PBIO 375 Second Exam

NAME

Wednesday, November 15th, 2023

Following directions on the mark-sense form, write your **name**, and student number in the blanks and fill in the bubbles. In addition, write your **name** <u>on this exam</u>.

When finished with the test, turn in both the mark-sense form and the exam at the front of the room.

PLACE ALL ANSWERS ON THE MARK-SENSE FORM

MULTIPLE CHOICE: Always choose the BEST, most complete answer. (2 points each)

- 1. Excitable cells that convert physical stimuli into changes in membrane potential are
 - a. called sensory receptors.
 - b. found only in the skin.
 - c. not found in muscles.
 - d. not found in our internal organs.
 - e. never able to fire action potentials.
- 2. The type of stimulus that is most effective in activating a sensory receptor is called the
 - a. threshold.
 - b. adequate stimulus.
 - c. receptor protein.
 - d. motor unit.
 - e. perceptron.
- 3. A series of neurons that are connected by synapses from the sensory receptor to second and third order sensory neurons in the central nervous system is called a
 - a. topographic map.
 - b. neural code.
 - c. labelled line.
 - d. sensory map.
 - e. magnetic resonance image.

- 4. In a sensory receptor, the decline in response to a long-lasting stimulus is called
 - a. summation.
 - b. the neural code.
 - c. reciprocal innervation.
 - d. excitation coupling.
 - e. adaption.
- 5. The somatic sensory system is responsible for transmitting information about all the following types of physical stimuli EXCEPT
 - a. temperature
 - b. sound
 - c. pain
 - d. vibration
 - e. touch
- 6. Primary sensory neurons conveying pain and temperature information synapse onto a secondary neuron in the
 - a. cerebellum.
 - b. medulla.
 - c. somatosensory cortex.
 - d. spinal cord.
 - e. thalamus.
- 7. What are the differences between how sharp, fast pain and slow, diffuse pain are detected?
 - a. Sharp fast pain is detected by slowly adapting receptors only.
 - b. Slow, diffuse pain is detected by receptors restricted to the skin surface.
 - c. Slow, diffuse pain is detected exclusively by Pacinian corpuscles.
 - d. Sharp, fast pain is detected by receptors located in the hands but not the feet.
 - e. There are two distinct sensory receptors detecting the two types of pain, A-delta and C fibers.
- 8. Which of the following is a primary taste modality?
 - a. hot
 - b. cold
 - c. umami
 - d. metallic
 - e. spicy

- 9. What kind of protein is an olfactory receptor?
 - a. voltage-gated ion channel
 - b. ligand-gated ion channel
 - c. catalytic receptor
 - d. receptor tyrosine kinase
 - e. G protein coupled receptor (GPCR)
- 10. Each olfactory sensory neuron has ______ different type(s) of olfactory receptor proteins embedded in its membrane.
 - a. 1
 - b. 5-7
 - c. 20
 - d. 382
 - e. 5000
- 11. The fact that odorant molecules can bind to more than one type of olfactory receptor protein explains why
 - a. novel odorant molecules cause the expression of new olfactory sensory neurons.
 - b. some odors activate non-olfactory accessory neurons.
 - c. we can discriminate more distinct odors than there are distinct types of olfactory receptors.
 - d. each individual olfactory sensory neuron expresses many different receptor proteins.
 - e. olfactory sensory neurons are short-lived.
- 12. Our experience of flavor in the food we ingest is thought to arise from the convergence of which three sensory modalities?
 - a. tactile, visual and vestibular
 - b. olfactory, visual and taste
 - c. auditory, olfactory and somatosensory
 - d. taste, olfactory and somatosensory
 - e. taste, olfactory and vestibular
- 13. ALL of the following vibrate or move in response to a sound wave EXCEPT the
 - a. stereocilia.
 - b. tympanic membrane.
 - c. basilar membrane.
 - d. utricle.
 - e. oval window.

- 14. The transmission of sound waves from the outer ear to the inner ear is dependent upon
 - a. the ossicles in the middle ear.
 - b. fluid entering the inner eat through the round window.
 - c. the connection between the helicotrema and the tectorial membrane.
 - d. the connection between the tectorial membrane and the Eustachian tube.
 - e. the size of the middle ear.
- 15. The optimal sound frequency to excite a response in a hair cell in the cochlea is strongly influenced by
 - a. the size of its tip-link proteins.
 - b. its location along the basilar membrane.
 - c. its distance from the tectorial membrane.
 - d. the density of K⁺ leak channels.
 - e. the type of neurotransmitter it releases.
- 16. The semicircular canals are principally responsible for
 - a. diffusing pressure from the cochlear duct.
 - b. detecting faint, low-frequency sounds.
 - c. regeneration of hair cells in the cochlea.
 - d. protecting hair cells in the cochlea from loud sounds.
 - e. detecting rotational movements of the head.
- 17. Maintaining visual fixation during head movements is the primary function of
 - a. the balance reflex.
 - b. the gag reflex.
 - c. the consensual pupillary reflex.
 - d. the vestibulo-ocular reflex.
 - e. the stretch reflex.
- 18. The sensory receptors responsible for detecting gravitational forces exerted on the body are
 - a. muscle spindles.
 - b. hair cells.
 - c. Golgi tendon organs.
 - d. chemoreceptors.
 - e. Pacinian corpuscles.

- 19. Adjustments in the shape of the lens to keep objects in focus is called
 - a. adaptation.
 - b. accommodation.
 - c. astigmatism.
 - d. tinnitus.
 - e. resonance.
- 20. Which of the following is TRUE for photoreceptors in the <u>dark</u>?
 - a. cyclic nucleotide channels are closed
 - b. rhodopsin is bleached
 - c. they are depolarized
 - d. they release less neurotransmitter than in the light
 - e. transducin is activated
- 21. The existence of different photopigments in different cone photoreceptors is the basis for
 - a. eye color.
 - b. accommodation.
 - c. the blind spot.
 - d. color vision.
 - e. heightened sensitivity of rod photoreceptors in dim light.
- 22. During active muscle contractions, force generation depends upon transient chemical bonds that are formed between
 - a. adjacent muscle fascicles.
 - b. acetylcholine and Ca⁺⁺ channels.
 - c. T-tubules and sarcoplasmic reticulum.
 - d. troponin and tropomyosin.
 - e. myosin and actin.
- 23. The propagation of action potentials from the sarcolemma to the interior of the muscle fiber is dependent on the
 - a. motor endplate.
 - b. T-tubules.
 - c. myofibrils.
 - d. sarcoplasmic reticulum.
 - e. Golgi apparatus.

- 24. The speed of muscle shortening varies with
 - a. the level of ATP in the sarcoplasm.
 - b. the diameter of the T-tubules.
 - c. the load that the muscle is working against.
 - d. the amount of acetylcholine released at the neuromuscular junction.
 - e. the rate of ATP synthesis.
- 25. Muscle contraction is <u>terminated</u> when
 - a. the thick filaments begin to shorten.
 - b. the thin filaments slide toward the center of the sarcomere.
 - c. Cl⁻ ions are released from the sarcoplasmic reticulum.
 - d. Ca⁺⁺ ions are pumped back into the sarcoplasmic reticulum.
 - e. Ca⁺⁺ is released from the T-tubules.
- 26. Which of the following is true about motor units?
 - a. One somatic motor neuron innervates only one muscle fiber.
 - b. The motor unit includes the afferent neurons innervating the muscle.
 - c. Each muscle fiber is innervated by multiple somatic motor neurons.
 - d. Each muscle fiber is innervated by a single somatic motor neuron.
 - e. The motor unit includes the upper motor neurons.
- 27. During both voluntary and reflex movements, the first motor units to be recruited are
 - a. slow, fatigue-resistant motor units.
 - b. the ones with the fastest contraction speed.
 - c. the ones that generate the most force.
 - d. innervated by the largest somatic motor neurons.
 - e. the ones that fatigue the fastest.
- 28. Motor neurons are normally activated in order of increasing size because
 - a. small cells receive more synaptic input than large cells.
 - b. small cells consume more energy than large cells.
 - c. small cells have fewer inhibitory connections than large cells.
 - d. large cells express fewer neurotransmitter receptors.
 - e. small cells are easier to excite than large cells.

- 29. The activation of sensory afferent fibers innervating muscle spindles initiates the
 - a. stretch reflex.
 - b. flexion reflex.
 - c. vestibulo-ocular reflex.
 - d. crossed extension reflex.
 - e. startle reflex.
- 30. Range of movement errors and delayed initiation of movement are typical of lesions to the
 - a. spinal cord.
 - b. optic tract.
 - c. cerebellum.
 - d. vestibular nuclei.
 - e. corticospinal tract.

END OF TEST

Please turn in your mark-sense form and your question sheets at the front of the room.