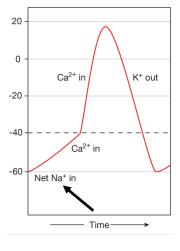
NAME	KEY

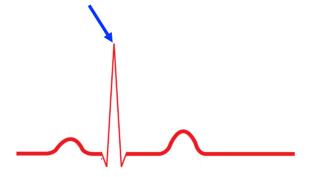
Friday, January 27th, 2023

Following directions on the mark-sense form, write your **name**, and student number in the blanks and fill in the bubbles. In addition, write your **name** on this exam.

When finished with the test, turn in both the mark-sense form and the exam at the front of the room.

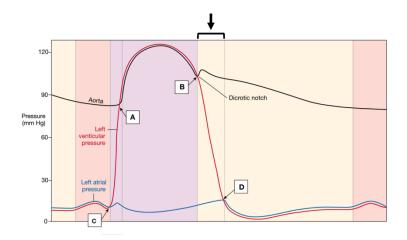

PLACE ALL ANSWERS ON THE MARK-SENSE FORM

KEY: answers are in red, bold-face


MULTIPLE CHOICE: Always choose the BEST, most complete answer. (2 points each)

- 1. Which of the following pressures is typically the <u>lowest</u>?
 - a) diastolic pressure in the aorta
 - b) diastolic pressure in the left coronary artery
 - c) systolic pressure in the aorta
 - d) systolic pressure in the pulmonary trunk
 - e) diastolic pressure in the right common carotid artery
- 2. The second heart sound
 - a) is caused by atrial contraction.
 - b) occurs at the time that pressure in the aorta becomes greater than pressure in the left ventricle.
 - c) occurs during systole.
 - d) is caused by turbulent flow through the semilunar valves.
 - e) is caused by the opening of the AV valves.
- 3. Which of the following is a technique that is used to create images of the working heart and the movement of its valves?
 - a) echocardiography
 - b) sphygmomanometry
 - c) auscultation
 - d) electrocardiography (ECG)
 - e) spirometry
- 4. What is a key difference between skeletal muscle cells and contractile cardiac muscle cells in the heart?
 - a) presence of striations
 - b) negative resting membrane potential
 - c) Ca⁺⁺ regulates contraction
 - d) length (time duration) of action potentials
 - e) presence of sarcoplasmic reticulum

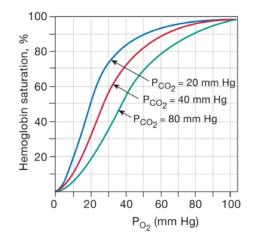
- 5. The plateau phase of the cardiac action potential
 - a) occurs in both contractile and pacemaker cells.
 - b) is due to the opening of voltage-gated Na⁺ channels.
 - c) is due to the opening of voltage-gated K⁺ channels.
 - d) is due to the opening of voltage-gated Ca⁺⁺ channels.
 - e) shortens in response to acetylcholine.
- 6. The figure at right shows an action potential in a cell of the SA node. What <u>factor</u> normally triggers the opening of the channel that allows for net Na⁺ entry into the cell?
 - a) increased intracellular Ca⁺⁺
 - b) depolarization
 - c) acetylcholine released from parasympathetic postganglionic neurons
 - d) acetylcholine released from somatic motor neurons
 - e) hyperpolarization



- 7. Which of the following helps ensure that the atria contract <u>before</u> the ventricles?
 - a) long refractory period in cardiac contractile cells
 - b) rapid conduction of the action potential to the bottom of the ventricles
 - c) decreased parasympathetic input to the SA node
 - d) slowing of action potential conduction through the AV node
 - e) the atria are thin walled
- 8. Refer to the figure at right. What is occurring in the heart to <u>cause</u> the waveform indicated by the arrow?
 - a) contraction of the atria
 - b) action potential traveling through the AV node
 - action potential traveling through the walls of the ventricles
 - d) closing of the AV valves
 - e) ventricular repolarization

- 9. Which of the following is rapidly fatal if not treated immediately (within the first few minutes)?
 - a) atrial fibrillation
 - b) heart failure
 - c) angina
 - d) hypertension
 - e) ventricular fibrillation

- 10. Refer to the figure at right. What <u>specific</u> <u>phase</u> of the cardiac cycle is indicated by the bracket?
 - a) ventricular systole
 - b) isovolumetric relaxation
 - c) ventricular diastole
 - d) atrial contraction
 - e) isovolumetric contraction



- 11. According to the Frank-Starling law of the heart, increasing the end-diastolic volume increases the
 - a) afterload.
 - b) peripheral resistance.
 - c) heart rate.
 - d) stroke volume.
 - e) central venous pressure.
- 12. Which of the following works to increase the return of blood from veins in the legs?
 - a) valves in veins
 - b) contraction of skeletal muscle in the legs
 - c) contraction of vascular smooth muscle in veins
 - d) horizontal posture (lying down flat)
 - e) ALL of the above work to increase venous return from the legs.
- 13. Which of the following is an effect of norepinephrine on the heart?
 - a) hyperpolarizes contractile cells
 - b) increases release of Ca⁺⁺ from sarcoplasmic reticulum to increase contractility
 - c) decreases the slope of the pacemaker potential
 - d) increases K⁺ permeability in pacemaker cells
 - e) decreases Ca⁺⁺ permeability in pacemaker cells
- 14. Which of the following is the principal determinant of peripheral resistance?
 - a) heart rate
 - b) central venous pressure
 - c) constriction/dilation of arterioles
 - d) number of capillaries
 - e) end-diastolic volume

- 15. Which of the following is part of the *reflex response* to the Valsalva maneuver? The Valsalva maneuver is forced exhalation against a closed airway, raising pressure in the abdominal and thoracic cavities.
 - a) increased action potential firing by carotid baroreceptors
 - b) increased heart rate
 - c) increased sympathetic output to the contractile cells of the ventricles
 - d) decreased vasodilation
 - e) decreased parasympathetic output to the SA node
- 16. All of the following drugs are used to treat hypertension EXCEPT
 - a) thiazide diuretic
 - b) Ca⁺⁺ channel blocker
 - c) β-2 adrenergic agonist
 - d) ACE inhibitor
 - e) angiotensin II receptor blocker
- 17. A patient presents with dyspnea (shortness of breath) and edema (swelling caused by fluid accumulation in interstitial spaces). What is likely causing these symptoms?
 - a) atrial fibrillation
 - b) postural hypotension (low blood pressure upon standing)
 - c) heart failure
 - d) ventricular fibrillation
 - e) increased parasympathetic output to the heart
- 18. Which of the following best describes what occurs in the genetic disorder cystic fibrosis?
 - a) lack of fluid secretion by epithelial cells results in thick mucus that is difficult to clear and promotes bacterial infection
 - b) excessive mucus secretion causes increased resistance in large airways
 - c) lack of surfactant secretion causes restrictive lung disease
 - d) excessive activity by fibroblasts thickens the connective tissue framework of the lungs
 - e) breakdown in connective tissue framework of lungs leads to collapse of small airways
- 19. Which of the following relaxes airway smooth muscle?
 - a) acetylcholine
 - b) leukotriene
 - c) histamine
 - d) inflammatory paracrine
 - e) epinephrine

- 20. Which of the following is NOT FOUND in an alveolus?
 - a) endothelial cell
 - b) pseudostratified ciliated epithelium
 - c) macrophage
 - d) cell that secretes surfactant
 - e) elastic connective tissue
- 21. When the diaphragm contracts
 - a) the volume of the abdominal cavity increases.
 - b) exhalation occurs.
 - c) the airways constrict.
 - d) the ribs and sternum are depressed.
 - e) the volume of the thoracic cavity increases.
- 22. According to Boyle's law, when volume increases
 - a) flow decreases.
 - b) temperature increases.
 - c) the total pressure of a gas mixture is equal to the sum of the partial pressures.
 - d) pressure decreases.
 - e) resistance decreases.
- 23. In infant respiratory distress syndrome, a deficiency of surfactant causes
 - a) decreased lung compliance.
 - b) thick mucus that clogs the airways.
 - c) decreased surface tension.
 - d) fibrosis.
 - e) increased airway resistance.
- 24. In what way does asthma reduce gas exchange at the pulmonary capillaries?
 - a) increases diffusion distance
 - b) decreases alveolar ventilation
 - c) decreases the surface area available for gas exchange
 - d) reduces airway resistance
 - e) decreases dead space
- 25. Iron deficiency will cause
 - a) decreased alveolar ventilation.
 - b) saturation of hemoglobin.
 - c) a decrease in the solubility of O_2 in plasma.
 - d) an increase in the affinity between O2 and hemoglobin.
 - e) a decrease in the O₂ carrying capacity of blood.

- 26. Refer to the graph at right. Because metabolism produces CO_2 , what the graph shows is that
 - a) O₂ dissociates from hemoglobin more readily in metabolically active tissues.
 - b) CO₂ increases the affinity of hemoglobin for O₂.
 - c) PCO₂ decreases when hemoglobin is saturated.
 - d) pH increases when PCO₂ increases.
 - e) pH increases in metabolically active tissues.

(e) Effect of P_{CO2}

- 27. CO₂ is primarily transported in the blood
 - a) bound to hemoglobin.
 - b) in solution.
 - c) as HCO₃- (bicarbonate).
- 28. What is the neurotransmitter released by neurons in the phrenic nerve that activates contraction of the muscles of the diaphragm?
 - a) norepinephrine
 - b) acetylcholine
 - c) dopamine
 - d) epinephrine
 - e) serotonin
- 29. The central chemoreceptor is stimulated by
 - a) increased [H⁺] in the blood.
 - b) decreased pH in the blood.
 - c) increased PCO₂ in the blood causing increased [H⁺] in the cerebrospinal fluid.
 - d) increased PO₂ in the blood.
 - e) decreased PO₂ in the blood.
- 30. Strenuous exercise causes metabolic acidosis. What *decreases* as a consequence of the respiratory response to metabolic acidosis?
 - a) ventilation
 - b) the rate of CO₂ release at the lungs (VCO₂)
 - c) arterial PO₂
 - d) pH of the blood
 - e) arterial PCO₂

END OF TEST

Please turn in your mark-sense form and your question sheets at the front of the room.