers (p,q) to the “shapes” of the multiplets
in isospin-strangeness plane) see the PDG report at
http://pdg.1bl.gov/2013/reviews/rpp2013-rev-young-diagrams. pdf

The brief summary is that p counts the number of “spaces” between occupied states at the top
(largest strangeness) of the multiplet and ¢ counts the number of spaces between occupied states at
the bottom (most negative strangeness).

167


http://pdg.lbl.gov/2013/reviews/rpp2013-rev-young-diagrams.pdf

Index

G, see Fermi constant
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antilepton,
antineutrino, [94]

baryon, 08|
decuplet,
number, [I17]
octet, [I07]

wavefunction,
beta decay,

boost, see Lorentz transformation

bra vector, [121

causality, [A9]

charge conjugation,
charge quantization, [129
Clebsch-Gordan,
CM frame,

color, [07]

cosmic ray, [27]

CP,

CPT, [[40]

electromagnetism, [67]

electron,

Feynman diagrams, 153
field strength tensor,
finite groups, [155

flavor, see quark, flavor

G-parity, [138
Galilean relativity,
gamma factor, [25]
gamma rays, [92]
GPS, 27

group theory,

hadron,
decay, [111]

spectrum, [132]
Hamiltonian, [121

Hyperbolic Functions,

ideal clock,
inertial frame,
intrinsic parity, [[30]
invariant interval, [44]

isospin, [I3]]
ket vector, [121]

lab frame,
Ladder Operators,
lepton, [94]

number, [94]
Lie Groups, [I57]
lightcone,
lightlike,
Lorentz

contraction, [26]

force, [68]

energy, [61] transformation,
event, [32]
Exponential Function, meson, [9§]

Minkowski space, see spacetime

Fermi constant, @ @
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natural units,
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Noether’s Theorem, [158
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Pauli principle,
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plane wave,
positron, 02]

Power Series, [9]
proper time, [57]
proton, [87]

QCD, see quantum chromodynamics
quantum chromodynamics,

quantum dynamics, [121]
quark,

flavor, [97]

masses, [07]

reference frame,

relativistic addition of velocities,

relativity postulates,

rest energy, [6]]
rest mass,

scattering, [68]

Schrédinger equation, (122

simultaneity, [34]
Sinusoidal Functions,
spacelike, [45]
spacetime, [32]
dot product,
Minkowski, [44]
vector, [39
speed of light,
Spin and Statistics,
strangeness, [I3]1]

strong interaction, [96|
surface of simultaneity, [33]
symmetry, [[2]]

approximate, [I30]
continuous, [126]

crossing, [147]
generator, [I26]
spacetime, [127]

tau lepton,
time dilation,
time reversal,
timelike,

unitarity bound, 149

weak gauge boson, [I53]

weak interaction,
worldline,
worldvolume,

Young diagrams,
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