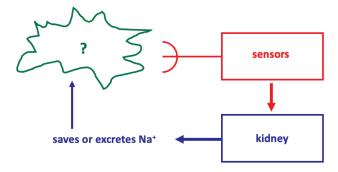
PBIO 375 FINAL exam

NAME

Monday, December 9th, 2024


Following directions on the mark-sense form, write your **name**, and student number in the blanks and fill in the bubbles. In addition, write your **name** <u>on this exam</u>.

When finished with the test, turn in both the mark-sense form and the exam at the front of the room.

PLACE ALL ANSWERS ON THE MARK-SENSE FORM

MULTIPLE CHOICE: Always choose the BEST, most complete answer. (2 points each)

- Refer to the figure. What is the <u>regulated</u> <u>variable</u> in the negative feedback loop?
 - a. extracellular fluid osmolarity
 - b. extracellular fluid volume
 - c. pH in the blood plasma
 - d. concentration of ions in the extracellular fluid

- 2. After blood leaves the glomerular capillaries, it flows directly into the
 - a. afferent arteriole
 - b. vasa recta
 - c. efferent arteriole
 - d. renal vein
 - e. peritubular capillaries
- 3. Which of the following is part of the filtration membrane?
 - a. Bowman's space
 - b. afferent arteriole
 - c. proximal tubule
 - d. uroepithelium
 - e. podocytes

- 4. Diabetic nephropathy is the term for the chronic kidney disease that can occur in people with diabetes mellitus. Which of the following is a <u>specific sign</u> indicating the presence of diabetic nephropathy?
 - a. polyuria
 - b. proteinuria
 - c. hypertension
 - d. glucose in the urine
 - e. hyperglycemia
- 5. All of the following play a key role in <u>renal autoregulation</u> EXCEPT
 - a. tubuloglomerular feedback
 - b. myogenic response
 - c. macula densa
 - d. collecting duct
 - e. afferent arteriole
- 6. Which of the following increases the glomerular filtration rate (GFR)?
 - a. response to mean arterial pressure (MAP) falling from 80 to 70
 - b. constriction of the afferent arteriole
 - c. atrial natriuretic peptide (ANP)
 - d. activation sympathetic nervous system input to the afferent arteriole
 - e. dilation of the efferent arteriole
- 7. When SGLT2 inhibitors decrease glucose reabsorption, they also
 - a. decrease urine volume.
 - b. cause weight gain.
 - c. decrease glycosuria (glucose in the urine).
 - d. increase the risk of hospitalization for heart failure.
 - e. decrease Na⁺ reabsorption in the proximal tubule.
- 8. The activity of the Na⁺/K⁺/2Cl⁻ cotransporter (NKCC2) accounts for about 25% of the total Na⁺ reabsorption in the nephron. Where is this transporter located?
 - a. descending limb of loop of Henle
 - b. ascending limb of loop of Henle
 - c. medullary collecting duct
 - d. cortical collecting duct
 - e. afferent arteriole

- 9. Loop diuretics work to decrease extracellular fluid volume by
 - a. increasing Na⁺ reabsorption
 - b. decreasing glomerular filtration
 - c. decreasing Na⁺ reabsorption
 - d. inhibiting aquaporin expression
 - e. inhibiting vasopressin secretion
- 10. A defect in the ability to concentrate urine can be caused by
 - a. a mutation in the gene for the angiotensin II receptor
 - b. vasopressin deficiency
 - c. too much vasopressin secretion
 - d. inadequate blood flow to the kidney
 - e. aldosterone deficiency
- 11. The largest difference in osmolarity in the kidney is between the
 - a. inside of the thick ascending limb of the loop of Henle and the interstitial fluid that surrounds it.
 - b. inside of the descending limb of the loop of Henle and the interstitial fluid that surrounds it
 - c. cortex and the papilla.
 - d. inside of the collecting duct and the interstitial fluid that surrounds it.
 - e. inside of a glomerular capillary and Bowman's space.
- 12. The hormone aldosterone stimulates <u>regulated Na⁺ reabsorption</u> in the cortical collecting duct by stimulating the expression of which of the following proteins?
 - a. epithelial Na⁺ channel (ENaC)
 - b. Na⁺/glucose cotransporter (SGLT2)
 - c. Na⁺/K⁺/2Cl⁻ cotransporter (NKCC2)
 - d. glucose transporter (GLUT)
 - e. aquaporin 2 (AQP2)
- 13. In the elderly, sometimes there can be <u>too much vasopressin</u> secretion. Which of the following would occur as a consequence of too much vasopressin secretion?
 - a. ECF osmolarity would increase.
 - b. ECF osmolarity would decrease.
 - c. ECF pH would increase.
 - d. ECF pH would decrease.
 - e. ECF volume would decrease.

- 14. Which of the following is a factor that can increase renin secretion?
 - a. activation of the parasympathetic nervous system
 - b. hypertension
 - c. atrial natriuretic peptide (ANP)
 - d. heart failure causing decreased blood flow to the kidney
 - e. aldosterone
- 15. Which of the following is the <u>substrate</u> for renin?
 - a. angiotensinogen
 - b. angiotensin I
 - c. angiotensin II
 - d. vasopressin
 - e. aldosterone
- 16. Which of the following enzymes is most important for HCO₃⁻ reabsorption in the proximal tubule?
 - a. renin
 - b. angiotensin converting enzyme
 - c. Ca++-ATPase
 - d. carbonic anhydrase
 - e. creatine kinase
- 17. What type of neuron innervates the detrusor muscle?
 - a. sympathetic preganglionic neuron
 - b. sympathetic postganglionic neuron
 - c. somatic motor neuron
 - d. parasympathetic preganglionic neuron
 - e. parasympathetic postganglionic neuron
- 18. Which of the following is TRUE about vaccines?
 - a. Vaccines contain a microchip that can be monitored by Bill Gates.
 - b. Vaccines bypass innate immunity.
 - c. Vaccines stimulate a primary immune response.
 - d. Vaccines contain antibodies.
 - e. Vaccines deplete helper T cells.

- 19. An opsonin is a substance that
 - a. stimulates antibody secretion.
 - b. coordinates the immune response.
 - c. is secreted by T cells.
 - d. stimulates phagocytosis.
 - e. induces the immune response.
- 20. All of the following are part of the innate immune response EXCEPT
 - a. plasma cells.
 - b. neutrophils.
 - c. complement.
 - d. C-reactive protein.
 - e. phagocytosis.
- 21. Which of the following is a place where antigen-presenting cells interact with lymphocytes to stimulate an adaptive/specific immune response?
 - a. kidney
 - b. blood vessel
 - c. liver
 - d. spleen
 - e. ALL of the above
- 22. Which of the following is a key difference between a B-cell receptor and a T-cell receptor?
 - a. presence of a transmembrane domain
 - b. specific binding to unique antigen
 - c. expression on the surface of a lymphocyte
 - d. involvement in adaptive immunity
 - e. two binding sites for antigen vs. one binding site for antigen
- 23. Which of the following is a cell that expresses MHC II molecules on its surface?
 - a. NK cell
 - b. dendritic cell
 - c. neuron
 - d. bacterium
 - e. ALL of the above express MHC II molecules on their surface

- 24. In the response to a bacterial infection, which of the following initially helps to bring white blood cells such as neutrophils to the site of injury by causing inflammation?
 - a. growth factors
 - b. helper T cells
 - c. cortisol
 - d. norepinephrine
 - e. histamine
- 25. Which of the following is NOT one of the important interactions in the stimulation of the adaptive immune response to <u>bacterial infection</u>?
 - a. cytotoxic T cell binds peptide antigen presented on MHC I molecule by antigenpresenting cell
 - b. cytokines released by T cells stimulate proliferation and shape the immune response
 - c. antigen binds to B-cell receptor
 - d. helper T cell binds peptide antigen presented on MHC II molecule by antigen-presenting cell
- 26. Which of the following specifically binds to <u>intracellular antigen displayed on an MHC</u> <u>molecule</u> in the development of an immune response?
 - a. B-cell receptor
 - b. T-cell receptor on a helper T cell
 - c. T-cell receptor on a cytotoxic T cell
 - d. C-reactive protein
 - e. Complement
- 27. Which of the following is a mechanism that can directly **prevent** viral infection of a cell?
 - a. release of perforin and granzymes by a cytotoxic T cell
 - b. binding of virus to its receptor on the cell surface
 - c. stimulation of inflammation
 - d. neutralizing antibodies binding to the virus
 - e. activation of JAK-STAT signaling pathway
- 28. Which of the following is TRUE about monoclonal antibody drugs?
 - a. each drug is derived from a single B cell and specifically recognizes a unique epitope
 - b. they lack specificity and can bind to multiple targets
 - c. mainly work by stimulating clonal expansion of B cells
 - d. are used to boost the immune response to vaccination
 - e. are small molecules that can be administered orally

- 29. Which of the following is an example of <u>active immunity</u>?
 - a. monoclonal antibody drug treatment given to President Trump in 2020 to prevent serious illness from COVID-19
 - b. antitoxin antibodies injected into an individual to prevent damage from a snake bite
 - c. antibodies passed from a mother to her infant during breastfeeding
 - d. development of neutralizing antibodies in response to infection with a virus
 - e. use of convalescent plasma to reduce hospitalizations in outpatients infected with COVID-19
- 30. Which of the following is a drug that is commonly used to suppress the immune system?
 - a. angiotensin II receptor blocker
 - b. SGLT2 inhibitor
 - c. ACE inhibitor
 - d. cytokine receptor agonist
 - e. glucocorticoid
- 31. Which of the following molecules can move across the phospholipid bilayer of the cell membrane by <u>simple diffusion</u>?
 - a. an ion
 - b. a sugar
 - c. a small peptide
 - d. a nonpolar molecule
 - e. a polar molecule
- 32. Osmosis
 - a. is an active process requiring ATP.
 - b. depends upon ion channels.
 - c. depends upon carrier proteins.
 - d. is the diffusion of water <u>down</u> an osmotic gradient.
 - e. is the movement of water <u>up</u> an osmotic gradient.
- 33. For the Na⁺ ion, the force due to the concentration gradient is exactly balanced by the force due to the electrical potential difference at the
 - a. Na⁺ equilibrium potential.
 - b. threshold.
 - c. receptor potential.
 - d. resting membrane potential.
 - e. synaptic membrane.

- 34. The neurotransmitter receptors responsible for slow synaptic transmission are
 - a. gap junctions.
 - b. nicotinic acetylcholine receptors.
 - c. G protein coupled receptors (GPCRs).
 - d. ligand-gated ion channels.
 - e. carrier proteins.
- 35. Oxytocin is a hormone that stimulates smooth muscle contraction in the uterus. The oxytocin receptor is a GPCR whose activation leads to an increase in
 - a. protein kinase A activation.
 - b. cAMP.
 - c. calmodulin.
 - d. Ca++.
 - e. adenylyl cyclase activity.
- 36. Which of the following is true about a receptor potential?
 - a. occurs at an electrical synapse
 - b. varies in size according to the strength of the stimulus
 - c. is usually hyperpolarizing
 - d. can conduct long distances without getting smaller
 - e. depends upon the activity of nicotinic acetylcholine receptors
- 37. Which of the following best describes the voltage sensor of the voltage-gated Na⁺ channel?
 - a. flap that closes channel after activation
 - b. part of the channel pore that makes it selective for Na⁺
 - c. intracellular domain that binds to Ca++
 - d. transmembrane segment with an array of positive charges
 - e. requires phosphorylation to be activated
- 38. What factor increases the speed of action potential conduction?
 - a. demyelination
 - b. larger receptor potential
 - c. larger axon diameter
 - d. greater number of dendrites
 - e. increased expression of voltage-gated Ca⁺⁺ channels

- 39. Myasthenia gravis is a disorder of the neuromuscular junction that affects the
 - a. the response to acetylcholine.
 - b. the release of acetylcholine.
 - c. the response to norepinephrine.
 - d. interaction between actin and myosin.
 - e. the conduction of action potentials.
- 40. Which of the following is required for induction of LTP (long term potentiation) at a synapse?
 - a. hyperpolarization of the postsynaptic cell
 - b. depolarization of the postsynaptic cell
 - c. adrenergic receptors
 - d. release of acetylcholine
 - e. gap junctions
- 41. The 'neural code' is a term used to describe the relationship between the intensity of a stimulus and
 - a. the sequence of amino acids within the receptor protein.
 - b. its duration.
 - c. its effect on thalamic relay cells
 - d. the frequency of action potentials generated by a sensory neuron.
 - e. the type of receptor that responds to it.
- 42. Dull, poorly localized and persistent pain is transmitted to the central nervous system along
 - a. large, unmyelinated C-fibers.
 - b. small, unmyelinated A-delta fibers.
 - c. small, unmyelinated C-fibers.
 - d. large, myelinated A-beta fibers.
 - e. large, myelinated C-fibers.
- 43. Which of the following is a correct list of the primary gustatory (taste) sensations?
 - a. spicy, salty, bitter, sour, umami
 - b. sweet, salty, bitter, sour, umami
 - c. hot, salty, bitter, dry, umami
 - d. sweet, salty, floral, sour, umami
 - e. sweet, salty, bitter, sour, skunky

- 44. The depolarization of olfactory sensory neurons depends on
 - a. activation of G protein coupled receptors.
 - b. activation of acetylcholine receptors.
 - c. increases in ATP release.
 - d. Na⁺ ions flowing out of the cell.
 - e. K⁺ ions flowing into the cell.
- 45. The optimal sound frequency to excite a response in a hair cell in the cochlea is strongly influenced by
 - a. the size of its stereocilia.
 - b. its position along the tympanic membrane.
 - c. the type of neurotransmitter it releases.
 - d. its position along the tectorial membrane.
 - e. its position along the basilar membrane.
- 46. Which of the following will trigger the vestibulo-ocular reflex?
 - a. loud sounds
 - b. bright light shined into the eyes
 - c. rapid turning of the head
 - d. rapid limb flexion
 - e. strong odors
- 47. Which of the following factors contributes to the high visual acuity of the fovea?
 - a. rod photoreceptors
 - b. cone photoreceptors
 - c. axons of retinal ganglion cells
 - d. the pigmented retinal epithelium
 - e. the optic disc
- 48. In skeletal muscle contraction, calcium
 - a. channels open to cause depolarization at the neuromuscular junction.
 - b. regulates the interaction between myosin and actin.
 - c. binds to tropomyosin on the thick filament.
 - d. regulates the interaction between the thin filament and the Z-disc.
 - e. inactivates myosin molecules during the power stroke.

- 49. For slowly executed delicate movements, motor units are recruited in order of increasing size. For rapidly executed powerful movements, motor units are recruited
 - a. in order of decreasing size.
 - b. from largest to smallest.
 - c. in order of decreasing axonal conduction velocity.
 - d. in the same order.
 - e. in order of increasing resistance to fatigue.

50. Which of the following is TRUE about the primary motor cortex?

- a. contains neurons that make direct synapses onto somatic motor neurons in the spinal cord
- b. the left motor cortex mainly controls movements on the left side of the body
- c. does not form connections with the cerebellum
- d. does not form connections with the thalamus
- e. contains the neurons involved in mediating the tendon jerk (stretch) reflex

END OF TEST

Please turn in your mark-sense form and your question sheets at the front of the room.