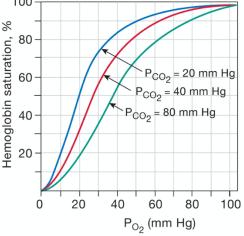

- 1. Which of the following arteries has the lowest pressure during systole?
 - a. aorta
 - b. pulmonary artery
 - c. coronary artery
 - d. brachial artery
 - e. external iliac artery
- 2. Which of the following most directly prevents prolapse of the mitral valve, and thus prevents mitral insufficiency? (The mitral valve is the left AV valve.)
 - a. contraction of the left atrium
 - b. blood flow in the coronary sinus
 - c. closing of the aortic and pulmonary valves
 - d. increased central venous pressure
 - e. contraction of the papillary muscles
- 3. Which of the following causes a myocardial infarction?
 - a. bleeding into the pericardium
 - b. blockage of blood flow in a pulmonary artery
 - c. insufficient cardiac output
 - d. blockage of blood flow in a coronary artery
 - e. drop in blood pressure associated with hemorrhage
- 4. Refer to the figure at right, showing a cardiac action potential in a contractile cell. What type of ion channel is opening during phase 3?
 - a. K⁺ channel
 - b. Na⁺ channel
 - c. If channels ("funny" channel)
 - d. Ca⁺⁺ channel
 - e. Cl⁻ channel

- 5. Which of the following is <u>TRUE</u> about a <u>cell in the SA node</u> that is <u>NOT TRUE</u> about a contractile cell?
 - a. has voltage-gated Ca⁺⁺ channels that open to cause membrane depolarization
 - b. has intercalated discs
 - c. does not have a resting membrane potential
 - d. is electrically coupled to other cells
 - e. has voltage-gated K⁺ channels that open to cause membrane repolarization
- 6. The refractory period is
 - a. the time when all the valves are closed.
 - b. the time following a cardiac action potential during which a stimulus cannot trigger a second action potential.
 - c. the steady depolarization that occurs in a pacemaker cell before it fires an action potential.
 - d. the time it takes for a cardiac muscle cell to reach peak tension when it contracts.
 - e. the time it takes for a cardiac muscle cell to relax after it has reached peak tension.
- 7. Refer to the figure at right. Which letter (A, B, C, D) indicates the time when the <u>aortic valve</u> opens after being closed?
 - a. A
 - b. B
 - c. C
 - d. D

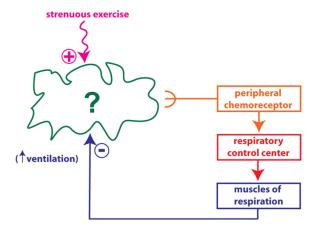
- 8. Refer to the figure above at right. Which of the following is true about the phase of the cardiac cycle indicated by the arrow?
 - a. all of the valves are open
 - b. the pressure in the ventricles isn't changing
 - c. the volume in the ventricles isn't changing
 - d. the atria are contracting
 - e. the ventricles are contracting

- 9. Pulmonary edema can be caused when blood backs up in the pulmonary circulation. This would occur as a result of
 - a. increased preload
 - b. sympathetic nervous system activation
 - c. othostatic hypotension
 - d. atrial fibrillation
 - e. left ventricular heart failure
- 10. What parts of the cardiovascular system are innervated by the parasympathetic nervous system?
 - a. most arterioles
 - b. contractile cells in ventricles
 - c. SA node
 - d. SA node and most arterioles
 - e. contractile cells in ventricles and most arterioles
- 11. The <u>preload</u> refers to factors that influence stroke volume by influencing the <u>end-diastolic</u> <u>volume</u> (in other words, the <u>filling</u> of the heart). All of the following <u>directly affect the preload</u> EXCEPT
 - a. central venous pressure
 - b. contraction of the atria during diastole
 - c. contraction of smooth muscle surrounding the veins
 - d. contraction of the ventricles during systole
 - e. upright posture (effect of gravity on blood in veins)
- 12. Which of the following causes vasodilation?
 - a. angiotensin II
 - b. norepinephrine
 - c. vasopressin
 - d. activation of alpha-adrenergic receptors on vascular smooth muscle
 - e. local increase of CO₂ in tissue surrounding blood vessels
- 13. Which of the following is a reflex response that occurs when baroreceptors sense a <u>decrease</u> in the mean arterial pressure (MAP)?
 - a. vasoconstriction of arterioles to increase peripheral resistance
 - b. less norepinephrine release by sympathetic nerves
 - c. more acetylcholine release by parasympathetic nerves
 - d. veins dilating so that blood shifts from arteries to veins
 - e. kidneys increase Na⁺ excretion to decrease extracellular fluid volume


- 14. Which of the following occurs in heart failure?
 - a. edema
 - b. reduced cardiac output
 - c. increased levels of angiotensin II
 - d. increased extracellular fluid volume
 - e. ALL of the above occur in heart failure
- 15. Which of the following is NOT used in the treatment of hypertension?
 - a. ACE inhibitor
 - b. beta-2 adrenergic agonist
 - c. angiotensin II receptor blocker
 - d. Ca⁺⁺ channel blocker
 - e. diuretic
- 16. The genetic defect in cystic fibrosis causes
 - a. a mutation in a ciliary protein causing an inability to clear mucus from the lungs.
 - b. excess production of connective tissue in the lungs.
 - c. excessive secretion by submucosal glands in the airways.
 - d. abnormal Cl⁻ transport and deficient fluid secretion by epithelia.
 - e. a mutation in a mucus protein that increases its viscosity.
- 17. Which of the following promotes constriction of airways?
 - a. parasympathetic neural input
 - b. epinephrine
 - c. albuterol (inhaled medication for asthma treatment)
 - d. montelukast (leukotriene antagonist)
 - e. local increase in CO₂
- 18. Type II alveolar cells
 - a. produce the connective tissue framework of the lungs.
 - b. form the gas exchange barrier.
 - c. secrete surfactant.
 - d. phagocytize pathogens in the lung.
 - e. secrete mucus.

- 19. Contraction of the abdominal muscles
 - a. plays no role in ventilation.
 - b. is involved in inspiration/inhalation during quiet breathing.
 - c. is involved in inspiration/inhalation during active breathing.
 - d. is involved in expiration/exhalation during quiet breathing.
 - e. is involved in expiration/exhalation during active breathing.
- 20. Which of the following is TRUE about surfactant?
 - a. excess surfactant causes restrictive lung disease
 - b. surfactant causes the pleural membranes to stick together
 - c. surfactant contains amphipathic molecules that collect at the air/water interface
 - d. surfactant decreases the compliance of the lungs
 - e. surfactant is secreted by alveolar macrophages
- 21. Which of the following is a disorder in which the compliance of the lungs is too low?
 - a. emphysema
 - b. asthma
 - c. infant respiratory distress syndrome (also called newborn respiratory distress syndrome)
 - d. respiratory acidosis
 - e. chronic obstructive pulmonary disease (COPD)
- 22. Which of the following is most affected in someone breathing air at high altitude?
 - a. gas diffusion barrier
 - b. partial pressure of O₂ (PO₂) in inhaled air
 - c. forced vital capacity (FVC)
 - d. compliance of the lungs
 - e. forced expiratory volume in one second (FEV₁)
- 23. Sepsis, COVID-19 and other inflammatory disorders can cause acute respiratory distress syndrome (ARDS). Which of the following best describes how ARDS affects the respiratory system?
 - a. increases the FEV₁
 - b. causes a deficiency in surfactant secretion
 - c. respiratory muscles become paralyzed
 - d. alveoli fill with fluid, increasing the gas diffusion distance
 - e. insufficient fluid secretion leads to destruction of alveoli

- 24. The figure shows that higher PCO₂ shifts the hemoglobin saturation curve to the right. This means that hemoglobin has a _____ affinity for O₂ in metabolically active tissues.
 - a. higher
 - b. lower
- 25. At the peak of exercise, if the alveolar PO2 is 100 mm Hg, what is the systemic arterial PO₂?
 - a. 100 mm Hg
 - b. 75 mm Hg
 - c. 60 mm Hg
 - d. 46 mm Hg
 - e. 40 mm Hg



(e) Effect of P_{CO2}

- 26. Which of the following is the most important driver of ventilation in a healthy young adult breathing air at sea level (i.e. not at altitude)?
 - a. venous partial pressure of O₂
 - b. [HCO₃-] in the plasma
 - c. hemoglobin saturation
 - d. arterial partial pressure of CO₂ (PCO₂)
 - e. arterial partial pressure of O₂ (PO₂)
- 27. Hyperventilation is the respiratory response to
 - a. metabolic alkalosis
 - b. metabolic acidosis
 - c. decreased PCO₂
 - d. increased hemoglobin saturation
 - e. a full belly
- 28. Which of the following is an example of feedforward regulation involved in the adaptation to exercise?
 - a. the abrupt increase in ventilation that occurs right at the start of exercise
 - b. the steady increase in heart rate due to sympathetic activation
 - c. the decrease in PCO₂ that occurs above the anaerobic threshold
 - d. the change in distribution of blood flow to the tissues
 - e. the increased ventilation that continues after exercise ends

- 29. Refer to the figure and fill in the blank. In someone who is engaged in <u>strenuous exercise</u>, _____ is increased, and this is sensed by peripheral chemoreceptors to cause increased ventilation.
 - a. arterial PCO₂
 - b. arterial PO₂
 - c. pH of the blood plasma
 - d. lactate in the blood plasma
 - e. [H⁺] in the blood plasma

- 30. At the peak of exercise, mean arterial pressure increases. This is mainly due to
 - a. increased peripheral resistance.
 - b. increased heart rate and stroke volume.
 - c. active hyperemia.
 - d. decreased activation of peripheral chemoreceptors.
 - e. decreased constriction of vascular smooth muscle.