
Chapter 3

Minkowski spacetime

3.1 Events

An event is some occurrence which takes place at some instant in time at some particular point
in (3-D) space. Your birth was an event. JFK’s assassination was an event. Each downbeat of a
butterfly’s wingtip is an event. Every collision between air molecules is an event. Snap your fingers
right now — that was an event. The set of all possible events is called spacetime. A point particle, or
any stable object of negligible size, will follow some trajectory through spacetime which is called the
worldline of the object. The set of all spacetime trajectories of the points comprising an extended
object will fill some region of spacetime which is called the worldvolume of the object.

3.2 Reference frames
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Figure 3.1: An inertial reference frame. World-
lines w1 and w2 represent observers at rest in this
reference frame, w3 is the spacetime trajectory of
an inertial observer who is moving in this frame,
and w4 is the spacetime trajectory of a non-inertial
object whose velocity and acceleration fluctuates.

To label points in space, it is convenient to introduce
spatial coordinates so that every point is uniquely as-
sociated with some triplet of numbers (x1, x2, x3). Sim-
ilarly, to label events in spacetime, it is convenient to
introduce spacetime coordinates so that every event is
uniquely associated with a set of four numbers. The re-
sulting spacetime coordinate system is called a (4-D)
reference frame . Particularly convenient are inertial
reference frames, in which coordinates have the form
(t, x1, x2, x3) where the superscripts here are coordinate
labels and not powers. The set of events in which x1, x2,
and x3 have arbitrary fixed (real) values while t ranges
from −∞ to +∞ represent the worldline of a particle,
or hypothetical observer, which is subject to no exter-
nal forces and is at rest in this particular reference frame
with no acceleration. This is illustrated in Figure 3.1 .
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Figure 3.2: A family of inertial observers, all
with synchronized watches and mutually at rest,
defines an inertial reference frame.

As Figure 3.2 tries to suggest, one may view an inertial
reference frame as being defined by an infinite set of in-
ertial observers, one sitting at every point in space, all of
whom carry synchronized (ideal) clocks and all of whom
are at rest with respect to each other (but recall that
this situation is a challenge to realize in practice - see
the discussion of the OPERA experiment at the end of
Chapter 2). You can imagine every observer carrying a
notebook (or these days a tablet computer) and record-
ing the time, according to his clock, of events of interest.
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Figure 3.3: A moving rod which passes by three inertial
observers who are at rest.

For example, consider a statement like “a moving
rod has length L”. Suppose that the worldline of
the left end of the rod intersects the worldline of
some observer A at the event labeled A∗ whose
time, according to observer A’s clock, is t1. The
worldline of the right end of the rod intersects the
worldline of observer B at the event labeled B∗

whose time (according to B) is also t1, and then
intersects the worldline of observer C at event C∗

at the later time t2 (according to C). The interior of
the rod sweeps out a flat two-dimensional surface
in spacetime — the shaded “ribbon” bounded by
the endpoint worldlines shown in Figure 3.3 .

The surface of simultaneity of event A∗, in the
reference frame in which observer A is at rest, is
the set of all events whose time coordinates in this
frame coincide with the time of event A∗. So event
B∗ is on the surface of simultaneity of event A∗ (it
is displaced precisely horizontally), while event C∗

is not on the surface of simultaneity of event A∗.
The length of the rod, in this reference frame, is defined as the spatial distance between observers
A and B, i.e., the spatial distance between the ends of the rod at the same time in this frame (on a
surface of simultaneity). As usual, it is convenient to choose Cartesian spatial coordinates, so that, if
observers A and B have spatial coordinates (x1A, x

2
A, x

3
A) and (x1B, x

2
B, x

3
B), then their relative spatial

separation is given by

dAB =
[
(x1B−x1A)2 + (x2B−x2A)2 + (x3B−x3A)2

]1/2
. (3.2.1)

One should stop and ask how the observers defining an inertial reference frame could, in principle,
test whether their clocks are synchronized, and whether they are all mutually at rest. The simplest
approach is to use the propagation of light. Suppose observer A flashes a light, momentarily, while
observer B holds a mirror which will reflect light coming from observer A back to its source. If the
light is emitted at time tA, according to A’s clock, it will be reflected at time tB, according to B’s
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clock, and the reflected pulse will then be detected by A at some time tA + ∆t. If A and B’s clocks
are synchronized, then the time tB at which B records the reflection must equal tA + 1

2∆t. Any
deviation from this indicates that the clocks are not synchronized. If this experiment is repeated,
then any change in the value of ∆t indicates that the two observers are not mutually at rest.

3.3 Lightcones

Before proceeding further, it will be helpful to introduce a useful convention for spacetime coordi-
nates. When one does dimensional analysis, it is customary to regard time and space as having
different dimensions. If we define the spacetime coordinates of an event as the time and spatial coor-
dinates in a chosen inertial frame, (t, x1, x2, x3), then the differing dimensions of the time and space
coordinates will be a nuisance. Because the value of the speed of light, c, is universal — independent
of reference frame — we can use it as a simple conversion factor which relates units of time to units
of distance. Namely, we define the new coordinate (with dimensions of length)

x0 ≡ c t , (3.3.1)

which is the distance light can travel in time t. Henceforth we will use x0 in place of the time t as
the first entry in the spacetime coordinates of an event, (x0, x1, x2, x3).

x

x
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0

2x
Figure 3.4: The “lightcone” of a flash of light emitted from the
origin.

Now consider a flash of light which is emit-
ted from the event with coordinates x0 =
x1 = x2 = x3 = 0 — i.e., from the space-
time origin in this coordinate system. The
light will propagate outward in a spherical
shell whose radius at time t equals ct, which
is x0. Therefore, the set of events which
form the entire history of this light flash are
those events for which[
(x1)2 + (x2)2 + (x3)2

]1/2
= x0. We can

think of these events as forming a “cone”
as illustrated in Figure 3.4 . The intersec-
tion of this cone with the (2-D) x0–x1 plane
is comprised of the two half-lines at ±45◦,
for which x0 = ±x1 and x0 > 0. These
45◦ lines describe the path of light which is
emitted from the origin traveling in the ±x1
directions.

3.4 Simultaneity

Next consider the reference frames of two different inertial (non-accelerating) observers, A and B,
who are not at rest with respect to each other. As viewed in A’s reference frame, suppose that
observer B is moving with speed v in the x1 direction (with respect to A), so that B’s position
satisfies

x1 = vt = (v/c)x0 (in frame A) .
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Figure 3.5 depicts this situation graphically. (We have chosen the origin of time to be when A and B
are at the same point.) In reference frame A, the worldline of observer A is the vertical axis (labeled
wA), since this corresponds to all events with x1 = x2 = x3 = 0 and x0 arbitrary. The worldline of
observer B (in reference frame A and labeled wB) is a tilted line with a slope of c/v (slope here is
defined as ∆x0/∆x1, i.e., the tangent of the angle with respect to the x1 axis), since this corresponds
to all events with x0 = (c/v)x1 (and vanishing x2 and x3). As expected v → 0 corresponds to a
vertical line (infinite slope), while v → c is the line at 45◦ (corresponding to unit slope and the light
cone in frame A).
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Figure 3.5: Worldline of two observers, and corresponding surfaces
of simultaneity. The dashed lines show the lightcone of the origin.

Surfaces of simultaneity for observer A
correspond to horizontal planes in this
diagram, because such planes represent
all events with a common value of time
(or x0) according to A’s clock. But what
are surfaces of simultaneity for observer
B? In other words, what set of events
share a common value of time accord-
ing to B’s clock? These turn out to be
tilted planes with slope v/c (not c/v), as
shown in the figure by the red lines la-
beled x′ 0 = 1, x′ 0 = 0 and x′ 0 = −1.

A quick way to see that this must be the
case is to note that the 45◦ path of a light
ray traveling from the origin in the +x1

direction (the dashed line in Fig. 3.5)
bisects the angle between observer A’s
worldline (the x0 axis in Fig. 3.5) and his
surface of simultaneity defined by x0 =
0. Exactly the same statement must also
be true for observer B — she will also
describe the path of the light as bisecting the angle between her worldline and her surface of si-
multaneity which contains the origin (the red x′ 0 = 0 line). This is an application of our second
postulate (the physics looks the same in all inertial reference frames). Therefore, when plotted in
A’s reference frame, as in Figure 3.5 , observer B’s worldline and surfaces of simultaneity must have
complementary slopes (c/v versus v/c), so that they form equal angles with the lightcone at 45◦.

The essential point, which is our most important result so far, is that the concept of simultaneity
is observer dependent. Events that one observer views as occurring simultaneously will not be
simultaneous when viewed by a different observer moving at a non-zero relative velocity (as long as
the events occur at spatial points separated by a nonzero distance).

Because this is a key point, it may be helpful to go through the logic leading to this conclusion in
a more explicit fashion. To do so, consider the experiment depicted in Figure 3.6 . Two flashes of
light (the black lines) are emitted at events R and S and meet at event T . In observer B’s frame,
shown in the left panel of Figure 3.6 , the emission events are simultaneous and separated by some
distance L′. The reception event T is necessarily equi-distant between R and S. Lines wB, wB′ , and
wB′′ show the worldlines of observers who are at rest in this frame and who witness events R, T ,
and S, respectively. (In other words, wB is the worldline of observer B, sitting at the origin in this
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Figure 3.6: Two flashes of light emitted at events R and S which meet at event T , as described in two different frames.

frame, while wB′ is the worldline of an observer sitting at rest a distance L′/2 away, and wB′′ is the
worldline of an observer at rest a distance L′ away, with all distances in the same direction.)

In observer A’s frame, shown in the right panel of Figure 3.6 , the worldlines of observers at rest in
frame B are now tilted lines all with slope c/v. But the paths of the light rays (propagating within the
plane shown) lie at ±45◦ in both frames, because the speed of light is universal. The emission event
S, which lies on B’s surface of simultaneity, is the intersection between the leftward propagating light
ray and the worldline wB′′ of an observer who is at rest in B’s frame and twice as far from the origin
as the worldline, wB′ , which contains the reception event T . Since events R and S are simultaneous,
as seen in frame B (and the distance L′ in this construction is arbitrary), the frame B surface of
simultaneity containing events R and S must, in frame A, appear as a straight line connecting these
events. From the geometry of the figure, one can see that the triangles RTU and RTS are similar,
and hence the angle between the simultaneity line RS and the the 45◦ lightcone is the same as the
angle between the worldline wB and the lightcone. This implies that the slope of the simultaneity
line is the inverse of the slope of worldline wB, as asserted above. (As an exercise determine where
the point U lies in the left panel and whether the triangles RTU and RTS are again similar - they
are.)

3.5 Lorentz transformations

Just as many problems in ordinary spatial geometry are easier when one introduces coordinates and
uses analytic geometry, spacetime geometry problems of the type just discussed are also simpler if
one introduces and uses analytic formulas relating coordinates in different reference frames. These
relations are referred to as Lorentz transformations. Recall that in Chapter 1 we considered the
transformation of coordinates between two reference frames related by a rotation.

Using the two frames discussed above, let (x0, x1, x2, x3) denote spacetime coordinates in the inertial
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reference frame of observer A, and let (x′ 0, x′ 1, x′ 2, x′ 3) denote spacetime coordinates in the inertial
reference frame of observer B, who is moving in the x1 direction with velocity v relative to observer
A. How are these coordinates related?

Assume, for simplicity, that the spacetime origins of both frames coincide. Then there must be some
linear transformation which relates coordinates in the two frames,

x0

x1

x2

x3

 = Λ


x′ 0

x′ 1

x′ 2

x′ 3

 , (3.5.1)

where Λ is some 4 × 4 (real) matrix. (This is the 4-D analog of the 3 × 3 rotation matrix in
Eq. (1.5.10).) Since the transformation Λ describes the effect of switching to a moving frame, it is
referred to as a Lorentz boost, or simply a ‘boost’.

If the spatial coordinates of frame B are not rotated with respect to the axes of frame A, so that
observer B describes observer A as moving in the −x′ 1 direction with velocity −v, then the Lorentz
boost will only affect lengths in the 1-direction, leaving the 2 and 3 directions unaffected. Therefore,
we should have

x2 = x′ 2 , x3 = x′ 3 (for a boost along x1), (3.5.2)

implying that the boost matrix Λ has the block diagonal form

Λ =


α β 0 0
Γ ∆ 0 0
0 0 1 0
0 0 0 1

 , (3.5.3)

with an identity matrix in the lower-right 2 × 2 block, and some non-trivial 2 × 2 matrix in the
upper-left block, which we need to determine.

Now the coordinates of events on the worldline of observer B, in frame B coordinates, satisfy x′ 1 =
x′ 2 = x′ 3 = 0 since observer B is sitting at the spatial origin of her coordinate system. Specializing
to this worldline, the transformation (3.5.3) gives

x0 = αx′ 0 , x1 = Γx′ 0 , (3.5.4)

implying that x1 = (Γ/α)x0. But we already know that this worldline, in frame A coordinates,
should satisfy x1 = (v/c)x0 since observer B moves with velocity v in the 1-direction relative to
observer A. Therefore, we must have Γ/α = v/c. We also know that from observer A’s perspective,
clocks at rest in frame B run slower than clocks at rest in frame A by a factor of γ = 1/

√
1− (v/c)2.

In other words,

γ =
∆tA
∆tB

=
dx0

dx′ 0
= α . (3.5.5)

Combining this with the required value of Γ/α implies that Γ = γ (v/c). This determines the first
column of the Lorentz boost matrix (3.5.3) .

To fix the second column, consider the events comprising the x′ 1 axis in frame B, or those events
with x′ 0 = x′ 2 = x′ 3 = 0 and x′ 1 arbitrary. These events lie on the surface of simultaneity of the
spacetime origin in frame B. Above we learned that this surface, as viewed in reference frame A, is
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the tilted plane with slope v/c, whose events satisfy x0 = (v/c)x1. But applied to the x′ 1 axis in
frame B, the transformation (3.5.3) gives

x0 = β x′ 1 , x1 = ∆x′ 1 , (3.5.6)

or x0 = (β/∆)x1. Therefore, we must have β/∆ = v/c. Finally, we can use the fact that events on
the path of a light ray emitted from the spacetime origin and moving in the 1-direction must satisfy
both x′ 1 = x′ 0 and x1 = x0, since observers in both frames will agree that the light moves with speed
c. But if x′ 1 = x′ 0, then the transformation (3.5.3) gives x0 = (α + β)x′ 0, and x1 = (Γ + ∆)x′ 0.
Therefore, we must have α + β = Γ + ∆. Inserting α = γ, Γ = (v/c) γ, β = (v/c) ∆ and solving for
∆ yields ∆ = γ. Putting it all together, we have

Λ =


γ γ (v/c) 0 0

γ (v/c) γ 0 0
0 0 1 0
0 0 0 1

 , (3.5.7)

for a boost along the 1-direction with velocity v. The mixing of the 0 and 1 components of four-vectors
provided by this matrix is the direct analogue of the usual mixing of 2 spatial components under
an ordinary spatial rotation (recall Eq. (1.5.10)). In some sense the difference when mixing with
the 0 (or time) component is that the rotation “angle” is now imaginary and we obtain hyperbolic
functions (instead of sinusoidal functions - recall the discussion in Chapter 1), and no minus sign.
To see this point explicitly, a useful notation is

γ ≡ cosh y , γ
v

c
≡ sinh y , tanh y =

v

c
, (3.5.8)

so that Eq. (3.5.7) can be written in the evocative form

Λ =


cosh y sinh y 0 0
sinh y cosh y 0 0

0 0 1 0
0 0 0 1

 . (3.5.9)

The quantity y is called the “rapidity” and is a useful kinematic variable at particle colliders like
the LHC. This notation efficiently encodes the fact that (following from the definition of γ and the
hyperbolic functions)

γ2 − γ2
(v
c

)2
= cosh2 y − sinh2 y = 1 , (3.5.10)

which ensures that det Λ = 1 as was also true for ordinary rotations.

Using the matrix (3.5.7) or (3.5.9) and multiplying out the transformation (3.5.1) yields

x0 = γ
(
x′ 0 + v

c x
′ 1) =

(
cosh y x′ 0 + sinh y x′ 1

)
, x2 = x′ 2 , (3.5.11a)

x1 = γ
(
v
c x
′ 0 + x′ 1

)
=
(
sinh y x′ 0 + cosh y x′ 1

)
, x3 = x′ 3 . (3.5.11b)

With a little more work, one may show that the general Lorentz transformation matrix for a boost
with speed v in an arbitrary direction specified by a unit vector n̂ = (n1, n2, n3), n

2
1 + n22 + n23 = 1 is

given by

Λ =


γ γ (v/c)n1 γ (v/c)n2 γ (v/c)n3

γ (v/c)n1 1 + (γ−1)n21 (γ−1)n1n2 (γ−1)n1n3
γ (v/c)n2 (γ−1)n1n2 1 + (γ−1)n22 (γ−1)n2n3
γ (v/c)n3 (γ−1)n1n3 (γ−1)n2n3 1 + (γ−1)n23

 . (3.5.12)
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Finally, it is always possible for two inertial reference frames to differ by a spatial rotation (of the
axes), in addition to a boost. The coordinate transformation corresponding to a spatial rotation may
also be written in the form (3.5.1), but with a transformation matrix which has the block-diagonal
form

Λrotation =

(
1
R

)
(spatial rotation) , (3.5.13)

where R is some 3×3 rotation matrix (an orthogonal matrix with determinant one as, for example, in
Eq. (1.5.10) in our discussion in Chapter 1, a representation of an element of the Special Orthogonal
Group SO(3) 1). In other words, for such transformations the time coordinates are not affected,
x0 = x′ 0, while the spatial coordinates are transformed by the rotation matrix R. The most general
Lorentz transformation is a product of a rotation of the form (3.5.13) and a boost of the form (3.5.12),

Λ = Λboost × Λrotation , (3.5.14)

and is an element of the group SO(3,1), where the 3, 1 notation reminds us of the difference (in the
signs in the metric, see below) between the 3 spatial dimensions and the 1 time dimension.

3.6 Spacetime vectors

In ordinary three-dimensional (Euclidean) space, if one designates some point O as the spatial origin
then one may associate every other point X with a vector which extends from O to X. One can,
and should, regard vectors as geometric objects, independent of any specific coordinate system.
However, it is very often convenient to introduce a set of basis vectors {ê1, ê2, ê3} (normally chosen
to point along orthogonal, right-handed coordinate axes), and then express arbitrary vectors as linear
combinations of the chosen basis vectors,

~v =
3∑
i=1

êi v
i . (3.6.1)

Note the essentiall feature that the components {vi} of the vector depend on the choice of basis
vectors, but the geometric vector ~v itself does not.

In exactly the same fashion, once some event O in spacetime is designated as the spacetime origin, one
may associate every other event X with a spacetime vector which extends from O to X. Spacetime
vectors (also called “4-vectors”) are geometric objects, whose meaning is independent of any specific
reference frame. However, once one chooses a reference frame, one may introduce an associated set of
spacetime basis vectors, {ê0, ê1, ê2, ê3}, which point along the corresponding coordinate axes. And,
as in any vector space, one may then express an arbitrary spacetime vector v as a linear combination
of these basis vectors,

v =
3∑

µ=0

êµ v
µ . (3.6.2)

We will use Greek letters (most commonly α and β, or µ and ν) to represent spacetime indices which
run from 0 to 3. And typically we will use Latin letters i, j, k to represent spatial (only) indices

1If you are not familiar with the concepts and language of group theory, which will be useful in much of our discussion
this quarter, you are encouraged to look at the brief introduction to group theory in Chapter 10 of the (supplementary)
lecture notes for this class.
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which run from 1 to 3. We will often use an implied summation convention in which the sum sign is
omitted, but is implied by the presence of repeated indices:

êµ v
µ ≡

3∑
µ=0

êµ v
µ . (3.6.3)

We will generally not put vector signs over spacetime vectors, instead relying on the context to make
clear whether some object is a (4-)vector. But we will put vector signs over three-dimensional spatial
vectors, to distinguish them from spacetime vectors.

The spacetime coordinates of an event are the components of the spacetime vector x associated with
this event in the chosen reference frame,

x = êµ x
µ ≡ ê0 x0 + ê1 x

1 + ê2 x
2 + ê3 x

3 . (3.6.4)

A different reference frame will have basis vectors which are linear combinations of the basis vectors
in the original frame. Consider a ‘primed’ frame whose coordinates {x′µ} are related to the coordi-
nates {xν} of the original frame via a Lorentz transformation (3.5.1). It is convenient to write the
components of the transformation matrix as Λµν (where the first index labels the row and the second
labels the column, as usual for matrix components). Then the linear transformation (3.5.1) may be
compactly rewritten as

xµ = Λµν x
′ ν . (3.6.5)

The inverse transformation, expressing primed coordinates in terms of unprimed ones, is

x′µ = (Λ−1)µν x
ν , (3.6.6)

where (Λ−1)µν are the components of the inverse matrix Λ−1.2 The components of any 4-vector
transform in exactly the same fashion when one transforms between two given reference frames.

The Lorentz transformation matrix also relates the basis vectors in the two frames (note the indices),

ê′ν = êµ Λµν . (3.6.7)

In other words, if you view the list (ê0, ê1, ê2, ê3) as a row-vector, then it is multiplied on the right
by a Lorentz transformation matrix Λ. The transformation of basis vectors must have precisely this
form so that the complete spacetime vector is frame independent, as initially asserted,

x = ê′µ x
′µ = êν Λνµ(Λ−1)µα x

α = êν x
ν . (3.6.8)

Next recall that the dot or scalar product of two spatial vectors, ~a·~b, is defined geometrically, without
reference to any coordinate system, as the product of the length of each vector times the cosine of
the angle between them. One can then show that this is the same as the component-based definition,
~a ·~b =

∑
i a
i bi, for any choice of Cartesian coordinates. It is this frame or rotation independence

that ensures this product is a scalar, i.e., that it is not changed by a rotation.

2For boost matrices of the form (3.5.7) or (3.5.12), changing the sign of v (or y) converts Λ into its inverse. Note
that this changes the sign of the off-diagonal components in the first row and column, leaving all other components
unchanged. For transformations which also include spatial rotations, to convert the transformation to its inverse one
must transpose the matrix in addition to flipping the sign of these “time-space” components, corresponding to changing
the sign of the rotation angle.
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What is the appropriate generalization of the dot or scalar product for spacetime vectors? This
should be some operation which, given two 4-vectors a and b, produces a single number. The
operation should be symmetric, so that a · b = b · a, and linear, so that a · (b+ c) = a · b+ a · c. The
result should also be independent of the choice of (inertial) reference frame one uses to specify the
components of these vectors, i.e., be a scalar (unchanged) under Lorentz transformations. Finally
it should essentially reduce to the usual spatial dot product if both a and b lie within a common
surface of simultaneity. There is a (nearly) unique solution to these requirements.

However, there is a sign ambiguity when satisfying the above constraints (except the last) and you
will see two definitions of the Lorentz scalar product in common usage (and it is important to
recognize this fact in order to avoid confusion). The one typically labeled the “East Coast” choice
is given by a · b ≡ −a0 b0 + a1 b1 + a2 b2 + a3 b3. This definition of the dot product differs from the
four dimensional Euclidean space definition of a dot product merely by the change in sign of the
time-component term. It satisfies the required linearity and reduces to the usual spatial dot product
if the time components of both four vectors vanish. The alternative “West Coast” scalar product,
which is used in the the text by Kogut and will be used in this class, is given by

a · b ≡ +a0 b0 − a1 b1 − a2 b2 − a3 b3 , (3.6.9)

or with an implied summation on spatial indices, a · b = +a0 b0 − ai bi. Only the overall sign of the
scalar or dot product changes between the two definitions, and not the underlying symmetry prop-
erties or the physics. Note that with the “West Coast” scalar product it is the 3 spatial components
that differ in sign from the Euclidean space scalar product, but with the advantage that typical
physically interesting scalar quantities will have positive values. (But be warned that the East Coast
definition is used when Prof. Yaffe teaches this course. As a result his lecture notes exhibit sign
differences in several places.)

To see that this definition of the scalar product is frame-independent (i.e., is really a scalar), it is
sufficient to check the effect of a boost of the form (3.5.7) (since we already know that a rotation
of coordinates does not affect the three-dimensional dot product). Transforming the components of
the 4-vectors a and b to a primed frame, as in Eq. (3.6.6), using the boost (3.5.7) gives

a′ 0 = γ
(
a0 − v

c a
1
)
, a′ 1 = γ

(
a1 − v

c a
0
)
, a′ 2 = a2 , a′ 3 = a3 , (3.6.10a)

b′ 0 = γ
(
b0 − v

c b
1
)
, b′ 1 = γ

(
b1 − v

c b
0
)
, b′ 2 = b2 , b′ 3 = b3 . (3.6.10b)

Hence

a′ 0 b′ 0 − a′ 1 b′ 1 = γ2
[
+
(
a0 − v

c a
1
) (
b0 − v

c b
1
)
−
(
a1 − v

c a
0
) (
b1 − v

c b
0
)]

= γ2
[
1− (v/c)2

] (
+a0b0 − a1b1

)
= +a0b0 − a1b1 , (3.6.11)

where the last step used γ2 ≡ 1/[1 − (v/c)2]. Therefore, as claimed, the value of the dot product
(3.6.9) (or with the alternative definition) is independent of the specific inertial frame one uses to
define the vector coefficients and, in that sense, is a scalar.

The spacetime dot product (3.6.9) is a useful construct in many applications (since the underlying
physics is Lorentz invariant and thus expressible in terms of Lorentz scalars). As a preview of things
to come, consider some plane wave (acoustic, electromagnetic, or any other wave type) propagating
with frequency ω and wave-vector ~k. One normally writes the complex amplitude for such a wave
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as some overall coefficient times e−iωt+i
~k·~x. Having already defined the spacetime position vector x

whose time component x0 ≡ ct, if we also define a spacetime wave-vector k whose time component
k0 ≡ ω/c (kµ = (ω/c,~k)), then this ubiquitous phase factor may be written as a spacetime dot
product,

e−iωt+i
~k·~x = e−ik·x . (3.6.12)

Similarly, in quantum mechanics the wave function of a particle with definite momentum ~p and
energy E moving in empty space is proportional to e−iEt/~+i~p·~x/~. If we define a 4-momentum p with
time component p0 = E/c (pµ = (E/c, ~p)), then this phase factor may also be written as a spacetime
dot product,

e−iEt/~+i~p·~x/~ = e−ip·x/~ . (3.6.13)

(Note that in the East Coast definition the minus sign in the exponent becomes a plus sign.) The
similarity between thse two expressions already hints at the dual nature of particles and waves that
is characteristic of quantum mechanics.

3.7 Units: What is large and what is small?

It may be helpful at this point to say a few words about units and the size of things. Recall from
freshman physics that one of the most confusing issues in the introductory course is the question of
units. For quantities with units (which we will call “dimensionfull” quantities) the specific size will
depend on the choice of units. For example, in (old) English units a typical student is approximately
6 feet tall, while in by now standard (except in the US) MKS units that means just 2 meters tall.
This is clearly a confusing situation. A (single) dimensionfull quantity has no intrinsic “size” as its
numerical value depends on the (arbitrary) choice of units. However, a dimensionfull quantity can
be (meaningfully) large or small compared to another dimensionfull quantity with the same units.
We often say that non-relativistic kinematics apply for small velocities. What we really mean is for
velocities small compared to the velocity of light c. Thus in the equations above the relevant measure
of relativistic effects is the ratio v/c (often labeled β = v/c) as in γ = 1/

√
1− v2/c2 = 1/

√
1− β2.

When β is small compared to one (the “natural” separator between large and small), non-relativistic
approximations are accurate, while as β → 1 we must use the full relativistic description.

Similarly when quantities like p · x in Eq. (3.6.13) are large compared to ~ (many “quanta”) the
effects of interference are numerically small and “classical mechanics” pertains. Yet when p · x/~ is
of order unity or smaller even bullets can display “wavy” (i.e., quantum mechanical) behavior.

A related issue is that the MKS system exhibits three fundamental varieties of dimensionfull quan-
tities, length (m), mass (kg) and time (s). Yet in the relativistic and quantum mechanical world
of particle physics that we want to discuss here, we clearly want to employ 4-vectors, which relate
time with space (and energies with momentum) as in Eqs. (3.3.1) and (3.6.4) (and Eq. (3.6.13)). In
order to make the units of the different components match-up (as they must in order that we can
Lorentz transform the components into one another), we had to introduce all those factors of c. We
also introduced the factor of 1/~ in Eq. (3.6.13) to ensure that the argument of the exponential is
dimensionless. Since the exponential is defined by a power series and each term in the series must
have the same units, the only possibility is that the exponent (the argument of the exponential) has
no units, i.e., is dimensionless.

Further, as noted above, the actual magnitudes of the standard units were chosen to correspond to
human scales (e.g., the size of a king). These choices are, of course, unnatural for particle physics
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applications. For example, the mass of a proton is 1.67×10−27 kg while the spatial “size” of a proton
is measured in fermi’s (1 femtometer = 1 fm = 10−15 m), not meters. Likewise the lifetime of a
typical particle that decays via the strong interactions is of order 10−23 s, which is the time for light
to travel across a particle of size 1 fm. Since the particle physics we will discuss later in this course is
“naturally” relativistic and quantum mechanical, we would like to make a different choice of scales
so that the speed of light c and ~ are both of order 1. It turns out we can address all of the above
issues by defining a new set of ”particle physics units” such that both c and ~ are exactly equal to
1!!!! In the process we have reduced the number of types of dimensionfull quantities to 1. In these
rather surprising “natural” units we have

c = 2.9979× 108m/s = 1 , (3.7.1a)

~ = 1.055× 10−34Js = 6.58× 10−22MeVs = 1 . (3.7.1b)

Thus time now has the same units as distance. Likewise mass and energy have the same units and
both go like 1/distance or 1/time. In these new units the mass of the proton is essentially 1 GeV
(0.938 GeV/c2) (1 GeV = 1 gigaelectronvolt = 109 electronvolts). We also have one fm equal to
1/(197 MeV)∼ 1/(200 MeV) = 1/(0.2 GeV) (1 MeV = 106 electronvolts). It is typical in particle
physics to express (nearly) all dimensionfull quantities in terms of the “natural” (particle physics)
unit of GeV. A list of useful values is provided in the following table, where the “old” units are
indicated in the [] brackets.

Units

1 kg = 5.61× 1026 GeV
[
GeV/c2

]
1 m = 5.07× 1015 GeV−1 [~c/GeV]

1 s = 1.52× 1024 GeV−1 [~/GeV]

1 TeV = 1012 eV = 103 GeV
[
GeV/c2

]
1 fm = 1 F = 10−13 cm = 5.07 GeV−1

(1 fm)2 = 10 mb = 10−26 cm2 = 25.7 GeV−2

(1 GeV)−2 = 0.389 mb

As suggested by the last 2 lines, the “areas” of particles (i.e., the cross sections for scattering) are
typically measured in millibarns (mb). Masses, energies and momenta are measured in GeV, while
distances and times are in GeV−1. Thus the product of distance and momenta (time and energy) is
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dimensionless, as desired. In these units the sizes of various “objects” become:

Sizes (∼ means ignore factors of 2)

Universe ∼ 1026 m = 5× 1041 GeV−1(∼ 1011 galaxies)

Galaxy Supercluster ∼ 1024 m = 5× 1039 GeV−1

Galaxy ∼ 1021 m = 5× 1036 GeV−1(∼ 1011 stars)

Star ∼ 109 m = 5× 1024 GeV−1

Earth ∼ 107 m = 5× 1022 GeV−1

Human ∼ 100 m = 5× 1015 GeV−1

Atom ∼ 10−10 m = 5× 105 GeV−1

Nucleus ∼ 10−14 m = 5× 101 GeV−1

Proton ∼ 10−15 m = 5× 100 GeV−1

Present observational limit ∼ 10−19 m = 5× 10−4 GeV−1

Planck length ∼ 10−35 m = 5× 10−20 GeV−1

This last quantity is the length scale (inverse mass scale) set by the (very weak) gravitational inter-
actions. Note the huge range of sizes that characterize our universe.

You will not be surprised to learn that with only one fundamental type of dimensionfull unit it is easy
to define dimensionless ratios. In many instances these are the simplest quantities to understand
in particle physics. On the other hand, the really interesting (and more difficult to explain) quan-
tities are the small number of dimensionfull quantities. Examples include ΛQCD (≈ 0.2 GeV), the
fundamental dimensionfull parameter characterizing the strong interaction, GF (the Fermi constant,
≈ 1.2 × 10−5 GeV−2) or MW (the mass of the W boson, ≈ 80 GeV), the dimensionfull parameters
that characterize the weak interactions and GN , Newton’s constant (≈ 6.7 × 10−35 GeV−2), that
characterizes the gravitational interaction.

For now in this course, we will keep the explicit factors of c and ~, but our goal is to become
comfortable with the natural units of particle physics where c = ~ = 1.

3.8 Minkowski spacetime

In Euclidean space, the dot product of a vector with itself gives the square of the norm (or length) of
the vector, ~v ·~v ≡ |~v|2. This is the familar situation for three dimensional spatial vectors. Proceeding
by analogy, we will define the square of a spacetime vector using the dot product (3.6.9), so that

(a)2 ≡ a · a = (a0)2 − (a1)2 − (a2)2 − (a3)2 . (3.8.1)

If ∆x is a spacetime vector representing the separation between two events, then the square of ∆x
is called the invariant interval separating these events. This is usually denoted by s2, so that

s2 ≡ (∆x0)2 − (∆x1)2 − (∆x2)2 − (∆x3)2 . (3.8.2)
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Spacetime in which the “distance” between events is defined by this expression is called Minkowski
spacetime.3

The definition of the invariant interval (3.8.2), or the square of a vector (3.8.1), differ from the usual
Euclidean space relations due to the minus signs in front of the spatial component terms (or in front
of the time components in the other definition). But this is a fundamental change. Unlike Euclidean
distance, the spacetime interval s2 can be positive, negative, or zero (and this is true for either
definition of where the minus signs go). Let ∆x be the spacetime displacement from some event X
to another event Y. If the interval s2 = (∆x)2 vanishes, then the spatial separation between these
events equals their separation in time multiplied by c,

s2 = 0 =⇒ (∆~x)2 = (∆x0)2 = (c∆t)2 (lightlike separation). (3.8.3)

This means that light could propagate from X to Y (if ∆t > 0), or from Y to X (if ∆t < 0). In other
words, event Y is on the lightcone of X, or vice-versa. In this case, one says that the separation
between X and Y is lightlike.

If the interval s2 is positive (in our metric), then the spatial separation is less than the time separation
(times c),

s2 > 0 =⇒ (∆~x)2 < (∆x0)2 = (c∆t)2 (timelike separation). (3.8.4)

This means that some particle moving slower than light could propagate from X to Y (if ∆t > 0),
or from Y to X (if ∆t < 0). In other words, event Y is in the interior of the lightcone of X, or
vice-versa. In this case, one says that the separation between X and Y is timelike.

Finally, if the interval s2 is negative (in our metric), then the spatial separation is greater than the
time separation (times c),

s2 < 0 =⇒ (∆~x)2 > (∆x0)2 = (c∆t)2 (spacelike separation). (3.8.5)

In other words, event Y is outside the lightcone of X, and vice-versa. In this case, one says that the
separation between X and Y is spacelike. These possibilities are shown pictorially in Figure 3.7 .

With the alternate definition of the scalar product, i.e., the extra overall minus sign, spacelike
separations correspond to positive values of s2 while timelike separations are negative. This is the
most confusing feature of having two definitions in wide usage - you need to know what definition is
being used to distinguish spacelike from timelike from the sign alone.4

3Minkowski spacetime is the domain of special relativity, in which gravity is neglected. Correctly describing grav-
itational dynamics leads to general relativity, in which spacetime can have curvature and the interval between two
arbitrary events need not have the simple form (3.8.2). We will largely ignore gravity.

A further word about index conventions may also be appropriate. It is standard in modern physics to write the
components of 4-vectors with superscripts, like aµ or xν , as we have been doing. Although we will not need this, it is
also conventional to define subscripted components which, in Minkowski space (with our choice of the scalar product),
differ by flipping the sign of the space components, so that ak ≡ −ak (k = 1, 2, 3) for any 4-vector a. This allows
one to write the dot product of two 4-vectors a and b as aµb

µ (with the usual implied sum). More generally, in
curved space one defines a metric tensor gµν via a differential relation of the form ds2 = gµν dx

µ dxν , and then defines
aµ ≡ gµν a

ν so that a · b = aµb
µ = aµbµ = gµν a

µ bν . In flat spacetime the metric tensor is diagonal: “West Coast”
gµν = diag[1,−1,−1,−1], “East Coast” gµν = diag[−1, 1, 1, 1].

4When you begin a physics conversation with another physicist, the first question should be to establish what sign
convention to use (an essential part of the “secret” physicist’s handshake). The choice is typically correlated with
where the physicist went to graduate school and this explains the coast-based labels. Those trained on the East Coast,
e.g., Larry Yaffe, use the sign convention used, e.g., in the autumn 2013 version of this class, while those trained on the
West Coast, e.g., John Kogut and Steve Ellis, tend to use the convention used in this class this quarter. You should
learn to be fluent in both.
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Figure 3.7: The past and future lightcones of an event X separate spacetime into those events which are: (i) timelike
separated and in the future of X, (ii) lightlike separated and in the future of X, (iii) spacelike separated, (iv) lightlike
separated and in the past of X, and (v) timelike separated and in the past of X.

3.9 The pole and the barn

10 m

v = 0.866 c

Figure 3.8: A relativistic runner, carrying a long pole, ap-
proaches and passes through a barn. Does the pole fit within
the barn?

A classic puzzle illustrating basic aspects of
special relativity is the pole and the barn,
sketched in Figure 3.8 . You are standing
outside a barn whose front and back doors
are open. A (very fast!) runner carrying a
long horizontal pole is approaching the barn.
The (proper) length of the barn (measured
in its rest frame) is 10 meters. The length
of the pole, when measured at rest, is 20
meters. But the relativistic runner is moving

at a speed of
√
3
2 c ' 0.866 c, and hence the

pole (in your frame) is Lorentz contracted by a factor of 1/γ =
√

1− (v/c)2 = 1/2. Consequently,
from your standpoint, the pole just “fits” within the barn; when the front of the pole emerges from
one end of the barn, the back of the pole will have just passed into the barn through the other door.

But now consider this situation from the runner’s perspective. In his (or her) co-moving frame, the

pole is 20 meters long. The barn is coming toward the runner at a speed of −
√
3
2 c, and hence the

barn which is 10 meters long in its rest frame is Lorentz contracted to a length of only 5 meters.
The pole cannot possibly fit within the barn!

Surely the pole either does, or does not, fit within the barn. Right? Which description is correct?

This puzzle, like all apparent paradoxes in special relativity, is most easily resolved by drawing
a spacetime diagram which clearly displays the relevant worldlines and events of interest. It is
often also helpful to draw contour lines on which the invariant interval s2 (relative to some key
event) is constant. For events within the x0–x1 plane, the invariant interval from the origin is just
s2 = (x0)2 − (x1)2. Therefore, the set of events in the x0–x1 plane which are at some fixed interval
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s2 from the origin lie on a hyperbola.5

Let us create a spacetime diagram for this puzzle working in the reference frame of the barn. (This
is an arbitrary choice. We could just as easily work in the runner’s frame.) Try doing this yourself
before reading the following step-by-step description of Figure 3.9 .

Orient coordinates so that the ends of the barn are at x1 = 0 and x1 = 10m. Therefore, the worldline
of the left end of the barn (wL) is a vertical line at x1 = 0, while the worldline of the right end of

the barn (wR) is a vertical line at x1 = 10m. Since the pole is moving at velocity
√
3
2 c (in the x1

direction), the worldlines of the ends of the pole are straight lines in the x0–x1 plane with a slope of
c/v = 2/

√
3 ' 1.155. Call the moment when the back end of the pole passes into the barn time zero.

So the worldline of the back end of the pole (w′B) crosses the worldline of the left end of the barn at
event A with coordinates (x0, x1) = (0, 0). In the frame in which we’re working the pole is Lorentz
contracted to a length of 10 meters. Hence, the worldline of the front end of the pole (w′F) must
cross the x1 axis at event B with coordinates (x0, x1) = (0, 10m). This event lies on the worldline
wR of the right end of the barn, showing that in this reference frame, at time t = 0, the Lorentz
contracted pole just fits within the barn.

Now add to the diagram the surface of simultaneity of event A in the runner’s frame. From section
3.4 we know that this surface, in the frame in which we are a drawing our diagram, is tilted upward
so that its slope is v/c ' 0.866 (and the 45◦ lightcone of event A bisects the angle between this
surface and the worldline w′B). The worldline wR of the right end of the barn intersects this surface
of simultaneity at event C, while the worldline w′F of the front of the pole intersects this surface at
event D. This surface of simultaneity contains events which, in the runner’s frame, occur at the same
instant in time. From the diagram it is obvious that event C lies between events A and D. In other
words, in the runner’s frame, at the moment when the back end of the pole passes into the barn, the
front end of the pole is far outside the other end of the barn — the pole does not fit in the barn.

The essential point of this discussion, and the spacetime diagram in Figure 3.9 , is the distinction
between events which are simultaneous in the runner’s frame (events A, C, and D), and events which
are simultaneous in the barn’s frame (A and B). Both descriptions given initially were correct. The
only fallacy was thinking that it was meaningful to ask whether the pole does (or does not) fit within
the barn, without first specifying a reference frame. The answer depends on the choice of frame.

To complete our discussion of this spacetime diagram, consider the invariant interval between event
A (which is our spacetime origin) and each of the events B, C, and D. Within the two-dimensional
plane of the figure, the invariant interval from the origin is s2 = (x0)2 − (x1)2. We know that event
B has coordinates (x0, x1) = (0, 10m) so it is immediate that s2AB = −(10m)2. We could work out
the (x0, x1) coordinates of events C and D, and from those coordinates evaluate their interval from
event A. But this is not necessary since we can use the fact that events C and D lie on the runner’s
frame surface of simultaneity of event A. We are free to evaluate the interval from event A using the
runner’s frame coordinates, instead of barn frame coordinates. Within the two-dimensional plane of
the figure, s2 = (x′ 0)2 − (x′ 1)2. Events A, C, and D are simultaneous in the runner’s frame, so all
their x′ 0 coordinates vanish. And in this frame (the rest frame of the pole) we know that the pole’s
length is 20m, while the barn’s length is Lorentz contracted to 5m. Hence s2AC = −(5m)2 and
s2AD = −(20m)2. Therefore, event C must lie on the hyperbola whose intersection with the x1 axis

5Recall that the equation y2 − x2 = s2 defines a hyperbola in the (x, y) plane whose asymptotes are the 45◦ lines
y = ±x. If s2 < 0 then one branch opens toward the right and the other opens toward the left. If s2 > 0 then one
branch opens upward and one opens downward.
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Figure 3.9: A spacetime diagram of the pole and the barn, showing events in the rest frame of the barn. The red
vertical lines are the worldlines wL and wR of the left and right ends of the barn. The blue lines labeled w′F and w′B
are the worldlines of the front and back of the pole, respectively. The thin blue line passing through events A, C, and
D is a surface of simultaneity in the runner’s reference frame. The hyperbola passing through event C shows events
at invariant interval s2 = −(5m)2 relative to event A. Note that this hyperbola intercepts the x1 axis at 5m. The
hyperbola passing through event D shows events at invariant interval s2 = −(20m)2 relative to event A. Note that
this hyperbola intercepts the x1 axis at 20m.
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is at 5m, while event D must lie on the hyperbola whose intersection with the x1 axis is at 20m, as
indicated by the 2 green curves.

3.10 Causality

x   = 00

�������� B

x’   = 00

w’w

A ������

Figure 3.10: Two spacelike separated events A and B.
In the unprimed frame, B is in the future of A, but in
the primed frame B is in the past of A.

Consider any two spacetime events A and B which
are spacelike separated. A basic consequence of
the fact that surfaces of simultaneity are observer
dependent is that different observers can disagree
about the temporal ordering of spacelike separated
events. For example, in the unprimed reference
frame illustrated in Fig. 3.10 , event B lies in the
future of event A — its x0 coordinate is bigger.
But event B lies below the x′ 0 = 0 surface of si-
multaneity which passes through event A. This
means that event B lies in the past of event A in
the primed reference frame.

This should seem bizarre. If observers at rest in
the unprimed frame were to see some particle or
signal travel from event A to event B, then this
signal would be traveling backwards in time from
the perspective of observers at rest in the primed
frame. This is inconsistent with causality — the
fundamental idea that events in the past influence
the future, but not vice-versa.

An idealized view of the goal of physics is the prediction of future events based on knowledge of the
past state of a system. But if different observers disagree about what events are in the future and
what events are in the past, how can the laws of physics possibly take the same form in all reference
frames? Are our two relativity postulates fundamentally inconsistent?

If it is possible for some type of signal to travel between events A and B then, because these two
events are outside each other’s lightcones, this would be superluminal propagation of information.
The only way that our postulates can be consistent is if it is simply not possible for any signal to
travel between spacelike separated events. In other words, a necessary consequence of our postulates
is that no signal whatsoever can travel faster than light. For fans of science fiction this is a sad state
of affairs, but it is an inescapable conclusion. (Read again the discussion at the end of Chapter 2 of
the recent, apparently wrong, observation of neutrinos traveling faster than the speed light.)

The situation is different if events A and B are timelike separated. First, A and B will be timelike
separated in all frames. Further, if B occurs after A in some reference frame (so that a signal could
propagate from A to B), then this same temporal ordering will obtain in all frames. To see this
last point, first note that, for a timelike separation, we have (tA − tb)

2 − (~xA − ~xB)2 > 0 in all
frames. The temporal ordering statement means that tB > tA in some frame. In order to switch this
temporal ordering to t′B < t′A in a different reference frame, there must be an intermediate reference
frame where t”B = t”A, since this quantity changes smoothly with the intervening boosts. But the
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temporal separation can never vanish for a timelike separated pair of events (i.e., (tA − tB)2 > 0 in
all frames).

3.11 Example Problems

Kogut 2-6

The emission and the absorption of a light ray are two distinct spacetime events, which are separated
by a distance ` in the common rest frame of the emitter and the absorber. This question asks for the
spatial and temporal separation of these events as observed in a boosted reference frame traveling
with velocity v parallel to the direction from the emitter to the absorber. It is very similar to Kogut
problem 2-5. Three different methods for solving the problem (each of which are instructive) are
presented below.

Method #1: Thought-experiment

(a) In the original frame, the light ray travels a distance x2−x1 = ` in a time t = `/c. Now consider
the light ray emission/absorption process in a frame moving with speed v along the x1 direction of
the original frame. Without loss of generality, assume that the origin of the boosted frame coincides
with the emission event. As seen in the boosted frame, the original frame is moving with velocity −v
along the x′1 direction. Call the time between emission and absorption events (in the boosted frame)
t′, so in this frame the light ray travels a distance ct′. Since the distance between x1 and x2 was `
in the original frame, it is now `/γ in the boosted frame due to Lorentz contraction. But it is also
essential to realize that while x1 and x2 are fixed in the original frame, they are moving as viewed
in the boosted frame. In particular, x2 moves a distance −vt′ while the light is traveling, which
we must add on to `/γ to obtain the net distance traveled by the light in this frame. Therefore,
ct′ = `/γ − vt′. Write this as ct′ = `/γ − (v/c)ct′, and solve for ct′,

ct′ =
`

γ(1 + v/c)
= `

√
1− v/c
1 + v/c

.

(b) The time between events in the boosted frame is just

t′ = ct′/c =
`

c

√
1− v/c
1 + v/c

,

(since the speed of light is frame-independent). Notice that this result is not a simple time dilation.
For positive v, the time interval between emission and absorption as measured in the boosted frame
is less than in the original frame. For negative v, that time interval is greater.

ASIDE: This result allows us to make a connection to our discussion of clocks in Chapter 2. Imagine
that, instead of being absorbed, the light ray is reflected back and detected at the emitter. The
corresponding time interval (in the original frame) between emission and detection,

∆t =
2`

c
,

is just the time between ticks of the clock we discussed in Chapter 2 (L → `). As observed in the
moving frame (moving in the configuration of Figure 2.4), the time interval is (note the different
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direction of motion in the two segments)

∆t′ =
`

c

√
1− v/c
1 + v/c

+
`

c

√
1 + v/c

1− v/c
=

2`

c

1√
1− (v/c)2

= γ∆t ,

which is the usual time dilation result.

Method #2: Lorentz transformation

In the original frame, the emission event may be placed at the origin of the Minkowski diagram of
spacetime. The absorption event then has coordinates (x0, x1) = (`, `) which lies on the lightcone
(since it describes the motion of light!). Under a boost, the origin is mapped to the origin so the
emission event also occurs at the origin of the boosted frame (since we assumed that this was the
synchronizing event). The absorption event has coordinates (x′0, x′1) given by(

x′0

x′1

)
=

(
γ −γ vc
−γ vc γ

)(
`
`

)
.

The spatial separation is given by x′1 = γ`(1− v/c), which reduces to the same answer given above
for ct′, i.e., `

√
(1− v/c)/(1 + v/c). Since the events lie on the lightcone, the time separation (times

c) and spatial separation are equivalent.

Method #3: Spacetime diagram

A

E
l

l

x1

x0 x’

x’

0

1

line of sim
ultaneity

In the diagram to the right we have drawn
the lines of simultaneity for the boosted ob-
server that intersect the emission and ab-
sorption events, E and A. The upper line
of simultaneity is described by the equation
(x0− `)/(x1− `) = v/c, which when written
in the more familiar slope-intercept form is
x0 = (v/c)x1+`(1−v/c).6 The x0-intercept
is `(1 − v/c) and as you can see from the
diagram it gives the time (times c) between
emission and absorption events for the boosted
observer. Well, almost. We must realize
that the orthogonal axes of the diagram are
drawn in the original frame, not the boosted
one. So the time we have just extracted
is the time measured in the original frame,
not the boosted one. But we already know
how to convert time intervals between iner-
tial frames in relative motion—use time dilation. A clock carried by the boosted observer will run
slower than that carried by the observer at rest. So we again obtain the same result x′0 = γx0 =
γ`(1− v/c) = `

√
(1− v/c)/(1 + v/c).

6You should keep in mind that the line of simultaneity is merely the intersection of the three-dimensional hyperplane
of simultaneity with the x0 − x1 plane, so the complete equation is x0 − (v/c)x1 + x2 + x3 − `(1 − v/c) = 0.
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Figure 3.11: Timelike separation in S′ frame.

More spacetime separation examples.

Let us make use of the specific Lorentz transformation in Eq. (3.5.7) and the (West Coast) metric
to look explicitly at an illustrative variety of pairs of events in the 2 reference frames defined by the
boost. As usual, we assume that the two frames have a common origin and that the spatial directions
are aligned (i.e., the is no rotation in the transformation, as should be clear from its form).

Timelike separation

Consider the situation suggested in Fig. (3.11). In the S′ frame (the right-hand figure) two events
(the green dots) occur at the spatial origin, but separated in time (i.e., in x′0) by a distance ∆.
In the S frame (the left-hand figure) the lightcone (red dashed line) and the boosted x′0 and x′1

directions (blue dashed lines) are indicated. Note that the two events lie along the x′0 direction in
both frames. The specific components of the 4-vector separations of the two events in the two frames
are given by (the reader is encouraged to explicitly evaluate the matrix multiplication to find ∆x)

∆x′ =


∆
0
0
0

 , ∆x = Λ∆x′ =


γ∆

(v/c)γ∆
0
0

 , (3.11.1)

in agreement with the figure. The invariant separation squared is given by

(∆x′)2 = +∆2 = (∆x)2 = ∆2γ2
(
1− (v/c)2

)
= +∆2 . (3.11.2)

The factor of γ in the zeroth component of ∆x is the usual time dilation factor, but note that the
two events occur at different spatial points in the S frame. However, since both the zeroth and
first components of the separation change between the two frames in just the correct fashion, the
invariant separation (squared) is unchanged, i.e., is invariant, under the Lorentz transformation.

Spacelike separation, ê1 direction

Next consider two simultaneous events in the S′ frame, one at the origin and one translated by ∆ in
the ê1 direction as indicated in Fig. (3.12). Note that this corresponds to the usual (simultaneous)
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Figure 3.12: Spacelike separation (in x1 direction) in S′ frame.

definition of a length in the S′ frame. Now the 4-vector separations in the two frames are

∆x′ =


0
∆
0
0

 , ∆x = Λ∆x′ =


(v/c)γ∆
γ∆
0
0

 , (3.11.3)

while the invariant separation is

(∆x′)2 = −∆2 = (∆x)2 = ∆2γ2
(
(v/c)2 − 1

)
= −∆2 . (3.11.4)

As expected for a spacelike separation the invariant has a negative value (in our West Coast metric).

The astute reader may be concerned by the fact that the spatial component of the separation in the
S frame is γ∆, and not the “expected” contracted length. All readers are encouraged to think about
this issue, and, in particular, how to measure lengths in different reference frames. The essential
point is that a length is defined by the spatial separation of two events that occur at the same time
in the given frame. If we think of the green dots as defined by the ends of a “∆-stick”, at rest in
the S′ frame, we can measure the length of the same ∆-stick by determining the location of the
right-hand end of the ∆-stick when the left-hand end is a the origin, i.e., at x0 = 0. This requires
a little bit of trigonometry as indicated in Fig. (3.13). In particular, we can use the fact that the
motion of the right-hand end of the ∆-stick in the S frame (recall the ∆-stick is at rest in the S′

frame) will be along a line parallel to the x′0 direction (as indicated in the figure). Next we use the
two similar triangles (indicated by the identical angles θ, where tan θ = v/c) to determine the length
of the lower side of the smaller triangle to be (v/c)γ∆× (v/c) = (v/c)2γ∆, as noted in the figure. To
find the measured length of the ∆-stick in the S frame we need the location of the two ends measured
simultaneously at x0 = 0 (or any other shared x0 value). Thus the length we want in Fig. (3.13) is
the lower side of the larger triangle (γ∆) minus the side of the smaller triangle ((v/c)2γ∆). Thus
the length of the ∆-stick in the S frame is

Length = γ∆− (v/c)2γ∆ = (1− (v/c)2)γ∆ = ∆/γ , (3.11.5)
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Figure 3.13: Spacelike separation (in x1 direction) in S′ frame, viewed in S frame.

which is just the expected contracted length.

Spacelike separation, ê2 (or ê3) direction

Next consider two simultaneous events in the S′ frame, one at the origin and one now translated by
∆ in the ê2 (or ê3) direction. Note that again this corresponds to the usual (simultaneous) definition
of a length in the S′ frame. Since the boost is not along the (spatial) direction of the separation, the
separations in the two frames are identical as indicated in Fig. (3.14),

∆x′ =


0
0
∆
0

 , ∆x = Λ∆x′ =


0
0
∆
0

 . (3.11.6)

Hence in this case the 4-vector separation is unchanged by the boost (as is its invariant square).
This is an illustration of the fact that spatial separations orthogonal to the direction of a boost are
unchanged by the boost.

Lightlike separation, ê1 direction

Next we consider two events separated by a lightlike displacement in the S′ frame, one at the origin
and one translated by ∆/

√
2 in both the ê0 and ê1 directions (i.e., separated by a distance ∆ along
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Figure 3.14: Spacelike separation (in x2 direction) in S′ frame (and S frame).
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Figure 3.15: Lightlike separation (in x′0 and x1 direction) in S′ frame.
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the lightcone) as indicated in Fig. (3.15). Now the separations in the two frames are

∆x′ =


∆/
√

2

∆/
√

2
0
0

 , ∆x = Λ∆x′ =


(1 + (v/c)) γ∆/

√
2

(1 + (v/c)) γ∆/
√

2
0
0

 . (3.11.7)

Thus, although there is a dilation by the factor (1 + v/c)γ for both components, the separation
remains lightlike (and along the light cone),

(∆x′)2 = 0 = (∆x)2 . (3.11.8)

Lightlike separation, ê2 direction

Finally we consider two events separated by a lightlike displacement in the S′ frame, one at the
origin and one translated by ∆/

√
2 in both the ê0 and ê2 directions (i.e., separated by a distance ∆

along the lightcone, but not parallel to the boost). Now the separations in the two frames are

∆x′ =


∆/
√

2
0

∆/
√

2
0

 , ∆x = Λ∆x′ =


γ∆/
√

2

(v/c)γ∆/
√

2

∆/
√

2
0

 . (3.11.9)

Thus in this case the impact of the boost is more complicated, dilating the zeroth component and
changing the direction of the spatial component (i.e., in the S frame the separation is no longer in
just the ê0 − ê2 plane), but the resulting separation is still lightlike,

(∆x′)2 = 0 = (∆x)2 = (∆2/2)
(
γ2(1− (v/c)2)− 1

)
= (∆2/2) (1− 1) . (3.11.10)

The reader is encouraged to invest the time necessary to ensure that the differences between these
various examples are clear.
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