NAME	KEY

Friday, October 20th, 2023

Following directions on the mark-sense form, write your **name**, and student number in the blanks and fill in the bubbles. In addition, write your **name** on this exam.

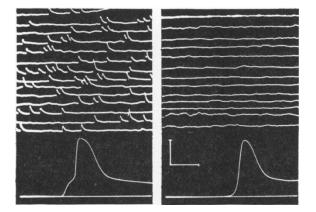
When finished with the test, turn in both the mark-sense form and the exam at the front of the room.

Answers marked in red bold-face.

PLACE ALL ANSWERS ON THE MARK-SENSE FORM

MULTIPLE CHOICE: Always choose the BEST, most complete answer. (2 points each)

- 1. The internal environment of the body is
 - a) the lumen of the digestive tract.
 - b) adjacent to the apical surfaces of all epithelia.
 - c) the plasma membrane.
 - d) the extracellular fluid.
 - e) the intracellular fluid.
- 2. Amphipathic molecules
 - a) dissolve well in water.
 - b) tend to form a bilayer in biological solutions.
 - c) have two polar heads.
 - d) are nonpolar.
 - e) are charge carriers in biological solutions.
- 3. If a cell is placed in a <u>hypoosmotic</u> solution (<u>lower</u> number of solutes than the intracellular fluid)
 - a) the cell shrinks.
 - b) the cell swells.
 - c) water flows out of the cell.
 - d) water flows down its concentration gradient.
 - e) there is no effect because of the barrier provided by the cell membrane.
- 4. Which of the following proteins is a channel and NOT a carrier protein?
 - a) aquaporin
 - b) sodium-potassium pump
 - c) glucose transporter
 - d) Na⁺-glucose cotransporter
 - e) Ca++-ATPase


- 5. Which of the following statements about ion concentrations across the cell membrane is true?
 - a) Ca⁺⁺ concentration in the cytosol is higher than in the extracellular fluid.
 - b) Na⁺ concentration in the cytosol is higher than in the extracellular fluid.
 - c) Both K⁺ and Na⁺ have similar concentrations in the cytosol and extracellular fluid.
 - d) K⁺ concentration in the extracellular fluid is higher than in the cytosol.
 - e) Na⁺ concentration in the extracellular fluid is higher than in the cytosol.
- 6. Saturation occurs at high concentrations of the transported substance, where transport reaches a maximal rate. For which of the following proteins can transport become saturated?
 - a) Na⁺-glucose cotransporter
 - b) ligand-gated ion channel
 - c) voltage-gated Na⁺ channel
 - d) ungated leak channel
 - e) aquaporin
- 7. Which of the following is most important in <u>establishing</u> the resting membrane potential at -70 mV?
 - a) an excess of Cl⁻ ions outside the cell
 - b) voltage-gated Na⁺ and K⁺ channels
 - c) intracellular concentration of large organic anions (mainly proteins)
 - d) ionic concentration gradients and leak channels that are selective for K⁺ and Na⁺
 - e) Ca⁺⁺ ATPases that keep the concentration of Ca⁺⁺ very low in the cytosol
- 8. If you open K⁺ channels in a neuron at a membrane potential of -70mV
 - a) the membrane depolarizes.
 - b) K⁺ ions flow into the cell.
 - c) K⁺ ions flow out of the cell.
 - d) There is no net movement of K⁺ ions either into or out of the cell.
- 9. At the equilibrium potential for Na⁺
 - a) the concentration gradient would favor the movement of Na⁺ out of the cell.
 - b) the cell is hyperpolarized.
 - c) the force due to the Na⁺ concentration gradient is exactly balanced by the force due to the electrical potential difference.
 - d) the inward flow of Na⁺ ions is exactly balanced by the outward flow of K⁺ ions.
 - e) the outward flow of Na⁺ ions is exactly balanced by the inward flow of K⁺ ions.

- 10. Which of the following is involved in fast synaptic transmission?
 - a) mechanically-gated ion channel
 - b) temperature-gated ion channel
 - c) G protein coupled receptor
 - d) receptor coupled to JAK kinase
 - e) ligand-gated ion channel
- 11. Which of the following is TRUE about the receptor for the nonpolar steroid hormone testosterone?
 - a) is associated with JAK kinase
 - b) is a catalytic receptor, meaning it directly activates an enzyme associated with the receptor
 - c) is a ligand-activated transcription factor, meaning it binds to DNA to change gene expression
 - d) is a ligand-gated ion channel
 - e) activates the enzyme adenylyl cyclase
- 12. What is an important way that signaling via a G protein coupled receptor is turned off?
 - a) the alpha subunit dissociates from the beta and gamma subunits
 - b) voltage-gated GPCRs have an inactivation gate
 - c) the G protein binds to the receptor
 - d) the alpha subunit hydrolyzes GTP, turning it into GDP
 - e) cAMP (cyclic AMP) saturates the receptor
- 13. IP₃ (inositol trisphosphate) is a second messenger that gets generated during signaling by the hormone oxytocin. What does IP₃ do?
 - a) opens a ligand-gated K⁺ channel in the plasma membrane
 - b) stimulates adenylyl cyclase
 - c) activates protein kinase A
 - d) opens a ligand-gated Ca⁺⁺ channel in the membrane of the endoplasmic or sarcoplasmic reticulum
 - e) binds to DNA and changes gene expression
- 14. What does it mean if a drug is an agonist for a receptor?
 - a) It inhibits signal transduction by the receptor.
 - b) It binds to the receptor and activates it.
 - It competes with the endogenous ligand for binding to the receptor. (also marked correct)
 - d) It turns off the basal activity of the receptor.
 - e) It covalently binds and inactivates the receptor.

- 15. Drugs that inhibit JAK kinase are used to
 - a) improve synaptic transmission at the neuromuscular junction.
 - b) block signaling by cytokines in autoimmune disorders.
 - c) speed action potential conduction in demyelinating disorders.
 - d) block signaling by nuclear receptors.
 - e) activate STAT proteins.
- 16. The membrane potential hyperpolarizes when opening
 - a) ligand-gated K⁺ channels in the dendrites of a postsynaptic cell.
 - b) ligand-gated Na⁺ channels in the dendrites of a postsynaptic cell.
 - c) mechanically-gated ion channels in the sensory dendrites of an afferent neuron.
 - d) nicotinic acetylcholine receptors at the neuromuscular junction.
 - e) voltage-gated Ca⁺⁺ channels in an axon terminal.
- 17. When temperature gated channels in the sensory dendrites of an afferent neuron open, the result is
 - a) an equilibrium potential.
 - b) an action potential.
 - c) a postsynaptic potential.
 - d) generation of a second messenger.
 - e) a receptor potential.
- 18. Graded potentials
 - a) are produced by leak channels.
 - b) are all-or-nothing.
 - c) can conduct long distances without decreasing in strength.
 - d) occur in the dendrites and cell body.
 - e) have a refractory period.
- 19. What part of the voltage-gated Na⁺ channel protein opens the channel in response to depolarization?
 - a) selectivity filter
 - b) toxin binding site
 - c) 7-transmembrane domain
 - d) inactivation gate
 - e) voltage sensor
- 20. What is TRUE about voltage-gated K⁺ channels involved in action potentials?
 - a) They cause Na⁺ channel inactivation.
 - b) Channel opening initiates a positive feedback loop.
 - c) They open with a delay in response to depolarization.
 - d) They open rapidly in response to hyperpolarization.
 - e) They inactivate at negative voltages.

- 21. What <u>prevents</u> the peak of the action potential from reaching +60mV (the Na⁺ equilibrium potential)?
 - a) leak channels for K⁺
 - b) positive feedback due to Na⁺ ions entering the cell
 - c) saturation of Na⁺ binding sites in the pore-forming region of the channel
 - d) rapid inactivation of voltage-gated Na⁺ channels
 - e) increased Na⁺ permeability
- 22. Action potential conduction
 - a) depends upon local current flow that depolarizes the adjacent region of the axon to threshold.
 - b) is slower in larger diameter axons.
 - c) is unaffected in demyelinating disorders.
 - d) is faster for larger amplitude action potentials.
 - e) goes a longer distance for larger amplitude action potentials.
- 23. In an afferent (sensory) neuron, how do action potentials code for the strength of the stimulus?
 - a) by their duration
 - b) by their amplitude
 - c) by their frequency
 - d) by their speed of conduction
- 24. Which of the following is TRUE about myelinated axons?
 - a) conduct action potentials more slowly than unmyelinated axons
 - b) express voltage-gated Na⁺ channels uniformly along their length
 - c) are covered with bundles of myelin separated by myelin-free regions called nodes of Ranvier
 - d) ALL of the above are TRUE.
 - e) NONE of the above are TRUE.
- 25. What is an important step that leads to exocytosis of synaptic vesicles?
 - a) activation of a G protein coupled receptor causing docking of synaptic vesicles
 - b) depolarization in the axon terminal opening voltage-gated Ca⁺⁺ channels
 - c) binding of neurotransmitter activating a receptor linked to JAK kinase
 - d) activation of transporter protein causing neurotransmitter reuptake
 - e) depolarization in the axon terminal causing a miniature end plate potential

- 26. Observe the recordings (made by Fatt and Katz in 1952) in the figure. Which of the following is TRUE?
 - a) The recording on the left was made at the end plate and the recording on the right was made some distance from the end plate.
 - b) The recording on the left shows long term potentiation.
 - c) Both recordings were made at the end plate, but voltage-gated Na⁺ channels were blocked in the recording on the right.

- 27. Myasthenia gravis causes weakness because the disease
 - a) reduces the activity of acetylcholinesterase.
 - b) causes demyelination of somatic motor neurons.
 - c) severely reduces the amount of acetylcholine released by sympathetic preganglionic neurons.
 - d) causes hyperpolarization of skeletal muscle cells.
 - e) reduces the number of acetylcholine receptors at the neuromuscular junction.

- 28. The hippocampus is important for
 - a) storage of declarative memory (long-term memory for facts, events and places)
 - b) encoding and consolidation of declarative memory
 - c) working (short-term) memory
 - d) storage of procedural memory (long-term memory for skills)
 - e) encoding and consolidation of procedural memory
- 29. What is the endogenous ligand for an AMPA receptor, the receptor in the CNS that mediates fast excitatory neurotransmission?
 - a) GABA
 - b) glutamate
 - c) dopamine
 - d) norepinephrine
 - e) serotonin
- 30. After induction of long-term potentiation, in what way does Ca⁺⁺ entry into the cell lead to potentiation (enhancement) of the synaptic response?
 - a) increases the number of excitatory neurotransmitter receptors on the postsynaptic membrane
 - b) binds to and activates NMDA receptors
 - c) depolarizes the presynaptic terminal
 - d) binds to and inactivates GABA receptors
 - e) reduces the number of AMPA receptors on the postsynaptic membrane

END OF TEST

Please turn in your mark-sense form and your question sheets at the front of the room.