
Chapter 10

Introduction to Group Theory

Since symmetries described by groups play such an important role in modern physics, we will take
a little time to introduce the basic structure (as seen by a physicist) of this most interesting field of
study. We will first define groups in the abstract and then proceed to think about their represen-
tations, typically in the form of matrices. In physics we are typically interested in ”real” operators
that act on ”real” states, which provide concrete representations of the more abstract concept of
groups. The underlying arithmetic will be familiar from your previous experience with matrices.

10.1 Definitions

Group (G): A set of (perhaps abstract) elements (i.e., things) - g1, ..., gn, plus a definition of the
multiplication operation, i.e., a definition of the product or combination of two of the elements, such
that

1. gi • gj = gk ∈ G - products of elements are also elements of the group (a property of groups called
closure),

2. the multiplication operation is associative - (gi • gj) • gk = gi • (gj • gk),

3. the identity element exists as an element of the group, 1 ∈ G, where 1• gj = gj •1 = gj (sometimes
the left and right identities are distinct, but not generally in the context of physics),

4. the group includes a unique inverse for each element, gi ∈ G⇒ g−1i ∈ G such that gi•g−1i = g−1i •gi =
1 (as with matrices the inverse is sometimes defined separately for left and right multiplication but
this situation will not arise in this discussion).

Note: it is not necessary that the multiplication be commutative (and the interesting cases are those
that are not commutative):

• if gi • gj = gj • gi (commutative), the group is an Abelian group, Abelian group

• if gi • gj 6= gj • gi (non-commutative), the group is a non-Abelian group. non-Abelian group
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10.2 Finite Groups

If the number of elements n is finite (n < ∞), then the group is called a finite or discrete group
of order n. Finite groups are commonly used in the study of solid state physics where discrete
symmetries arise regularly. There is a trivial group corresponding to n = 1 with g = 1 only. Clearly
the group properties are all satisfied but in a trivial way.

How about n = 2? Call the elements of the group 1 and P. Evidently P−1 = P, P • P = 1
in order to satisfy the condition of being a group. There are, in fact, two related and physically
interesting realizations of this group. One case is the reflection group where P is a reflection in a
plane (i.e., one of the 3 possible planes in 3-D space). For example, reflection in the xy plane means
Pf(x, y, z) = f(x, y,−z) so that P • Pf(x, y, z) = Pf(x, y,−z) = f(x, y, z) as required. Another
n = 2 group corresponds to reflection through the origin (in 3-D space), P(x, y, z) → (−x,−y,−z).
Again P • P = 1, P • P(x, y, z) = P(−x,−y,−z) = (x, y, z). This is the parity operation that (as
we will see) plays an important role in the context of atomic, nuclear, and particle physics. Another
(simpler) representation of the group of order 2 are the numbers (1,−1) coupled with ordinary
multiplication. The multiplication table for all of these order 2 groups is given in Table 10.1, where
the notation is that a given entry is the result of multiplying the column label on the left by the row
label (and the fact that P acts like (−1) is made explicit).

1 P(−1)

1 1 P(−1)

P(−1) P(−1) 1

Table 10.1: Order 2 Group multiplication table

Since the structure of all of the order 2 groups (the multiplication table) is identical, we say that the
groups are isomorphic (the formal mathematical term for identical). Note that the order 2 group
is (trivially) Abelian, as must be the case if it can be (faithfully) represented by numbers (without
needing matrices).

Next consider the representation afforded by the 3 complex numbers
(
1, e2πi/3, e4πi/3

)
=
(
1, A,A2

)
,

which serve to define a order 3 group. Again the multiplication table, as in Table 10.2, is unique and
Abelian (the reader is encouraged to prove this).

1 A A2

1 1 A A2

A A A2 1

A2 A2 1 A

Table 10.2: Order 3 Group multiplication table

Groups of order n of the form
(
1, A,A2, ..., An = 1

)
are called cyclic groups. So Table 10.2 indicates

that the n = 3 group is cyclic. For n = 4 the cyclic group has one representation provided by the
set of numbers (1, i,−1,−i), where (i)−1 = −i and (−1)−1 = −1. The multiplication table for the
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n = 4 cyclic group is indicated in Table 10.3, including the just mentioned explicit representation.

1 A(i) A2(−1) A3(−i)

1 1 A(i) A2(−1) A3(−i)

A(i) A(i) A2(−1) A3(−i) 1

A2(−1) A2(−1) A3(−i) 1 A(i)

A3(−i) A3(−i) 1 A(i) A2(−1)

Table 10.3: Order 4 Cyclic Group multiplication table

However, for the case of n = 4 there is a second possible multiplication table as indicated in Table 10.4.
This group, often called the 4’s Group, is still Abelian, but is not cyclic. While it is still true that
we have AB = BA = C (or AA2 = A2A = A3 in the cyclic case), we now have A2 = B2 = C2 = 1
(instead of A2 = A2, (A2)2 = 1 and (A3)2 = A2).

1 A B C

1 1 A B C

A A 1 C B

B B C 1 A

C C B A 1

Table 10.4: 4’s Group multiplication table

Note that the above groups are all Abelian (the elements commute and the multiplication tables are
symmetric about the diagonal) and they can be represented by ordinary (complex) numbers. Faithful
representations (i.e., representations of the group that are faithful to its properties) of non-Abelian
groups will require the use of matrices in order to exhibit nonzero commutators.

In general a group will contain subgroups, i.e., subsets of the elements which themselves form groups.
The full (original) group and the unit element are called the trivial subgroups, while other subgroups
are called proper subgroups. Clearly the elements (1,−1) = (1,A2) constitute a proper subgroup of
order 2 of the order 4 cyclic group. In the study of finite groups the concepts of conjugate elements,
classes and characters play an important role. Two elements, A and B, of a group are conjugate if
B = C−1AC with C another element of the group. The set of elements conjugate to A when the
element C is allowed to vary over all members of the group form a class, i.e., they are all related
by a similarity transformation. The elements of a class can be thought as representing the same
transformation but for differ choices of the basis vectors (recall that a similarity transformation takes
us to a different basis set). Since the trace of a matrix is unchanged by a similarity transformation,
the traces of all matrices in a single class must be equal. This common trace is called the character
of the class. Thus the characters help us to classify the structure of finite groups.

It is also useful to ask whether, through a judicious choice of basis (corresponding to a special sim-
ilarity transformation), we can make all the matrices representing a group block diagonal. These
sub-matrices will also constitute representations of the group, and we say that the original repre-
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sentation is reducible. If this diagonalization process is not possible, the original representation is
said to be irreducible. Clearly life is easiest if we can work with the lowest dimension (faithful)
irreducible representation. This is called the fundamental representation. The various fundamental
representations play a special role in the process of labeling the multiplets of particles that appear
in particle physics.

10.3 Lie Groups

In many (most?) circumstances the groups of interest in physics have an infinite number of elements,
but the individual elements are specified by (i.e., are functions of) a finite number (N) of parameters,
g = G(x1, ..., xN ). Of particular interest are those groups where the parameters vary continuously
over some range. Thus the number of parameters is finite but the number of group elements is
infinite. If the range of all of the parameters is bounded, the group is said to be compact, e.g., the
parameter space of the compact group SO(3) (rotations in 3-D as discussed in Chapters 1 and 5)
is (the interior of) a sphere of radius π. On the other hand, the group of linear translations in 3-D
is non-compact, i.e., the magnitude of the translation can be arbitrarily large. Further, the groups
we employ in physics often have the added feature that the derivatives (∂g/∂xi) with respect to all
parameters exist. Groups with this property are called Lie Groups. Lie Groups play an essential
role in our understanding of particle physics and we will pursue this discussion of Lie Groups a bit
further.

First we focus on the behavior near the origin of the parameter space. By definition the group
element at the origin in parameter space,

g(0, ..., 0) ≡ 1 , (10.3.1)

is the identity element. Near the origin of the parameter space the group elements correspond
to infinitesimal transformations (arbitrarily close to the identity operator) and the derivatives are
especially important. As a result they have a special name - the generators Xk (as already mentioned
in Chapters 1 and 5),

∂g

∂xk
|xj=0,all j ≡ iXk . (10.3.2)

The factor i in the previous equation (and subsequent equations) arises from the conventional choice
to deal with Hermitian generators represented by Hermitian matrices. Since the generators are finite
in number (k = 1 to N), it is easier to discuss the generators than the infinite number of group
elements (we are lazy and smart). The generators serve to define a N -dimensional Lie algebra (a
vector space) where both addition (of elements of the algebra) and multiplication by constants are
defined. The general element of this Lie algebra can be expressed as a linear combination of the
generators,

−→
X =

N∑
k=1

ckXk . (10.3.3)

This is analogous to the familiar 3-dimensional vector space except that here the generators are the
basis vectors (instead of x̂, ŷ, ẑ). Further, we can think of the generators as allowing a “Taylor series”
expansion of the group elements near the origin. General group elements can be obtained from the
elements of the algebra via exponentiation.
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The algebra also supports the definition of an outer (or vector) product (like the familiar cross
product) that produces another element of the algebra, i.e., the algebra is closed under this operation.
This “product” is just the familiar commutator

[Xk, Xl] ≡ XkXl −XlXk = iCklmXm . (10.3.4)

The tensor Cklm is called the structure constant(s) of the algebra. It fully specifies the structure
of the algebra and therefore of the structure of the group itself near the origin of the parameter
space. For example, the Pauli matrices provide a representation of the unitary group operating on
2-D vectors, or SU(2) (as discussed in Chapter 5). Thus the algebra of SU(2) is given by[σj

2
,
σk
2

]
= iεjkl

σl
2
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (10.3.5)

with the structure constant equal to the (now familiar) fully antisymmetric 3x3x3 tensor εjkl (the
Levi-Civita symbol). In fact, this is the unique such 3x3x3 antisymmetric tensor and all Lie groups
with 3 generators must have the same structure constant and thus the same Lie algebra. In particular,
the group of rotations in 3D, SO(3) (as discussed in Chapter 1), has the same algebra,

[Jj , Jk] = iεjklJl , (10.3.6)

with the Jl standing for the generator of rotations (we are taking ~ = 1 in this discussion). In quantum
mechanics this operator is familiar as the angular momentum operator. An explicit form for these
matrices (appropriate for the rotations of ordinary location 3-vectors as in Chapter 1) is given by
the following (and the reader is encouraged to check the commutation relations in Eq. 10.3.6),

J1 =

0 0 0
0 0 −i
0 i 0

 , J2 =

 0 0 i
0 0 0
−i 0 0

 , J3 =

0 −i 0
i 0 0
0 0 0

 . (10.3.7)

While the precise form of these matrices may not be intuitively obvious, the general form should be
clear from our understanding of how ordinary rotations work. For example, a rotation about the
1-axis is a rotation in the 2-3 plane. It should serve to mix the 2 and 3 components of an ordinary
3-vector. Modulo the issue of phases, this is precisely what the form of the J1 matrix in Eq. (10.3.7)
does. It transforms a 3-component into a 2-component and a 2-component into a 3-component.

Since the algebras of SU(2) and SO(3) are identical, it is informative to ask how the groups them-
selves differ. This issue is addressed below.

While it will not be demonstrated here, a very important concept is the connection between the sym-
metries of a physical system and the conserved quantities which characterize its dynamics. For exam-
ple, if a system is rotationally symmetric, i.e., invariant under the operation of the group elements of
SO(3), its motion will exhibit a constant, i.e., conserved, angular momentum. Translational invari-
ance in space implies conserved linear momentum, while translation invariance in time implies energy
conservation. These connections are realizations of Noether’s Theorem (i.e., continuous symmetries
mean conserved quantities, see http://courses.washington.edu/partsym/14Spr/Noether.pdf).

To complete this introduction to group theory we will look in general terms at the two Lie groups
that seem to arise most often in physics - the Orthogonal group SO(n) and the Unitary group SU(n).
The former appears in the study of real n-D vector spaces, e.g., Euclidean space-time, and are defined
by being transformations of the vector space that preserve the length of vectors or, more generally
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preserving any scalar product (appropriately defined, if there is a nontrivial metric). Thus, if two
vectors have zero scalar product in one reference frame, i.e., they are orthogonal, they will remain
orthogonal in the rotated frame - hence the name of the group. The Unitary group appears in the
study of complex n-D vector spaces, e.g., quantum mechanics, and are defined by again preserving
the length of (state) vectors, i.e., probability. [Note that in both cases scalar products are those
products that “use” all indices - nothing is left to “operate on”. Hence scalar products are left
unchanged by the transformations.]

To see what the properties of the groups these statements imply consider first a n-D real vector and
its square, r1 and r1 • r1 = rT1 r1. Now consider the same vector in a transformed reference frame (or
after transforming the vector) where the transformation (rotation) is represented by a real matrix Λ
(not a boost here), r′1 = Λr1. We demand for the Orthogonal group that r2 • r1 be preserved by the
transformation for any r1, r2,

r′2
T
r′1 = (Λr2)

T λr1 = rT2 ΛTΛr1 = rT2 r1 , (10.3.8)

which leads us to
ΛTΛ = 1 , Λ−1 = ΛT . (10.3.9)

So the characteristic feature of the Orthogonal Group is that it is represented by real orthogonal
matrices, i.e., matrices whose inverses are their transposes. If the scalar product is defined with a
non-trivial metric g, as with the Lorentz transformations of the group SO(3,1) (where the argument
(3,1) reminds us of the plus/minus signs in the metric) we have instead (where det[g]2 = 1)

r′2
T
gr′1 = (Λr2)

T gλr1 = rT2 ΛT gΛr1 = rT2 gr1, (10.3.10)

or
ΛT gΛ = g , Λ−1 = gΛT g . (10.3.11)

Note that it follows from these equations and the properties of determinants that

det
[
ΛTΛ

]
= det

[
ΛT
]

det [Λ] = det [Λ]2 = 1, det [Λ] = ±1, (10.3.12)

or
det
[
gΛT gΛ

]
= det [g]2 det

[
ΛT
]

det [Λ] = det [Λ]2 = 1 . (10.3.13)

Recall that typically we want only the ”Special” (hence the “S” in the label of the group) or uni-
modular group (no reflections) and we require that the determinant of Λ be +1 (i.e., a -1 means that
a reflection is present in the transformation).

Using (complex) exponentiation (recall Eq. (10.3.2)) to go from the algebra to the group, we write
Λ = eiαS , where α is a real parameter and, in order for Λ to be real, S is a purely imaginary nxn
matrix (recall Eq. (10.3.7)). The orthogonal form means(

eiαS
)T

= eiαS
T

=
(
eiαS

)−1
= e−iαS =⇒ ST = −S = S∗ =⇒ S† = (S∗)T = S . (10.3.14)

Thus (with our choice of i factors) the generator of a real, orthogonal transformation is represented
by a Hermitian matrix (again recall the matrices in Eq. (10.3.7)). The constraint we imposed on the
determinant of Λ translates into a constraint on the trace of S (the reader should convince herself
of this result)

det
[
eiαS

]
= +1 =⇒ Tr [S] = 0 , (10.3.15)
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which is trivially satisfied by an anti-symmetric matrix (e.g., any purely imaginary, Hermitian matrix;
recall this property for the Jk matrices above). For the more general case of a scalar product defined
with a metric g, S is still traceless and satisfies gST g = S∗, i.e., S displays mixed symmetry as
defined by g.

As an explicit example for SO(3) (recall Chapter 1) consider a rotation by an angle θ about the 3 (or
z-axis). It follows from the properties of the matrices in Eq. (10.3.7) that powers of these matrices
(like the Pauli matrices) are simple,

J2n
3 =

1 0 0
0 1 0
0 0 0

 , J2n+1
3 = J3 . (10.3.16)

Thus a rotation matrix defined by the exponential form Λ = eiαS is given by its power series expansion
as

g(θ) = eiθJ3 = 1 +

∞∑
n=1

(iθJ3)
n

n!

=

0 0 0
0 0 0
0 0 1

+

1 0 0
0 1 0
0 0 0

 ∞∑
n=0

(iθ)2n

(2n)!
+ J3

∞∑
n=0

(iθ)2n+1

(2n+ 1)!

=

0 0 0
0 0 0
0 0 1

+

1 0 0
0 1 0
0 0 0

 cos θ + iJ3 sin θ (10.3.17)

=

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 .

We recognize that, as expected, this transformation does not change the 3 (or z) component of a
vector, while the 1-2 (x − y) components are mixed in the just the way we expect for a rotation of
the basis vectors in the 1-2 plane. (Note that our choice of signs yields a “passive” rotation, we are
rotating the basis vectors not the physics vectors.)

Next we can determine the number of independent components of S, i.e., the dimensionality of the
corresponding algebra (also called the order of the Lie group). A purely imaginary Hermitian matrix
(i times a real, anti-symmetric matrix) has zeroes on the diagonal and all components below the
diagonal are determined by (-1 times) those above. Thus we want 1/2 the number of off-diagonal
elements in an nxn matrix. Hence the algebra of SO(n) has dimension

N [SO(n)] =
n2 − n

2
=
n(n− 1)

2
,

N

n = 2
n = 3
n = 4

 =
1
3
6
. (10.3.18)

The corresponding discussion for the Unitary group now involves complex numbers and complex
conjugation in the scalar product. Thus, if the unitary transformation is described by a matrix U ,
we have

r′2
†
r′1 = (Ur2)

† Ur1 = r†2U
†Ur1 = r†2r1, (10.3.19)
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i.e., U is a unitary matrix. In (complex) exponential notation (where T is not necessarily purely
imaginary as U is not real, but β is real)

U = eiβT , U † = e−iβT
†

= U−1 = e−iβT

⇒T † = T . (10.3.20)

The generator is again represented by a Hermitian matrix, as we expect from our earlier discussion.
We also have

det
[
U †U

]
= det [U ]∗ det [U ] = 1, det [U ] = ±1 (10.3.21)

and we focus on the Special version of the group, SU(n),

det [U ] ≡ 1⇒ Tr [T ] = 0 . (10.3.22)

As an explicit example consider the analogue of the rotation in Eq. (10.3.17), but now replacing the
generator J3 with the corresponding Pauli matrix σ3/2 (recall Eq. (10.3.5)). These definitions yield
the following expressions

eiσ3θ/2 =1
∞∑
n=0

(iθ/2)2n

(2n)!
+ σ3

∞∑
n=0

(iθ/2)2n+1

(2n+ 1)!

=1 cos θ/2 + iσ3 sin θ/2

=

(
cos θ/2 + i sin θ/2 0

0 cos θ/2− i sin θ/2

)
(10.3.23)

=

(
eiθ/2 0

0 e−iθ/2

)
.

So the 2-components of the 2-spinor (for a spinor quantized in the z-direction, recall Chapter 5)
are just multiplied by a phase (proportional to the component of the spin, ±1/2). Note that the
transformation is just a factor of -1 for θ = 2π. Unlike the rotation of “real” vectors, where a rotation
angle of 2π always brings you back to where you started, for spin 1/2 we end up at -1 times where
we started! We need to rotate through 4π to get back to where we started (see below).

So we conclude that the algebra of SU(n) is defined by traceless, Hermitian (but not necessarily
imaginary) matrices in the appropriate number of dimensions. In n-D a nxn complex matrix has 2
times n2 (real) components. Being Hermitian reduces this by a factor of 2 and the constraint of zero
trace removes another degree of freedom. Thus the order of the special unitary algebra in n-D is

N [SU(n)] =
2n2

2
− 1 =n2 − 1,

N

n = 1(really U(1))
n = 2
n = 3

 =
1
3
8
. (10.3.24)

Note that the algebras of U(1) and SO(2) have the same (trivial) dimension (1). You might expect
that they are related and they are! They are identical or isomorphic as groups, U(1) ∼= SU(2).
This becomes obvious when we recall that rotations in a (single) plane, SO(2), can be performed
in any order, i.e., SO(2) is an Abelian group like U(1). You might have thought that SO(2) had
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2-D representations, unlike U(1), but, in fact, these representations can, by an appropriate choice
of basis vectors, be reduced to the canonical 1-D representations einθ, which are the irreducible
representations of U(1). Another way to see this is to note that 2-D problems, i.e., SO(2), can
always be mapped onto the complex plane, i.e., U(1).

The groups SO(3) and SU(2) are also related. As mentioned earlier the algebras are identical since
there is a there is a unique choice for the anti-symmetric tensor Cjkl. It must be equal to εjkl since this
is the only 3x3x3 fully antisymmetric tensor - an application of the “what else can it be?” theorem!
This implies that these groups must be identical near the origin of the 3-D parameter space. On the
other hand, the groups are not isomorphic (identical) when we consider the full parameter space.
Instead SU(2) is, in some sense, a larger group. For every element of SO(3) there are two elements
in SU(2). This relationship is called a homomorphism with a 2 to 1, SU(2) to SO(3), mapping.
Another way to think about this is that the parameter space of SO(3) is like the interior of a sphere
of radius π (think about this!). Next consider how the parameter space maps onto the group space.
Each point inside the sphere specifies a direction from the origin, which is the axis of the rotation,
and a distance from the origin, which is the magnitude of the rotation angle. When we get to the
spherical surface at π, we must identify antipodal points, a rotation through π in one direction is
equivalent to a rotation of π about the exactly opposite direction. This means we can define a path
in both the parameter space and the group space by starting at the origin, going out to π in one
direction, hopping to (exactly) the other side of the sphere, and coming back to the origin. This
is a closed path in the group space that cannot be shrunk to zero in the parameter space! Thus
the space is not simply connected. On the other hand for SU(2) we define a similar picture but
the sphere extends to 2π and now, no matter what direction we left the origin along, we reach the
transformation -1 at 2π (recall that, when we rotate a spin 1/2 state by 2π, we don’t get back to the
original state but to minus the original state). Thus the entire surface at 2π is identified as a single
point in group space (the group element -1 with no issues about only antipodal points in this case).
All closed paths can be shrunk to zero and the group space is simply connected. SU(2) is called the
covering group for SO(3).

Before we finish this discussion, let’s think just a bit more about the representations of groups. Just
as in our initial discussion of finite groups, we need the concept of reducible and irreducible. If a
representation (i.e., the matrices) of the group elements can be reduced to block diagonal form by
some choice of basis vectors, 

[ ] 0 0

0

[ ]
0

0 0

 

 , (10.3.25)

then that representation is reducible. If it cannot written in this form, it is irreducible. In fact, the
irreducible representations of Abelian groups are all 1-D. The smallest dimension representation that
faithfully represents the group, i.e., displays all of its structure (the commutation relations), is called
the defining or fundamental representation. All groups have 1-D (scalar) representations but they are
not faithful for non-Abelian groups. [Recall that 1-D representations are just numbers, which must
commute unlike matrices.] For SO(3) the fundamental representation is the vector representation,
3. For SU(2) the fundamental representation is the spinor representation, 2. The half-integer spin
representations (J = 1/2, 3/2,...), are often referred to as the spinor representations of SO(3) but
they are strictly the representations of SU(2). The fundamental representation of the algebra of
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SU(2) and SO(3) are provided by the matrices in Eqs. (10.3.5) and (10.3.7), respectively.

Interestingly we can also interpret the algebra itself as providing a representation of the group, called
the adjoint representation. The generators themselves are the basis vectors. The transformation of
a basis vector by a generator is defined as the commutator of the generator with the “basis vector”
(i.e., the other generator). Hence the structure constants, the Cjkl, define a matrix representation
of the algebra and the group (by exponentiation). For SO(3) the adjoint representation and the
fundamental representation are identical, i.e., the matrices in Eq. (10.3.7) can be written in the
form [Jj ]kl = iεjlk, where it is important to note the order of the last two indices. Thus for SO(3)
the adjoint representation provided by the structure constants (properly defined) is identical to
the fundamental representation. Similarly the generators of SU(2) provide not only the adjoint
representation of SU(2) but also form a fundamental (and adjoint) representation of SO(3), i.e., the
Pauli matrices transform like a 3-vector under rotation.
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