During early postnatal development, midbrain dopamine (DA) neurons display anomalous firing patterns and amphetamine response. Spontaneous miniature hyperpolarizations (SMHs) are observed in DA neurons during the same period but not in adults. These hyperpolarizations have been shown to be dependent on the release of Ca\(^{2+}\) from internal stores and the subsequent activation of Ca\(^{2+}\)-sensitive K\(^+\) channels. However, the triggering mechanism and the functional significance of SMHs remain poorly understood. To address these issues, using brain slices, we recorded spontaneous miniature outward currents (SMOCs) in DA neurons of neonatal rats. Two types of SMOCs were identified based on the peak amplitude. Both types were suppressed by intracellular dialysis of ruthenium red, a ryanodine receptor (RyR) antagonist, yet none of the known Ca\(^{2+}\) channel blockers (Ni\(^{2+}\) and mibefradil) inhibited large-amplitude SMOVs without affecting the small-amplitude ones. The voltage dependence of SMOVs displayed a peak of approximately 50 mV, consistent with the involvement of low-threshold T-type Ca\(^{2+}\) channels. Blockade of SMOVs with cyclopiazonic acid or ryanodine converted the irregular firing of DA neurons in neonatal rats into an adult-like pacemaker pattern. This effect was reversed by the injection of artificial currents mimicking SMOVs. Finally, amphetamine inhibited SMOVs and transformed the irregular firing pattern into a more regular one. These data demonstrate that Ca\(^{2+}\) influx through T-type Ca\(^{2+}\) channel blockers (Ca\(^{2+}\) -induced Ca\(^{2+}\) release via RyRs, contributes to the generation of SMOVs. We propose that SMOVs–SMHs may underlie the anomalous firing and amphetamine response of DA neurons during the postnatal developmental period.

Key words: intracellular Ca\(^{2+}\) signaling; T-type Ca\(^{2+}\) channels; SK channels; ryanodine receptors; dopamine neurons; firing pattern

Introduction

Dopaminergic projections from the ventral midbrain to the frontal cortex and the striatum, termed the mesocorticolimbic dopamine (DA) system, play a major role in controlling voluntary movements, motivated behaviors, and reward processing. The electrophysiological properties of DA neurons also undergo significant changes. In *in vivo* recording studies have shown that DA neurons fire much more slowly and irregularly in neonatal rats (1–2 weeks of age) than in adults (Pitts et al., 1990; Tepper et al., 1990; Wang and Pitts, 1994). Furthermore, psychostimulant amphetamine, which inhibits DA neuronal activity in adults, produces a paradoxical increase in the firing rate of DA neurons in neonates (Trent et al., 1991). The firing pattern of neurons is determined by the interplay between their intrinsic properties and the afferent inputs. Although the reason for the differential firing patterns of DA neurons in neonates and adults is not known, it is possible that some intrinsic mechanisms unique to DA neurons in the early postnatal period contribute to this difference.

Intracellular Ca\(^{2+}\) controls a multitude of neuronal processes, ranging from membrane excitability to plasticity and formation of synapses (Berridge, 1998). The highly specialized spatial organization between Ca\(^{2+}\) sources and targets is thought to dictate the specificity of these “Ca\(^{2+}\)-gated” processes (Augustine et al., 2003). In DA neurons, the influx of Ca\(^{2+}\) through voltage-gated Ca\(^{2+}\) channels triggered by action potentials leads to the activation of small-conductance Ca\(^{2+}\)-sensitive K\(^+\) (SK) channels, resulting in the generation of large afterhyperpolarizations (AHPs) that dominate the interspike interval (ISI) of pacemaker firing (Wolfart and Roeper, 2002). Furthermore, synaptic activation of metabotropic glutamate receptors (mGluRs) elicits mobilization of Ca\(^{2+}\) from intracellular stores and the subsequent activation of
SK channels, producing a slow IPSP and a prolonged pause of DA neuronal firing (Fiorillo and Williams, 1998; Morikawa et al., 2003). Recently, spontaneous miniature hyperpolarizations (SMHs) have been reported in DA neurons of neonatal rats, but not adult rats, using intracellular recordings in brain slices (Seutin et al., 1998). SMHs are also dependent on internal Ca\(^{2+}\) mobilization and SK channel activation (Seutin et al., 2000). However, the triggering mechanism and the functional significance of these SMHs are not well understood.

In this study, we performed whole-cell voltage-clamp recordings of spontaneous miniature outward currents (SMOCs) in DA neurons of neonatal rats to delineate the cellular mechanism underlying SMHs. We found that the generation of SMOCs involves the selective coupling of T-type Ca\(^{2+}\) channels, ryanodine receptors (RyRs), and SK channels. Our results also show that SMOCs–SMHs may contribute to the amnesic firing pattern and amphetamine response of DA neurons observed during the early postnatal period.

Materials and Methods

Slices and solutions. Horizontal slices (200–220 μm) of the ventral midbrain were prepared from neonatal Wistar rats [postnatal day 6 (P6)–P12]. Some of the experiments were done in slices from neonatal Sprague Dawley rats (P6–P12), which gave equivalent results, and the data were pooled from both strains of rats. Slices were cut using a vibratome (VT1000S; Leica, Nussloch, Germany) in ice-cold (4°C) physiological solutions of the following (in mM): 126 NaCl, 2.5 KCl, 1.2 CaCl\(_2\), 1.2 MgCl\(_2\), 2.4 CaCl\(_2\), 11 glucose, and 21.4 NaHCO\(_3\), pH 7.4 (saturated with 95% O\(_2\) and 5% CO\(_2\), 300 mOsm/kg). Slices were then stored in the same solution, warmed to 35°C for approximately 30 min. For record-ings, a single slice was placed in a recording chamber superfused with warmed (35°C) physiological saline at 2.5–3 ml/min. Unless noted otherwise, pipette solutions used for whole-cell and cell-attached recordings contained the following (in mM): 115 K-methylsulfate, 20 KCl, 1.5 MgCl\(_2\), 10 HEPES, 0.025 EGTA, 2 Mg-ATP, 0.2 Na\(_2\)-GTP, and 10 Na\(_2\)-phosphocreatine, pH 7.3 (280 mOsm/kg).

Whole-cell recordings. All of the recordings were performed in DA neurons identified by their large cell bodies (~20 μm), spontaneous firing at ~1–5 Hz, and the presence of large hyperpolarization-activated cation currents (>200 pA), evoked by a 1.5 s hyperpolarizing step from −55 to −105 mV. Cells were visualized using a 60× water-immersion objective on an upright microscope (BX51WI; Olympus Optical, Tokyo, Japan) with infrared–differential interference contrast optics. Whole-cell pipettes had resistances of 1.8–2.4 MΩ. Voltage-clamp recordings were made at a holding potential of −55 mV unless stated otherwise. A MultiClamp 700A amplifier (Axon Instruments, Union City, CA) was used to record the data, which were filtered at 1 kHz, digitized at 2 kHz, and collected on a personal computer using AxoGraph 4.9 (Axon Instruments).

Cell-attached recordings. The firing was monitored using the cell-attached configuration because the spontaneous firing of dopamine neurons was significantly distorted with standard whole-cell recordings (Morikawa et al., 2003). The use of low-resistance pipettes (1.5–1.8 MΩ), together with the formation of a large Ω-shaped membrane invagination, created some access to the cell interior to monitor the membrane potential in current clamp without intentional break-in. Although the recording of membrane potential with this configuration was crude and inaccurate in terms of the measured value and the kinetics of changes in membrane potential, it allowed us to determine the spike timing and to inject some currents into the recorded cell.

In experiments in which we injected artificial currents that simulated SMOCs, we used a double-exponential current waveform with rise and decay time constants of 10 and 25 ms to mimic the average kinetics of SMOCs. The peak amplitude of the injected waveform was 20–40 pA, although the actual amounts of current injected into the cell are not known because of the limited and unknown access associated with these recording conditions. These waveforms were injected at 0.8–1 Hz with random timing, using the simulation function in AxoGraph 4.9.

Aspartate iontophoresis. mGlut-1-mediated outward currents were evoked by iontophoresis of aspartate (Morikawa et al., 2003). Iontophoresis was performed with a MultiClamp 700A amplifier (50–200 nA ejection current of 50–200 msec duration and 5 nA backing current), using small-tipped pipettes (40–100 MQ) containing -aspartate (1 M) and HEPES (10 mM), pH 7.4. Iontophoretic pipettes were placed within 5 μm of the soma. Experiments were done in slices pretreated with (55,10-R)+(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclopenten-5,10-imine (MK-801) (50 μm) to block NMDA-mediated currents.

Drugs. Drugs were applied by either bath perfusion or intracellular dialysis through the whole-cell pipette. When drugs were applied by intracellular dialysis, at least one recording using a control internal solution without drugs was made in a slice from the same rat. Data from these recordings were used as control (see Fig. 2C).

2,3-Dioxo-6-nitro-1,2,3,4-tetrahydrobenzofuran-7-sulfonyl-

Spontaneous Calcium Signaling in Dopamine Neurons

11080 • J. Neurosci., December 8, 2004 • 24(49):1079–1008

Cui et al. • Spontaneous Calcium Signaling in Dopamine Neurons

Results

Two types of SMOCs in DA neurons of neonatal rats

Whole-cell voltage-clamp recordings (holding potential at −55 mV) were made from DA neurons in midbrain slices obtained from neonatal rats (P6–P12). SMOCs were detected in 125 of 160 cells (78%) recorded from 89 rats (Fig. 1A1,B1). They are mostly absent in DA neurons from adult rats (>3 weeks of age) under the same recording conditions (Morikawa et al., 2003). These events appeared to occur in a completely random, or stochastic, manner. The frequency of SMOCs was 0.2–2.3 Hz (0.83 ± 0.04 Hz; n = 125). In a total of 9366 events detected over a 90 sec period in each of these 125 cells, the amplitude ranged from 4.7 to 75.2 pA (21.6 ± 0.1 pA). The rise time constant and the half-width were 11.4 ± 0.2 and 38.3 ± 0.2 msec, respectively. Of these 125 cells, 74 cells displayed two identifiable peaks in their amplitude histograms, with the first and second peaks located at 12 ± 0.4 pA (6–22 pA) and 28 ± 0.9 pA (14–48 pA), respectively (Fig. 1A2), whereas 51 cells showed single-peak amplitude histograms, with the peak located at 19 ± 0.9 pA (10–34 pA) (Fig. 1B2). No
SMOCs were not affected by bath application of TTX (300 nM) or antagonists of major postsynaptic neurotransmitter receptors present in DA neurons (Fig. 1C), showing that they are intrinsically generated. Consistent with the previous report on SMHs in DA neurons (Seutin et al., 1998), SMOCs were completely eliminated by apamin (100 nM), a selective blocker of SK channels in a subconductance open state and thus can deplete SMOCs are dependent on RyRs

Subsequently, we tested the effect of ryanodine, which locks RyR stores expressing RyRs (Smith et al., 1988; Zucchi and Ronca-Testoni, 1997; Morikawa et al., 2000). Bath perfusion of ryanodine (20 μM) nearly eliminated SMOCs in ∼5 min (n = 6). Both CPA and ryanodine eliminated SMOCs in ∼5 min. C1, Representative traces of SMOCs with a control internal solution or with a solution containing ruthenium red (100 μM). Traces are shown at 1 and 5 min after entering the whole-cell configuration. C2, The SMOC frequency is plotted against time after going into the whole-cell configuration. Recordings were made with a pipette containing a control internal solution (n = 22), ruthenium red (RR) (100 μM; n = 11), both heparin (Hep) (1 mg/ml) and 8-NH2-cADPR (8AcADPR) (50 μM) (n = 8), and NAADP (1 mM; n = 9). Only ruthenium red induced significant inhibition of SMOCs. *p < 0.05; **p < 0.01 versus control.

SMOCs are dependent on RyRs

Intracellular dialysis of ruthenium red (100 μM) significantly attenuated SMOCs within 1 min after the onset of whole-cell recordings and nearly abolished SMOCs in 3–5 min (n = 11) (Fig. 2C). Therefore, Ca2+ release via RyRs is essential for the generation of SMOCs.
is possible that these messengers trigger Ca\(^{2+}\) mobilization underlying the generation of SMOCs. Inositol 1,4,5-triphosphate (IP\(_3\)) and cADPR are two well-established Ca\(^{2+}\)-mobilizing messengers (Galióne, 1994; Berridge, 1995). In particular, cADPR can directly activate RyRs (Meszaros et al., 1993). To test the involvement of these two messengers, a combination of heparin, a competitive IP\(_3\) receptor antagonist (Ghosh et al., 1988), and 8-NH\(_2\)-cADPR, an inhibitor of cADPR signaling (Walsh and Lee, 1993), was used to simultaneously block both messenger pathways. This combination can eliminate the mGluR-induced Ca\(^{2+}\) mobilization and outward currents in DA neurons (Morikawa et al., 2003). Inclusion of both heparin (1 mg/ml) and 8-NH\(_2\)-cADPR (50 \(\mu\)M) in the pipette failed to inhibit SMOCs for \(\leq 20\) min of whole-cell recordings (\(n = 8\)) (Fig. 2C2 shows the first 5 min). There was a significant increase in the SMOC frequency after 4 min with the combination of heparin and 8-NH\(_2\)-cADPR. This may be attributable to the stimulatory effect of heparin on RyRs (Ehrlich et al., 1994).

Nicotinic acid ADP (NAADP) is another newly emerging Ca\(^{2+}\)-mobilizing messenger (Lee and Aarhus, 1995; Cancela et al., 1999; Patel et al., 2001). Several lines of evidence suggest that NAADP plays an important role in neuronal Ca\(^{2+}\) signaling (Bak et al., 1999; Petersen and Cancela, 1999; Patel et al., 2000; Brailoiu et al., 2003). Thus, we examined the potential involvement of NAADP. It has been shown that high concentrations of NAADP can self-desensitize the NAADP-induced Ca\(^{2+}\) release mechanism (Cancela et al., 1999; Berg et al., 2000). Accordingly, we used a very high concentration of NAADP (1 mM) to fully inactivate the NAADP-mediated Ca\(^{2+}\) signaling. Intracellular dialysis of NAADP had no significant effect on SMOCs after \(\leq 20\) min of whole-cell recordings (\(n = 9\)) (Fig. 2C2 shows the first 5 min). Together, these results suggest that intracellular Ca\(^{2+}\)-mobilizing messengers do not play a role in the release of Ca\(^{2+}\), which triggers SMOCs in DA neurons.

Ca\(^{2+}\) influx through T-type Ca\(^{2+}\) channels triggers large-amplitude SMOCs

Ca\(^{2+}\) influx through voltage-gated Ca\(^{2+}\) channels can activate RyRs and trigger Ca\(^{2+}\)-induced Ca\(^{2+}\) release (CICR) from internal stores (Berridge, 1998). To examine whether this mechanism underlies the generation of SMOCs, we used a panel of Ca\(^{2+}\) channel blockers. All types of Ca\(^{2+}\) channels (L-, N-, P/Q-, R-, and T-type) are known to be expressed in DA neurons (Cardozo and Bean, 1995; Wolfart and Roeger, 2002). First, we tested Cd\(^{2+}\), a nonselective Ca\(^{2+}\) channel blocker. To rule out the possibility that the effect of Ca\(^{2+}\) was a result of the depletion of internal Ca\(^{2+}\) stores, we also measured the peak amplitude of mGluR-mediated outward currents evoked by the iontophoretic application of aspartate. These mGluR currents are totally dependent on internal Ca\(^{2+}\) stores, with no contribution of Ca\(^{2+}\) influx from the extracellular space (Morikawa et al., 2003). Brief perfusion (3–5 min) of Cd\(^{2+}\) (200 \(\mu\)M) reduced dramatically the frequency of SMOCs to 39 ± 6% of control (\(n = 7\); \(p < 0.05\)) but had no significant effect on mGluR-mediated currents (82 ± 14% of control; \(n = 5\); \(p = 0.23\)) (Fig. 3A1,A3). Cd\(^{2+}\) also significantly inhibited AHP currents evoked by a 100 msec depolarization to 0 mV (27 ± 2% of control; \(n = 6\); \(p < 0.001\)), consistent with the blockade of Ca\(^{2+}\) influx by Cd\(^{2+}\). Subsequently, we tested Ni\(^{2+}\), which preferentially blocks T- and R-type Ca\(^{2+}\) channels (Zamponi et al., 1996; Lee et al., 1999; Perez-Reyes, 2003). Ni\(^{2+}\) (100 \(\mu\)M) produced a significant reduction in SMOC frequency (38 ± 6% of control; \(n = 9\); \(p < 0.001\)) (Fig. 3B1,D). A similar result was obtained with mibefradil (100 \(\mu\)M), a T-type Ca\(^{2+}\) channel blocker (Martin et al., 2000) (48 ± 10% of control; \(n = 8\); \(p < 0.01\)) (Fig. 3C1,D). A common feature shared by Cd\(^{2+}\), Ni\(^{2+}\), and mibefradil was the selective inhibition of large-amplitude SMOCs in cells with both two-population amplitude histograms (Fig. 3C2). We also tested several other specific Ca\(^{2+}\) channel blockers. These included nifedipine (10 \(\mu\)M; \(n = 5\)), omega-conotoxin GVIA (1 \(\mu\)M; \(n = 3\)), omega-agatoxin IVA (200 \(\mu\)M; \(n = 3\)), and SNX-482 (200 \(\mu\)M; \(n = 3\)) on SMOCs. * \(p < 0.05\), ** \(p < 0.01\), *** \(p < 0.001\).

Figure 3. Large-amplitude SMOCs are triggered by Ca\(^{2+}\) influx through T-type Ca\(^{2+}\) channels. **A1,** Representative traces of SMOCs, mGluR-induced outward currents, and AHP currents before and during a brief perfusion (5 min) of Cd\(^{2+}\) (200 \(\mu\)M). Aspartate iontophoresis was made at the time indicated by the arrow to evoke mGluR-mediated currents. Slices were pretreated with the combination of heparin and mibefradil to block Ca\(^{2+}\) influx by Cd\(^{2+}\). **B1,** Control recordings (Fig. 2A1). **B2,** Summarized bar graph depicting the effects of Cd\(^{2+}\) on the SMOC frequency (\(n = 7\)), the mGluR-induced current amplitude (\(n = 5\)), and the AHP current amplitude (\(n = 6\)). Cd\(^{2+}\) significantly inhibited SMOCs and AHP currents but had a marginal effect on mGluR-induced currents. B1, C1, Summary bar graph of superfused currents showing the effects of Ni\(^{2+}\) (100 \(\mu\)M; \(n = 5\)), mibefradil (Mib) (100 \(\mu\)M; \(n = 8\)), nifedipine (Nif) (10 \(\mu\)M; \(n = 5\)), omega-conotoxin GVIA (Cono) (1 \(\mu\)M; \(n = 3\)), omega-agatoxin IVA (AgA) (200 \(\mu\)M; \(n = 3\)), and SNX-482 (SNX) (200 \(\mu\)M; \(n = 3\)) on SMOCs. **C1,** Control recordings (Fig. 2B1). **C2,** Summarized bar graph of superfused currents showing the effects of mibefradil (Mib) (100 \(\mu\)M; \(n = 8\)), nifedipine (Nif) (10 \(\mu\)M; \(n = 5\)), omega-conotoxin GVIA (Cono) (1 \(\mu\)M; \(n = 3\)), omega-agatoxin IVA (AgA) (200 \(\mu\)M; \(n = 3\)), and SNX-482 (SNX) (200 \(\mu\)M; \(n = 3\)) on SMOCs. **D,** Representative traces of SMOCs before and during application from the same experiment as in A1, A3, Summary bar graph depicting the effects of Cd\(^{2+}\) on the mGluR-induced current amplitude (\(n = 5\)). A summary bar graph of superfused currents showing the effects of Ni\(^{2+}\) (100 \(\mu\)M; \(n = 9\)), mibefradil (Mib) (100 \(\mu\)M; \(n = 8\)), nifedipine (Nif) (10 \(\mu\)M; \(n = 5\)), omega-conotoxin GVIA (Cono) (1 \(\mu\)M; \(n = 3\)), omega-agatoxin IVA (AgA) (200 \(\mu\)M; \(n = 3\)), and SNX-482 (SNX) (200 \(\mu\)M; \(n = 3\)) on SMOCs. * \(p < 0.05\), ** \(p < 0.01\), *** \(p < 0.001\).
Likewise, when the cell was hyperpolarized to a reduction in the K^-ion driving force in the case of depolarization, thus compromising the detection of L-SMOCs completely eliminated S-SMOCs (Fig. 4A). The optimal potential was −55 to −45 mV, a voltage range in which low-threshold T-type channels but not other high-threshold Ca^{2+} channels expressed in DA neurons, can be activated (Cardozo and Bean, 1995; Randall and Tsien, 1997).

Figure 4. Voltage dependence of S-SMOCs. A1, Representative traces of SMOCs at three different holding potentials. All of the traces are from the same cell. A2, Superimposed amplitude histograms of SMOCs from the same recording as in A1. B, Summary graph showing the voltage dependence of SMOC frequency (n = 26). The frequency was normalized to the value at −55 mV in each cell. Each data point, except for the one at −55 mV, represents data from 7–18 cells. The frequency–voltage relationship displayed a bell-shaped curve that peaked at −55 to −45 mV.

S-SMOCs in both cases. Overall, when the holding potential was varied from −75 to −55 mV, the voltage dependence of SMOC frequency exhibited a bell-shaped curve (n = 26) (Fig. 4B). The optimal potential was −55 to −45 mV, a voltage range in which low-threshold T-type channels but not other high-threshold Ca^{2+} channels expressed in DA neurons, can be activated (Cardozo and Bean, 1995; Randall and Tsien, 1997).

Figure 5. SMOCs contribute to the irregular firing pattern of DA neurons in neonatal rats. A, Representative traces of spontaneous firing before and during perfusion of CPA (10 µM). The bottom trace was obtained when simulated SMOCs were injected during CPA treatment. B, ISI histograms from the corresponding recordings in A. Note the narrow peak with a Gaussian distribution of SMOC frequency exhibited a bell-shaped curve (n = 26) (Fig. 4B). The optimal potential was −55 to −45 mV, a voltage range in which low-threshold T-type channels but not other high-threshold Ca^{2+} channels expressed in DA neurons, can be activated (Cardozo and Bean, 1995; Randall and Tsien, 1997).

Figure 5. SMOCs contribute to the irregular firing pattern of DA neurons in neonatal rats. A, Representative traces of spontaneous firing before and during perfusion of CPA (10 µM). The bottom trace was obtained when simulated SMOCs were injected during CPA treatment. B, ISI histograms from the corresponding recordings in A. Note the narrow peak with a Gaussian distribution of SMOC frequency exhibited a bell-shaped curve (n = 26) (Fig. 4B). The optimal potential was −55 to −45 mV, a voltage range in which low-threshold T-type channels but not other high-threshold Ca^{2+} channels expressed in DA neurons, can be activated (Cardozo and Bean, 1995; Randall and Tsien, 1997).

T-type channels completely eliminated L-SMOCs (Fig. 4A1, A2). Likewise, when the cell was hyperpolarized to −60 or −65 mV, which is near the threshold for T-type channel activation, the frequency of L-SMOCs was dramatically reduced, together with a leftward shift in the peak of L-SMOC amplitude distribution, resulting from a reduction in the driving force for K^+ ions. The S-SMOC frequency was also reduced by both depolarization and hyperpolarization. This was most likely attributable to an increase in the background noise level from the activation of voltage-dependent K^+ conductances in the case of depolarization and to a reduction in the K^+ ion driving force in the case of hyperpolarization, thus compromising the detection of neurons.

Amphetamine inhibits S-MOCs via α1 adrenergic receptors

It has been shown that amphetamine inhibits mGluR-mediated outward currents via release of DA, which activates postsynaptic α1 adrenergic receptors (α1ARs) (Paladini et al., 2001). Partial depletion of intracellular Ca^{2+} stores was suggested to mediate this α1AR-induced heterologous desensitization of the mGluR response. We thus examined whether Ca^{2+} store depletion induced by amphetamine can also affect S-MOCs. Bath application of amphetamine (10 µM) reduced the S-MOC frequency to 44 ± 6% of control (n = 9) (Fig. 6A, B). This inhibition was reversed
by coapplication of prazosin (100 nM), an α1AR antagonist (n = 4), but not by eticlopride (200 nM), a D2 DA receptor antagonist (n = 5) (data not shown). Similar inhibition was observed with the perfusion of DA (100 μM; 57 ± 5% of control; n = 4) and phenylephrine (30 μM), a selective α1AR agonist (61 ± 6% of control; n = 5). The amplitude histogram revealed that amphetamine reduced the frequency of both L-SMOCs and S-SMOCs, eliminating larger events in each group (Fig. 6A,2). The reduced Ca²⁺ release, attributable to partial store depletion, most likely curtailed the CICR process underlying SMOC generation. Altogether, these results are consistent with the idea that α1AR activation mediates the depletion of internal Ca²⁺ stores and suggest that amphetamine-induced Ca²⁺ store depletion may serve as a common mechanism by which amphetamine affects the activity of DA neurons.

In addition, we tested the effect of amphetamine on the firing. The experiments were done in the presence of eticlopride (200 nM) or sulphpride (50 nM) to block the D2 receptor-mediated inhibition. Bath application of amphetamine (10 μM) reduced the CV of the ISI from 35 ± 8 to 19 ± 3% (n = 5; p < 0.05), thus converting the irregular firing pattern into a more regular one (Fig. 6C). Amphetamine also increased the firing rate from 1.2 ± 0.3 to 2.0 ± 0.6 Hz (p < 0.05). Therefore, it is suggested that amphetamine affects the firing of DA neurons in neonatal rats by suppressing the occurrence of SMOCs.

Discussion

In the present study, two types of SMOCs (L-SMOCs and S-SMOCs) were identified based on the difference in their amplitude. Although both types are dependent on the release of Ca²⁺ via RyRs and the subsequent activation of SK channels, an initial trigger by spontaneous opening of T-type Ca²⁺ channels is necessary to produce the larger amount of Ca²⁺ release underlying L-SMOCs (Fig. 7). In this scenario, Ca²⁺ influx through individual or a small packet of T-type Ca²⁺ channels provides the initial Ca²⁺ signal, which by itself is not sufficient to activate SK channels but can stimulate Ca²⁺ release from internal stores via Ca²⁺-activated RyRs (CICR). After the amplification by CICR, the local Ca²⁺ signal was then large enough to activate nearby SK channels. S-SMOCs are also produced by Ca²⁺ release via RyRs. However, the opening of RyRs is not triggered by T-type channel-mediated Ca²⁺ influx in S-SMOCs. A larger amount of Ca²⁺ is mobilized in L-SMOCs than in S-SMOCs.

Two types of SMOCs

Two distinct populations of SMOCs with different amplitudes could be identified in more than one-half of the recorded cells, whereas only one population could be resolved in the SMOC amplitude histogram from the rest of the cells. However, T-type Ca²⁺ channel blockers, which selectively suppressed L-SMOCs in cells with two-population amplitude histograms, also selectively eliminated large-amplitude events in cells with one-population histograms. Therefore, it is likely that L-SMOCs and S-SMOCs had a significant overlap in amplitude distribution in cells with one-population histograms. Moreover, the application of amphetamine, which suppressed SMOCs by partial depletion of internal Ca²⁺ stores, frequently uncovered the presence of two populations in these cells (data not shown), supporting further the idea that SMOCs comprise two populations in all cells.

L-SMOCs had a smaller rise time constant than that of S-SMOCs in individual cells, suggesting that larger Ca²⁺ mobilization, which would produce faster activation of target SK channels, underlies the larger outward currents for L-SMOCs. However, the amplitude was not correlated with the rise time constant within each population (Fig. 1A,3). Thus, activation of different numbers of SK channels is likely responsible for the amplitude distribution of L-SMOCs and S-SMOCs in each cell. The number of open SK channels at the peak of each SMOC can be estimated.
from the equation $I = \gamma N(V_m - V_{ eq})$, where I is the peak current amplitude; γ is the single-channel conductance; N is the total number of open channels; V_m is the membrane potential (-55 mV in the present study); and $V_{ eq}$ is the K^+ equilibrium potential (approximately -105 mV, based on the Nernst equation). The peak amplitude of L-SMOCs and S-SMOCs generally ranged from 20 to 50 and 5 to 20 pA in individual cells. Assuming a single-channel conductance of ≈ 10 pS (Bond et al., 1999), there should be $\approx 40-100$ and 10–40 SK channels open at the peak of each L-SMOC and S-SMOC.

Triggering mechanism

SMOCs or SMHs are observed in various types of neurons (Brown et al., 1983; Mathers and Barker, 1984; Satin and Adams, 1987; Berridge, 1998; Seutin et al., 1998; Arima et al., 2001), as well as in smooth muscle cells, in which they are usually called spontaneous transient outward currents (STOCs) (Bolton and Imaizumi, 1996). SMOCs–STOCs are mediated by the activation of Ca$^{2+}$-sensitive K$^+$ channels. Focal release of Ca$^{2+}$ from internal stores is generally thought to provide the source of Ca$^{2+}$ (Satin and Adams, 1987; Berridge, 1998; Merriam et al., 1999). However, the triggering mechanism for spontaneous Ca$^{2+}$ mobilization has not been clear and might vary in different types of cells. Our results ruled out the involvement of known endogenous Ca$^{2+}$-mobilizing molecules (IP$_3$, cADPR, and NAADP) in DA neurons. In contrast, Cd$^{2+}$, a general Ca$^{2+}$ channel blocker, suppressed L-SMOCs without depleting internal Ca$^{2+}$ stores, demonstrating that the spontaneous opening of Ca$^{2+}$ channels most likely triggers the generation of L-SMOCs. In line with this view, TTX-insensitive spontaneous Ca$^{2+}$ spikes mediated by voltage-gated Ca$^{2+}$ channels have been observed in cerebellar Purkinje neurons (Womack and Khodakhah, 2004).

The process of CICR ensuing Ca$^{2+}$ influx through plasma membrane Ca$^{2+}$ channels is well documented in neurons (Verkhratsky and Shmigol, 1996). Indeed, this mechanism has been used to explain the generation of SMOCs in mudpuppy parasympathetic cardiac neurons (Merriam et al., 1999) and rat Meynert neurons (Arima et al., 2001). One unique property of SMOCs in DA neurons lies in the voltage dependence. The frequency of SMOCs was highest at approximately -50 mV in DA neurons, whereas it peaked at -20 mV or more depolarized potentials in other types of cells (Satin and Adams, 1987; Fletcher and Chiappinelli, 1992; Merriam et al., 1999). This difference can be accounted for by the selective coupling of low-threshold T-type Ca$^{2+}$ channels with SMOCs in DA neurons but not in other cells (Merriam et al., 1999). The activation threshold for T-type channels is -70 to -60 mV, whereas they become fully activated at -40 to -30 mV (Randall and Tsien, 1997; Perez-Reyes, 2003). Therefore, there is a voltage window between -70 and -30 mV in which T-type channels can be tonically active. The firing of DA neurons is characterized by a large AHP, followed by a slow ramp-like voltage trajectory from approximately -60 mV until it reaches the action potential threshold (approximately -40 mV) (Wilson and Callaway, 2000). This will give an opportunity for spontaneous T-type channel opening to take place during the tonic firing of DA neurons.

The coupling of T-type Ca$^{2+}$ channels and SK channels required the RyR-mediated amplification of Ca$^{2+}$ signals, suggesting that the spatial organization of these three channels may be critically important (Fig. 7). SK channels can be activated by submicromolar concentrations of Ca$^{2+}$ (Xia et al., 1998), whereas 1–100 μM Ca$^{2+}$ is required to fully activate RyRs (Beprovzanny et al., 1991). This implies that RyRs are in closer proximity to T-type channels than SK channels are. In fact, the endoplasmic reticulum and plasma membrane can be as close as 20 nm or even in direct contact with each other in neurons (Berridge, 1998).

We do not know what triggers the opening of RyR channels for S-SMOCs. Partial depletion of internal Ca$^{2+}$ stores by amphetamine reduced the frequency of S-SMOCs by eliminating the relatively larger events. This suggests that the generation of S-SMOCs also involves the CICR process, which can be abrogated if the amount of RyR-mediated Ca$^{2+}$ release is reduced.

Functional significance

SMOCs and STOCs have been shown to play a role in the relaxation of smooth muscles (Porter et al., 1998) and to affect the action potential threshold in mudpuppy cardiac neurons (Parsons et al., 2002). In this study, we showed that SMOCs can modulate the firing pattern of DA neurons and may contribute to the slow and irregular firing observed during the early postnatal period (Pitts et al., 1990; Tepper et al., 1990; Wang and Pitts, 1994). The irregular firing pattern in central neurons is thought to reflect the response to correlated and uncorrelated synaptic inputs (Hauser and Clark, 1997; Carter and Regehr, 2002; Kononenko and Dudek, 2004). In DA neurons, the synaptic release of glutamate transforms the regular pacemaker-like firing, observed routinely in a slice preparation, into a burst–pause pattern (Morikawa et al., 2003). The findings in this study provide evidence that, in addition to modulation by synaptic inputs, DA neurons in neonates also have an intrinsic mechanism to generate an irregular firing pattern. SMOCs occurring at the slow ramp-like depolarization during the interspike interval would produce a small delay in the action potential timing. A similar delay in spike timing can be elicited by single GABAergic inputs occurring during the interspike interval in cerebellar Purkinje neurons, thus generating an irregular firing pattern (Hauser and Clark, 1997). DA release in the projection area is highly dependent on the rate and pattern of DA neuronal firing (Gonon, 1988; Montague et al., 2004). It should also be noted that DA neurons corelease glutamate at the terminal to induce fast excitatory neurotransmission (Chuhma et al., 2004). Therefore, even a small change in the spike timing may have a significant functional consequence in terms of signal output.

SMOCs, which act to disrupt the pacemaker firing in an input-independent manner, may actually represent the functional immaturity of DA neurons. Behavioral responses to psychostimulant amphetamine develops into an adult-like pattern after the third postnatal week (Kolta et al., 1990). In the present study, amphetamine inhibited SMOCs via activation of a1ARs and “corrected” the irregular firing pattern to a more regular and faster one. In line with this observation, an in vivo recording study showed that amphetamine can produce a paradoxical increase in DA neuronal firing in neonatal rats (Trent et al., 1991). Another possibility is that SMOCs, which are observed only during the early postnatal period, may be involved in the development of the DA system. DA neurons themselves and their connection with target neurons undergo significant changes over the first couple of postnatal weeks (Voorn et al., 1988). Spontaneous Ca$^{2+}$ transients are known to regulate the development of CNS circuitry (Gomez and Spitzer, 1999; Tang et al., 2003). Therefore, transient Ca$^{2+}$ elevations underlying SMOCs may play an active role in the wiring of the DA network.
References

