PBIO 375 First Midterm

- 1. Which of the following statements about polar bonds is TRUE?
 - a. Molecules with polar bonds are not present in the plasma membrane.
 - b. Polar bonds are only found in hydrophobic molecules.
 - c. Polar bonds are not found in amphipathic molecules
 - d. Polar bonds may be found in hydrophilic molecules.
 - e. Polar bonds are charge carriers in ion channels.

2. Water molecules (H₂O)

- a. form hydrogen bonds with each other.
- b. are covalently bonded to each other.
- c. are too large to be affected by thermal energy.
- d. are in low concentration in a liter of pure water.
- e. are amphipathic ions.

3. Salts, such as sodium chloride, when dissolved in water

- a. are small crystals.
- b. repel water dipoles by the hydrophobic effect.
- c. ionize into anions and cations.
- d. break apart into neutral molecules.
- e. form a solution with a net positive charge.

4. A lipid bilayer membrane

- a. is impermeable to small hydrophobic molecules and large hydrophilic molecules.
- b. is permeable to large hydrophobic molecules and small hydrophilic molecules.
- c. is freely permeable to ions.
- d. binds amphipathic gases.
- e. has a core composed of polar head groups.

- 5. Which of the statements about ion concentration gradient across the cell membrane is TRUE?
 - a. The concentration gradient for Cl⁻ is greater than for Ca⁺⁺.
 - b. The concentration of both Na⁺ and K⁺ is higher in the extracellular fluid than in the intracellular fluid.
 - c. The concentration of both Na⁺ and K⁺ is lower in the extracellular fluid than in the intracellular fluid.
 - d. The concentration of Na⁺ is higher in the extracellular fluid than in the intracellular fluid.
 - e. The concentration of K^+ is higher in the extracellular fluid than in the intracellular fluid.
- 6. Which of the following three conditions must exist in order for a cell to have a membrane potential?
 - a. ion concentration gradient, membrane capacitance, and non-selective cation channels.
 - b. membrane capacitance, osmotic gradient, and ion-selective leak channels.
 - c. non-selective leak channels, ion concentration gradient, and a hydrogen bonded network.
 - d. ion concentration gradient, glucose transporter, and ion-selective leak channels.
 - e. ion concentration gradient, membrane capacitance, and ion-selective leak channels.
- 7. Diffusion is:
 - a. an effective way to send chemical signals over long distances.
 - b. too random to be useful in living systems.
 - c. insensitive to concentration gradients.
 - d. an effective way to send chemical signals over short distances.
 - e. driven by ATP hydrolysis.
- 8. A cell placed in a hypotonic bathing solution will
 - a. shrink because of water flow through aquaporin channels.
 - b. swell because water moves down a transmembrane osmotic gradient.
 - c. swell because water moves up a transmembrane osmotic gradient.
 - d. shrink because water is drawn out of the cell to increase bath tonicity.
 - e. neither swell nor shrink.

9. Osmosis (choose BEST answer)

- a. refers to the flow of water through water-filled pores in the presence of an osmotic gradient.
- b. is the movement of solute particles across a solute-permeable barrier.
- c. is driven by diffusion of water down a water concentration gradient.
- d. decreases with increasing solute concentration.
- e. takes place across a water-impermeable membrane.

10. Which of the following statements about ion channels is FALSE?

- a. Ion channels play an important role in electrical signaling.
- b. Ion channels are membrane proteins with a central pore that is permeable to small non-polar molecules.
- c. Ion channels are assembled from 3 to 6 subunits.
- d. Some types of ion channels are open all the time.
- e. There is a large number of different kinds of ion channels.

11. The resting membrane potential of all types of cells:

- a. is close to the Na⁺ equilibrium potential.
- b. is close to the Ca⁺⁺ equilibrium potential.
- c. is set by the relative numbers of open Na⁺ and K⁺ leak channels in the membrane.
- d. is more negative than the K⁺ equilibrium potential.
- e. depends on the number of open water channels.

12. The sodium-potassium pump

- a. is only present in nerve cells.
- b. uses the energy provided by the hydrolysis of ATP to pump K⁺ into the cell.
- c. transports large polar molecules across the membrane in exchange for Na⁺ and K⁺
- d. is required for the recovery of hyperpolarizing potential changes
- e. is a gated ion channel that is opened by binding ATP

13. The membrane potential of a cell sitting at -70 mV will

- a. depolarize if a ligand opened a K⁺-selective, ligand-gated channel.
- b. depolarize if an applied force closed a Na⁺-selective, mechanically-gated ion channel.
- c. depolarize if a ligand opened a Cl⁻-selective, ligand-gated ion channel.
- d. hyperpolarize if a ligand opened a K⁺-selective, ligand-gated ion channel.
- e. hyperpolarize if an applied force closed a K⁺-selective, mechanically-gated ion channel.

- 14. Which of the following is most responsible for the recovery of the membrane potential following either a hyperpolarizing or depolarizing graded potential change?
 - a. the inactivation of voltage-gated Na⁺ channels
 - b. Ca⁺⁺ activation of a second-messenger cascade
 - c. Na⁺ and K⁺ leak channels
 - d. a balance between voltage-gated K⁺ channels and Cl⁻ channels
 - e. the summed entry of anions and cations

15. Voltage-gated ion channels

- a. are typically opened by a hyperpolarizing change.
- b. are only found in epithelial cells.
- c. may be selectively permeable to Na⁺, K⁺, Ca⁺⁺ or Cl⁻.
- d. typically close when the membrane depolarizes.
- e. require ATP to be opened by a voltage change.
- 16. The selectivity filter of voltage-gated ion channels
 - a. detects a change in the membrane electric field and displaces a blocking particle.
 - b. prevents the ion channel from being endocytosed.
 - c. closes during inactivation.
 - d. excludes ions that don't have a specific set of properties.
 - e. is only present in Na⁺-selective ion channels.

17. Voltage-gated Na⁺ channels

- a. have four states: closed, open, partly open, and partly closed.
- b. have three states: closed, open, and inactivated.
- c. have two states: closed and not open.
- d. have one state: open.
- e. have one state: closed.

18. Neurotransmitter receptors

- a. are exclusively permeable to Ca⁺⁺.
- b. are not expressed in neurons with gap junctions.
- c. may be channels opened by binding a ligand.
- d. are always channels opened by ligand dissociation.
- e. are only present in muscle cells.

- 19. Which of the following statements about inactivation is TRUE?
 - a. The inactivation of voltage-gated ion channels involves a "gate" that blocks the open pore.
 - b. Inactivation is only a property of aquaporin channels.
 - c. Inactivation plays an essential role in neurotransmitter reuptake.
 - d. Inactivation refers to a conformation change in the Na⁺-K⁺ ATPase.
 - e. Inactivation precedes G-protein activation by GDP-GTP exchange.
- 20. Which of the following statements about changes in membrane potential is TRUE?
 - a. During a depolarizing potential change the membrane becomes impermeable to water.
 - b. Hyperpolarization refers to an increase in hydrogen bonding in an aqueous solution.
 - c. During a depolarizing potential change, the membrane potential becomes <u>more</u> positive.
 - d. During a hyperpolarizing potential change, the membrane potential becomes <u>less</u> negative.
 - e. Depolarizing and hyperpolarizing potential changes are only produced by voltage-gated ion channels.
- 21. Which of the following statements about graded potential changes is <u>FALSE</u>?
 - a. Graded potential changes decay in amplitude as they spread from their site of generation.
 - b. The amplitude of a graded potential produced by binding a ligand increases with the number of open ligand-gated channels.
 - c. Graded potential changes are only produced by ligand-gated channels.
 - d. Graded potential changes can be either depolarizing or hyperpolarizing.
 - e. The end-plate potential is an example of a graded potential change.
- 22. The sole purpose of an electrical signal is to
 - a. trigger exocytosis.
 - b. generate an action potential.
 - c. prevent cell death.
 - d. produce a change in intracellular Ca⁺⁺.
 - e. inactivate voltage-gated Na⁺ channels.

23. The rising phase of the action potential

- a. depends on the strength of the stimulus that evoked it.
- b. depends on the delayed activation of voltage-gated K⁺ channels.
- c. is caused by regenerative Na⁺ entry.
- d. involves the repetitive activation of a specific type of ligand-gated ion channel.
- e. raises the intracellular concentration of K⁺.

24. The <u>repolarizing</u> phase of the action potential

- a. requires the activation of voltage-gated Ca⁺⁺ channels.
- b. is caused by regenerative K⁺ entry.
- c. depends on the inactivation of voltage-gated K⁺ channels.
- d. only happens in the absence of closed Na⁺ channels.
- e. involves the inactivation of some channels and the voltage activation of other channels.

25. Cocaine and other local anesthetics

- a. block voltage-gated Na⁺ channels
- b. block inactivation of K⁺ channels
- c. activate leak channels.
- d. block ligand-gated ion channels.
- e. only act on unmyelinated ion channels.

26. G-protein coupled receptors

- a. are ligand-gated ion channels.
- b. are activated by depolarization.
- c. are phospholipids that are activated by binding a ligand.
- d. are 7-transmembrane proteins that are activated by binding an extracellular ligand.
- e. are activated by binding to a G protein.

27. Release of Ca⁺⁺ from intracellular stores

- a. requires the phosphorylation of the IP₃ receptor.
- b. may be triggered by activation of G protein-coupled receptor.
- c. generates voltage changes that may evoke action potentials.
- d. is the only way that a Ca⁺⁺ signal is produced in neurons.
- e. is blocked by ligand-gated ion channels.

- 28. The myelin sheath
 - a. is a layer of connective tissue that protects the axon from mechanical injury
 - b. is many layers of glial cell membrane.
 - c. is only found in the somatic nervous system.
 - d. is a continuous sheet of insulation that increase conduction velocity.
 - e. is attacked by oligodendrocytes.
- 29. Synaptic transmission in the central nervous system
 - a. is like neuromuscular transmission in every way.
 - b. is exclusively mediated by the release of glutamate.
 - c. depends upon metabolic coupling via gap junctions.
 - d. may be either excitatory or inhibitory.
 - e. always leads to an action potential in the postsynaptic cell.
- 30. In the central nervous system, when GABA binds to its receptor to cause an inhibitory postsynaptic potential,
 - a. Cl⁻ ions leave the postsynaptic cell.
 - b. Cl⁻ ions enter the postsynaptic cell.
 - c. a non-selective cation channel opens.
 - d. Ca⁺⁺ ions enter the postsynaptic cell.
 - e. Ca** ions leave the postsynaptic cell.