PBIO 375 Final exam

- 1. In a negative feedback regulatory system, what is the term for the response pathway that <u>acts</u> to restore the regulated condition back to the ideal range?
 - a. effector
 - b. afferent
 - c. integrator
 - d. sensor
 - e. countercurrent multiplier
- 2. Which of these structures is found in the renal medulla?
 - a. distal tubule
 - b. Bowman's capsule
 - c. peritubular capillaries
 - d. glomerulus
 - e. collecting duct
- 3. What is the main thing the kidneys change in order to regulate the ECF volume?
 - a. pH of the ECF
 - b. glucose concentration in the ECF
 - c. osmolarity of the ECF
 - d. reabsorption or excretion of Na^+
- 4. Which of the following typically causes proteinuria (protein in the urine)?
 - a. increased secretion of protein
 - b. decreased reabsorption of protein
 - c. decreased GFR
 - d. damage to the filtration membrane
 - e. constriction of the afferent arteriole
- 5. All of the following are part of the filtration membrane EXCEPT
 - a. podocytes
 - b. glomerular basement membrane
 - c. macula densa
 - d. slit diaphragm
 - e. fenestrated endothelium

- 6. Suppose the mean arterial pressure (average blood pressure) increases from 100 to 110 mm Hg. What happens as a result?
 - a. GFR increases
 - b. myogenic response causes constriction of the afferent arteriole
 - c. myogenic response causes constriction of the efferent arteriole
 - d. myogenic response causes dilation of the afferent arteriole
 - e. tubuloglomerular feedback causes dilation of the afferent arteriole
- 7. In the proximal tubule
 - a. aquaporin expression is regulated.
 - b. Na⁺ reabsorption is mostly passive.
 - c. Na⁺ reabsorption is mostly regulated by aldosterone.
 - d. cells are full of mitochondria to produce ATP that supports active transport.
 - e. cells express the NKCC2 cotransporter that is the target of the loop diuretic furosemide.
- 8. Which of the following can occur in someone with hyperglycemia?
 - a. a high filtered load of glucose
 - b. increased urine volume
 - c. glucose in the collecting duct pulls water into the forming urine via osmosis
 - d. SGLT2 proteins become saturated
 - e. ALL of the above can occur in someone with hyperglycemia
- 9. Which of the following is TRUE about thiazide diuretics?
 - a. inhibit the Na⁺/Cl⁻ cotransporter found in the distal tubule
 - b. decrease ECF volume by increasing Na⁺ reabsorption
 - c. increase urine volume by increasing Na⁺ reabsorption
 - d. increase urine volume by increasing Na⁺ filtration
 - e. ALL of the above are TRUE
- 10. Organic molecule secretion
 - a. occurs mainly in the loop of Henle.
 - b. is a passive process.
 - c. depends upon transporters that have a broad specificity and are subject to competitive inhibition.
 - d. involves the transport of substances from the lumen of the renal tubule into the ECF.
 - e. is stimulated by sympathetic nervous system input to the afferent arteriole.
- 11. Countercurrent flow occurs in the (choose best)
 - a. proximal tubule
 - b. distal tubule
 - c. collecting duct
 - d. afferent arteriole
 - e. vasa recta

- 12. In the kidney, the largest gradient of osmolarity exists along an axis between the
 - a. proximal and distal tubules
 - b. cortex and the papilla
 - c. collecting duct and the loop of Henle
 - d. collecting duct and the medullary interstitial fluid
 - e. ascending limb and the descending limb of the loop of Henle
- 13. Which of the following increases vasopressin secretion?
 - a. decreased AP firing by hypothalamic osmoreceptors
 - b. atrial natriuretic peptide
 - c. increased delivery of Na⁺ to the distal tubule
 - d. increased plasma osmolarity
 - e. increased stretch of the afferent arteriole
- 14. What is the location of the granular cells that release renin?
 - a. macula densa
 - b. afferent arteriole
 - c. proximal tubule
 - d. sympathetic nervous system
 - e. cortical collecting duct
- 15. What decreases in a person treated with an ACE inhibitor?
 - a. angiotensinogen
 - b. renin
 - c. angiotensin II
 - d. erythropoietin
 - e. polyuria
- 16. Which of the following leads to increased renin secretion?
 - a. decreased blood flow to the kidney
 - b. activation of sympathetic nervous system input to the afferent arteriole
 - c. decreased delivery of Na+ to the distal tubule
 - d. a drop in mean arterial pressure
 - e. ALL of the above lead to increased renin secretion
- 17. What type of neuron innervates the detrusor muscle?
 - a. sympathetic postganglionic neuron
 - b. parasympathetic postganglionic neuron
 - c. somatic efferent neuron

- 18. Which of the following best describes what happens in someone who is vaccinated?
 - a. vaccination bypasses the innate immune response
 - b. the vaccine depletes specific helper T cells to prevent a cytokine storm
 - c. the person has immunity due to antibodies that were injected in the vaccine
 - d. the vaccine upregulates NK cells to prevent viral infection
 - e. immune memory results in a more rapid secondary immune response to prevent disease
- 19. Neutrophils are short-lived white blood cells that are abundant in the circulation. What is the main role of neutrophils?
 - a. phagocytosis of pathogens
 - b. secreting antibodies
 - c. inducing apoptosis in virally infected cells
 - d. binding to antigens presented on MHC-I molecules
 - e. secreting complement factors
- 20. ALL of the following occur during inflammation EXCEPT
 - a. vasodilation
 - b. edema
 - c. clonal expansion
 - d. recruitment of phagocytes
 - e. pain
- 21. The membrane attack complex
 - a. is created by B cells
 - b. forms when perforin is released
 - c. forms when complement is activated
 - d. is created by opsonins
 - e. is a key feature of the specific immune response
- 22. In an adult, when a specific immune response is stimulated, antigen-presenting cells activate lymphocytes by displaying peptide antigens on their surface. Where does this typically occur?
 - a. within the circulation
 - b. in secondary lymphoid tissues
 - c. in the bone marrow
 - d. in the thymus
- 23. Which of the following cells expresses MHC-II molecules on its surface?
 - a. skin cell
 - b. ciliated respiratory epithelial cell
 - c. dendritic cell
 - d. neuron
 - e. liver cell

- 24. In what way do helper T cells provide "help" in a specific immune response?
 - a. activate complement
 - b. release cytokines that stimulate immune effectors
 - c. stimulate somatic recombination in B cells
 - d. secrete MHC molecules
 - e. kill self-reactive B cells
- 25. What is the role of plasma cells in the specific immune response?
 - a. secrete antibodies
 - b. activate complement
 - c. display peptide antigens on MHC-II molecules
 - d. secrete cytokines that stimulate lymphocyte proliferation
 - e. ALL of the above are performed by plasma cells
- 26. An important step, that <u>always</u> occurs during the stimulation of clonal expansion of a <u>naïve B</u> <u>cell</u>, is when <u>antigen</u> binds to
 - a. a B cell receptor
 - b. a pattern recognition receptor
 - c. an MHC-I molecule
 - d. a cytokine receptor
 - e. an NK cell
- 27. Which of the following mechanisms most directly prevents viral infection?
 - a. release of perforin and granzymes by cytotoxic T-cells
 - b. activation of JAK-STAT signaling pathway
 - c. activation of complement
 - d. neutralizing antibodies binding to virus
 - e. display of viral peptides on an antigen presenting cell
- 28. An epitope is part of
 - a. an MHC molecule
 - b. the complement cascade
 - c. the variable region of an antibody
 - d. an antigen
 - e. a cytokine receptor
- 29. Which of the following is an intracellular receptor?
 - a. receptor associated with JAK kinase
 - b. cytokine receptor
 - c. B-cell receptor
 - d. T-cell receptor
 - e. glucocorticoid receptor

- 30. Which of the following is an example of passive immunity?
 - a. treatment with a JAK inhibitor
 - b. treatment with a glucocorticoid drug
 - c. treatment with a monoclonal antibody drug that targets a pathogen
 - d. response to vaccination with mRNA to a pathogen protein
 - e. response to vaccination with a heat-killed pathogen

31. H₂O:

- a. is an amphipathic molecule.
- b. provides a favorable environment for lipid soluble compounds.
- c. is a dipole with an uneven distribution of electron density.
- d. is a network of covalently bonded molecules.
- e. is a highly concentrated nonpolar solution.
- 32. The cell membrane is
 - a. impermeable to hydrophobic compounds.
 - b. a bilayer of phospholipids.
 - c. permeable to large polar compounds.
 - d. devoid of proteins.
 - e. impermeable to water.
- 33. The membrane potential of all living cells:
 - a. is approximately +70 mV at rest.
 - b. is the consequence of an osmotic gradient
 - c. exists independently of any ion concentration gradients.
 - d. depends on the cell membrane having selective ion permeability.
 - e. is generated by electron transport.
- 34. Ion channels
 - a. are enzymes that mediate transmembrane ion permeation.
 - b. are never open all the time.
 - c. are closed by ATP hydrolysis.
 - d. may be opened by an applied mechanical force.
 - e. are only present in nerve and muscle cells.

- 35. Electrical signals in cells
 - a. result ultimately in a change in intracellular Ca⁺⁺.
 - b. are always hyperpolarizing.
 - c. are exclusively the consequence of voltage-gated ion channels.
 - d. are dependent on regenerative protein synthesis.
 - e. are driven by the hydrolysis of ATP.
- 36. Graded changes in membrane potential
 - a. are all or none voltage changes.
 - b. get larger and faster as they spread away from their site of generation.
 - c. are modulated by dephosphorylation.
 - d. vary with the strength of the signal that produced them.
 - e. are always depolarizing.
- 37. Intracellular Ca⁺⁺ signals
 - a. are generated by Ca⁺⁺ entry through voltage gated Na⁺ channels.
 - b. block the conduction of action potentials in excitable cells.
 - c. may trigger changes in gene expression.
 - d. can only be produced by ligand gated ion channels.
 - e. none of the above are true.
- 38. Myelinated axons
 - a. are present in the peripheral but not the central nervous system.
 - b. in the autonomic nervous system are coupled to Schwann cells by gap junctions.
 - c. have a sheath that insulates nodes of Ranvier.
 - d. have an increased action potential conduction velocity relative to unmyelinated axons.
 - e. can conduct graded potentials over long distances.
- 39. Synaptic transmission in the central nervous system
 - a. always results in an increase in action potential production in the post synaptic cell.
 - b. is initiated by a decrease in Ca⁺⁺.
 - c. makes use of ligand gated ion channels.
 - d. is triggered by the graded release of G-protein beta/gamma subunits.
 - e. is mediated by the active transport of specific neurotransmitters.

- 40. Gap junctions
 - a. are formed by adhesion molecules that provide structural support
 - b. are only present in nerve cells.
 - c. are specialized for fast excitatory chemical transmission.
 - d. provide a mechanism for the exchange of intracellular organelles.
 - e. are formed by intercellular channels that couple cells electrically and metabolically.
- 41. The 'neural code' is a term used to describe the relationship between the intensity of a stimulus and
 - a. the sequence of amino acids within the receptor protein.
 - b. its duration.
 - c. its effect on thalamic relay cells.
 - d. the frequency of action potentials generated by a sensory neuron.
 - e. the type of receptor that responds to it.
- 42. Dull, poorly localized and persistent pain is transmitted to the central nervous system along
 - a. large, unmyelinated C-fibers.
 - b. small, myelinated A-delta fibers.
 - c. small, unmyelinated C-fibers.
 - d. large, myelinated B-fibers.
 - e. large, myelinated C-fibers
- 43. Each olfactory sensory neuron responds to a limited number of odors because it expresses
 - a. only muscarinic receptors.
 - b. many, but not all, olfactory receptor proteins.
 - c. only five primary modalities.
 - d. only one type of olfactory receptor protein.
 - e. only voltage-gated channels.
- 44. The capacity of the auditory system to discern sounds of different frequencies originates with
 - a. the different sizes of the hair cells along the basilar membrane.
 - b. the structure of the helicotrema.
 - c. the shape and structure of the basilar membrane.
 - d. the auditory thalamus.
 - e. the shape of the tympanic window.

- 45. Which of the following behaviors will trigger the vestibulo-ocular reflex?
 - a. rapid head movements
 - b. flashes of bright light
 - c. loud sounds
 - d. rapid limb flexion
 - e. strong odors
- 46. Which of the following factors contributes to the high visual acuity of the retinal fovea?
 - a. the optic chiasm
 - b. specialized cones
 - c. specialized rods
 - d. the optic disc
 - e. the tapetum lucidum
- 47. Which of these protein molecules is NOT involved in skeletal muscle contraction?
 - a. myosin
 - b. actin
 - c. beta-arrestin
 - d. tropomyosin
 - e. troponin
- 48. For slowly executed delicate movements, motor units are recruited in order of increasing size. For rapidly executed powerful movements, motor units are recruited
 - a. in the same order.
 - b. in a random sequence.
 - c. in the opposite sequence.
 - d. in order of decreasing size.
 - e. in order of decreasing axonal conduction velocity.
- 49. At the synapses between postganglionic neurons and their target tissues, <u>most</u> sympathetic neurons release
 - a. substance P.
 - b. glutamate.
 - c. aspartate.
 - d. norepinephrine.
 - e. acetylcholine.

- 50. Which of the following mechanisms is thought to be most important for learning and memory?
 - a. changes in the strength of synaptic connections between neurons in the brain
 - b. changes in the type of neurotransmitters used at synapses in the brain
 - c. increases in the number of neurons in the brain
 - d. increases in the size of neurons in the brain
 - e. increasing the distances between neurons in the brain