Friday, October 22nd, 2022

Following directions on the mark-sense form, write your **name**, and student number in the blanks and fill in the bubbles. In addition, write your **name** on this exam.

When finished with the test, turn in both the mark-sense form and the exam at the front of the room.

PLACE ALL ANSWERS ON THE MARK-SENSE FORM

MULTIPLE CHOICE: Always choose the BEST, most complete answer. (2 points each)

- 1. Which of the following is an amphipathic molecule?
 - a) water
 - b) glucose
 - c) phospholipid
 - d) Na⁺
 - e) CO₂
- 2. What happens to red blood cells bathed in a hypotonic solution? (A hypotonic solution has a lower concentration of solutes than the intracellular fluid).
 - a) There is no movement of water or solute because of the barrier provided by the cell membrane.
 - b) Water moves into the cells.
 - c) Water moves out of the cells.
- 3. Osmosis
 - a) requires ATP.
 - b) is the movement of water <u>up</u> an osmotic gradient.
 - c) is the diffusion of water down an osmotic gradient.
 - d) depends upon carrier proteins that specifically bind to water.
 - e) occurs when water moves through ion channels.
- 4. Which of the following proteins in NOT a channel?
 - a) aquaporin
 - b) protein that causes depolarization in response to membrane stretch
 - c) nicotinic acetylcholine receptor
 - d) protein that allows K⁺ ions to leak out of a resting cell
 - e) Na⁺/K⁺-ATPase

- 5. In what way does membrane transport by a carrier protein differ from membrane transport by a channel?
 - a) ions only cross the membrane via channels
 - b) only channels are transmembrane proteins
 - c) the transported substance binds to a specific binding site on the carrier protein
 - d) only transport by a carrier protein is affected by concentration gradient
 - e) only transport by a channel is affected by concentration gradient
- 6. Fill in the blank. Active transport ensures that the concentration of _____ is always much higher inside the cell than outside.
 - a) Na⁺
 - b) K⁺
 - c) Cl
 - d) water
 - e) glucose
- 7. The equilibrium potential for an ion is
 - a) the membrane potential that would occur if there were equal concentrations of ions in the intracellular and extracellular fluid.
 - b) the membrane potential at which ions flow out of the cell.
 - c) the same as the resting membrane potential.
 - d) The membrane potential at which the force due to the concentration gradient is balanced by the force due to the electrical gradient.
- 8. Take a cell with typical physiological gradients. At a membrane potential of 0mV, which way will Na⁺ ions flow if you open some Na⁺ channels?
 - a) into the cell
 - b) out of the cell
 - c) there is no net movement of Na⁺ at 0mV
- 9. The membrane potential is a <u>weighted</u> average of the equilibrium potentials of all the ions contributing to the membrane potential. Which of the following is the "weighting" factor?
 - a) sign of charge (whether ion is positive or negative)
 - b) valence (the number of charges on the ion)
 - c) concentration of the ion inside the cell
 - d) concentration of the ion outside the cell
 - e) relative membrane permeability for each ion
- 10. In a typical neuron, which of the following has the most <u>leak channels</u> that are selectively permeable to it?
 - a) Ca⁺⁺
 - b) Cl
 - c) glucose
 - d) K⁺
 - e) Na⁺

- 11. Which of the following best describes the action of the receptor for estrogen, a steroid hormone?
 - a) acts as a second messenger to increase intracellular Ca⁺⁺
 - b) inactivates a G protein
 - c) opens a ligand-gated ion channel
 - d) acts as a protein kinase
 - e) acts as a transcription factor to change gene expression
- 12. Which of the following is TRUE about signaling involving a G protein coupled receptor (GPCR)?
 - a) it is involved in fast synaptic transmission
 - b) the G protein is activated by binding GDP
 - c) the G protein is inactivated when the G-alpha dissociates from the beta-gamma subunits
 - d) the receptor forms a stable association with an intracellular kinase
 - e) the receptor is a 7-transmembrane domain protein
- 13. Which of the following is a Ca⁺⁺ binding protein?
 - a) NMDA receptor
 - b) voltage-gated Ca⁺⁺ channel
 - c) calmodulin
 - d) IP₃
 - e) G-alpha subunit
- 14. Albuterol is a drug that acts as a beta-2 adrenergic agonist. This means it
 - a) directly binds to a ligand-gated ion channel.
 - b) activates a G protein coupled receptor.
 - c) competes for binding with acetylcholine.
 - d) stimulates a receptor that acts as a transcription factor.
 - e) stimulates a catalytic receptor.
- 15. What is an important step in the signal transduction for the <u>cytokine</u> interferon-gamma? (Cytokines are signals that affect immune cells.)
 - a) increase in cAMP
 - b) increase in intracellular Ca⁺⁺
 - c) activation of JAK kinase
 - d) degradation of intracellular STAT proteins
 - e) activation of protein kinase A
- 16. Which of the following is part of the sequence whereby signaling from the hormone oxytocin leads to Ca⁺⁺ release from intracellular stores?
 - a) G_q activates phospholipase C to cleave a membrane phospholipid and form IP₃
 - b) membrane depolarization opens voltage-gated Ca⁺⁺ channels
 - c) protein kinase A is activated
 - d) G_s activates adenylyl cyclase
 - e) G_i inhibits adenylyl cyclase

- 17. Capsaicin (found in chili peppers) is a ligand that opens a
 - a) neurotransmitter receptor.
 - b) temperature-gated ion channel.
 - c) mechanically-gated ion channel.
 - d) voltage-gated ion channel.
 - e) leak channel.
- 18. Which of the following is TRUE about graded potentials?
 - a) The end plate potential is a type of graded potential.
 - b) Graded potentials conduct long distances in axons.
 - c) Regenerative Na⁺ entry causes a graded potential.
 - d) Graded potentials are only produced by voltage-gated channels.
 - e) Graded potentials can only be depolarizing potentials.
- 19. Which of the following proteins is responsible for generating a <u>receptor potential</u>?
 - a) ligand-gated ion channel
 - b) Na⁺/K⁺-ATPase
 - c) mechanically-gated ion channel
 - d) Na⁺ leak channel
 - e) K⁺ leak channel
- 20. Which of the following best describes the voltage sensor?
 - a) transmembrane segment with positive charges
 - b) flap that closes channel in response to depolarization
 - c) part of the channel pore that makes it selective for one type of ion
 - d) intracellular domain that binds to cations
 - e) requires phosphorylation to be activated
- 21. The rising phase of the action potential
 - a) peaks at the E_{Na} (the Na⁺ equilibrium potential).
 - b) depends upon a positive feedback loop.
 - c) increases the intracellular concentration of K⁺.
 - d) depends upon the opening of voltage-gated K⁺ channels.
 - e) depends upon the activity of the Na⁺/K⁺-ATPase.
- 22. During the <u>absolute refractory period</u>
 - a) summation of graded potentials can't occur.
 - b) voltage-gated Na⁺ channels are inactivated.
 - c) voltage-gated K⁺ channels are closed.
 - d) ligand-gated Cl⁻ channels are open.
 - e) depolarization can elicit a second action potential.

- 23. Which of the following is localized to the cell membrane in the node of Ranvier?
 - a) voltage-gated Na⁺ channels
 - b) voltage-gated Ca⁺⁺ channels
 - c) myelin
 - d) nicotinic acetylcholine receptors
 - e) mechanically-gated ion channels
- 24. Multiple sclerosis is an autoimmune disorder that primarily damages
 - a) voltage-gated Na⁺ channels.
 - b) nicotinic acetylcholine receptors at the neuromuscular junction.
 - c) docking proteins for synaptic vesicles.
 - d) myelin.
 - e) GABA receptors.
- 25. A neurotransmitter receptor
 - a) may be a G protein coupled receptor.
 - b) may be a ligand-gated ion channel.
 - c) may be permeable to Ca⁺⁺.
 - d) ALL of the above are true.
 - e) NONE of the above are true.
- 26. What does it mean to say that the neuromuscular junction has a high safety factor?
 - a) The neuron makes multiple synapses onto a muscle fiber to guarantee activation.
 - b) The end plate potential is large enough to conduct throughout the muscle fiber.
 - c) The end plate potential is always well above the threshold for action potential initiation.
 - d) Acetylcholinesterase activity prevents over-excitement of the muscle fiber.
 - e) Postsynaptic receptors allow Ca⁺⁺ entry into the cell to ensure that there is enough to trigger contraction.
- 27. Myasthenia gravis is a disorder of the neuromuscular junction. What type of drug is used to treat myasthenia gravis?
 - a) nicotinic agonist
 - b) muscarinic agonist
 - c) nicotinic antagonist
 - d) muscarinic antagonist
 - e) acetylcholinesterase inhibitor

- 28. In what way does the neuromuscular junction differ from every synapse in the central nervous system (CNS)?
 - a) Acetylcholinesterase terminates the action of the neurotransmitter.
 - b) Acetylcholine is the neurotransmitter.
 - c) The postsynaptic potential is excitatory.
 - d) The postsynaptic potential always elicits an action potential in the postsynaptic cell.
 - e) The neuromuscular junction is a chemical synapse.
- 29. Which part of the brain is most important for consolidation of long-term memories?
 - a) frontal cortex
 - b) hippocampus
 - c) hypothalamus
 - d) medulla
 - e) midbrain
- 30. Which of the following is required for induction of long-term potentiation?
 - a) a high safety factor
 - b) GABA receptors
 - c) acetylcholine release
 - d) stimulation by neuromodulators
 - e) NMDA receptors

END OF TEST

Turn in your mark-sense form and your question sheets at the front of the room.