PBIO 558, Spring 2007
Reading List

WEEK1: Introduction -- Classic views of mitosis, predating the discovery of microtubules

1. Wordeman, L. A short history of mitosis: the early days.  unpublished

2. Schrader, F. Hypotheses of mitosis. in Mitosis: the movements of chromosomes in cell division. Columbia University Press, New York (1953).

3. Ostergren, G., Mole-Bajer, J. & Bajer, A. An interpretation of transport phenomena at mitosis. Annals NY Acad. Sci. 90:381-408 (1960).

WEEK 2: Dynamic instability of microtubules & the GTP cap hypothesis

1. Mitchison, T. & Kirschner, M. Dynamic instability of microtubule growth. Nature 312, 237-42 (1984).

2. Kristofferson, D., Mitchison, T. & Kirschner, M. Direct observation of steady-state microtubule dynamics. J Cell Biol 102, 1007-19 (1986).

***3. Walker, R.A. et al. Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. J Cell Biol 107, 1437-48 (1988).

4. Mandelkow, Mandelkow & Milligan Microtubule dynamics and microtubule caps:  a time-resolved cryo-electron microscopy study.  J Cell Biol 114:977-991 (1991).

***5. Chretien, D., Fuller, S.D. & Karsenti, E. Structure of growing microtubule ends: two-dimensional sheets close into tubes at variable rates. J Cell Biol 129, 1311-28 (1995).

6. Caplow, M. & Shanks, J. Evidence that a single monolayer tubulin-GTP cap is both necessary and sufficient to stabilize microtubules. Mol Biol Cell 7, 663-75 (1996).

7. Desai, A. & Mitchison, T. J. Microtubule polymerization dynamics. Annu Rev Cell Dev Biol 13, 83-117 (1997).

8. Wilson, L. & Margolis, R. L. Microtubule treadmills and their possible cellular functions. Cold Spring Harb Symp Quant Biol 46 Pt 1, 199-205 (1982).

***9. Inoue, S. & Salmon, E. D. Force generation by microtubule assembly/disassembly in mitosis and related movements. Mol Biol Cell 6, 1619-40 (1995).

WEEK 3: Discovery of spindle motors

1. McDonald, H. B. & Goldstein, L. S. Identification and characterization of a gene encoding a kinesin-like protein in Drosophila. Cell 61, 991-1000 (1990).

2. McDonald, H. B., Stewart, R. J. & Goldstein, L. S. The kinesin-like ncd protein of Drosophila is a minus end-directed microtubule motor. Cell 63, 1159-65 (1990).

***3. Steuer, E.R., L. Wordeman, T.A.Schroer and M.P. Sheetz. Localization of cytoplasmic dynein to mitotic spindles and kinetochores. Nature 345, 266-268 (1990).

***4. Wordeman, L. & Mitchison, T. J. Identification and partial characterization of mitotic centromere-associated kinesin, a kinesin-related protein that associates with centromeres during mitosis. J Cell Biol 128, 95-104 (1995).

***5. Yen, T. J., Li, G., Schaar, B. T., Szilak, I. & Cleveland, D. W. CENP-E is a putative kinetochore motor that accumulates just before mitosis. Nature 359, 536-9 (1992).

6. Fuller, M. Riding the polar winds: chromosomes motor down east. Cell 81:5-8 (1995).

***7. Leslie, R.J., Hird, R.B., Wilson, L., McIntosh, J.R., & Scholey, J.M. Kinesin is associated with a nonmicrotubule component of sea urchin mitotic spindles. Proc Natl Acad Sci 84:2771-2775 (1987).

WEEK 4: Two differing views – polymer-driven vs. ‘muscle-like' mitosis

1. Spurck, T.P. & Pickett-Heaps, J.D. On the mechanism of anaphase A: evidence that ATP is needed for microtubule disassembly and not generation of polewards force. J Cell Bio 105:1691-1705 (1987).

2. Inoue, S. & Salmon, E. D. Force generation by microtubule assembly/disassembly in mitosis and related movements. Mol Biol Cell 6, 1619-40 (1995).

3. Inoue, S. & Ritter H. Dynamics of mitotic spindle organization and function.  in Molecules and Cell Movement, Inoue & Stephens, eds. Raven Press, New York (1975).

4. Coue, M., Lombillo, V. & McIntosh, J.R.  Microtubule depolymerization promotes particle and chromosome movement in vitro.  J Cell Bio 112:1165-1175 (1991).

5. McIntosh, J.R., Cande, Z. & Snyder, J.A. Structure and physiology of the mammalian mitotic spindle. in Molecules and Cell Movement, Inoue & Stephens, eds. Raven Press, New York (1975).

6. McIntosh, J.R., Helper, P.K. & van Wie, D.G. Model for mitosis. Nature 224:659-663 (1969).

7. Nicklas, R.B. Chromosome movement:  current models and experiments on living cells.  in Molecules and Cell Movement, Inoue & Stephens, eds. Raven Press, New York (1975).

8. Mitchison, T. & Salmon, E.D. Mitosis: a history of division. Nat Cell Bio 3:E17-E21 (2001).

WEEK 5: Flux -- where are tubulin subunits being added and removed?

1. Mitchison, T. J. Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence. J Cell Biol 109, 637-52 (1989).

2. Zhai, Y., Kronebusch, P.J. & Borisy, G. Kinetochore microtubule dynamics and the metaphase-anaphase transition. J Cell Bio  131:721-734 (1995).

3. Maddox, P., Straight, A., Coughlin, P., Mitchison, T. J. & Salmon, E. D. Direct observation of microtubule dynamics at kinetochores in Xenopus extract spindles: implications for spindle mechanics. J Cell Biol 162, 377-82 (2003).

4. Sawin, K.E. & Mitchison, T.J. Microtubule flux in mitosis is independent of chromosomes, centrosomes, and antiparallel microtubules. Mol Bio Cell 5:217-226 (1994).

5. Mitchison, T.J., et al. Bipolarization and poleward flux correlate during Xenopus extract spindle assembly. Mol Bio Cell 15:5603-5615 (2004).

6. Cameron, L. et al. Kinesin 5-independent poleward flux of kinetochore microtubules in PtK1 cells. J Cell Bio 173:173-179 (2006).

WEEK 6: Assembly is eerily robust – more ways than one to build a spindle

1. Hayden, J. H., Bowser, S. S. & Rieder, C. L. Kinetochores capture astral microtubules during chromosome attachment to the mitotic spindle: direct visualization in live newt lung cells. J Cell Biol 111, 1039-45 (1990).

2. Heald, R. et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382, 420-5 (1996).

3. Maiato, H., Rieder, C. L. & Khodjakov, A. Kinetochore-driven formation of kinetochore fibers contributes to spindle assembly during animal mitosis. J Cell Biol 167, 831-40 (2004).

4. Khodjakov, A., et al. Minus-end capture of preformed kinetochore fibers contributes to spindel morphogenesis. J Cell Bio 160:671-683 (2003).

5. Carazo-Salas, R.E., Gruss, O.J., Mattaj, I.W. & Karsenti, E. Ran-GTP coordinates regulation of microtubule nucleation and dynamics during mitotic-spindle assembly. Nat Cell Bio 3:228-234 (2001).

6. Kapoor, T. M. et al. Chromosomes can congress to the metaphase plate before biorientation. Science 311, 388-91 (2006).

WEEK 7: Kinetochore movements – ‘directional instability', tensiometer model

1. Skibbens, R. V., Skeen, V. P. & Salmon, E. D. Directional instability of kinetochore motility during chromosome congression and segregation in mitotic newt lung cells: a push-pull mechanism. J Cell Biol 122, 859-75 (1993).

2. Skibbens, R. V., Rieder, C. L. & Salmon, E. D. Kinetochore motility after severing between sister centromeres using laser microsurgery: evidence that kinetochore directional instability and position is regulated by tension. J Cell Sci 108 ( Pt 7), 2537-48 (1995).

3. Waters, J.C., Skibbens, R.V. & Salmon, E.D. Oscillating mitotic newt lung cell kinetochores are, on average, under tension and rarely push. J Cell Sci 109:2823-2831 (1996).

4. Skibbens, R.V. & Salmon, E.D. Micromanipulation of chromosomes in mitotic vertebrate tissue cells: tension controls the state of kinetochore movement. Exp Cell Res 235:314-324 (1997).

5. Fuller, M. Riding the polar winds: chromosomes motor down east. Cell 81:5-8 (1995).

WEEK 8: More micromanipulation – balance of forces in the spindle

1. Rieder, C. L., Davison, E. A., Jensen, L. C., Cassimeris, L. & Salmon, E. D. Oscillatory movements of monooriented chromosomes and their position relative to the spindle pole result from the ejection properties of the aster and half-spindle. J Cell Biol 103, 581-91 (1986).

2. Nicklas, R.B. The forces that move chromosomes in mitosis. Ann Rev Biophys Biophys Chem 17:431-449 (1988).

3. Nicklas, R.B. How cells get the right chromosomes. Science 275:632-636 (1997).

4. Rieder, C.L. & Salmon, E.D. Motile kinetochores and polar ejection forces dictate chromosome position on the vertebrate mitotic spindle. J Cell Bio 124:22-233 (1994).

WEEK 9: The spindle checkpoint -- attachment, tension, and error correction

1. Rieder, C. L., Cole, R. W., Khodjakov, A. & Sluder, G. The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. J Cell Biol 130, 941-8 (1995).

2. Li, X. & Nicklas, R. B. Mitotic forces control a cell-cycle checkpoint. Nature 373, 630-2 (1995).

3. Biggins, S. & Murray, A.W. The budding yeast protein kinase Ipl1/Aurora allows the absence of tension to activate the spindle checkpoint. Genes & Dev 15:3118-3129 (2001).

3. Pinsky, B.A. & Biggins, S. Thes spindle checkpoint: tension versus attachment. Trends Cell Bio 15:? (2005).

4. Dewar, H. et al. Tension between two kinetochores suffices for their biorientation on the mitotic spindle. Nature 428:93-97 (2004).

5. Wong OK, Fang G. Plx1 is the 3F3/2 kinase responsible for targeting spindle checkpoint proteins to kinetochores. J Cell Biol. 170, 709-19 (2005).

WEEK 10: Ultrastructure of the kinetochore-microtubule interface

1. Jokelainen P.T. The ultrastructure and spatial organization of the metaphase kinetochore in mitotic rat cells. J Ultrastruct Res. 19:19-44 (1967).

2. Euteneuer U, McIntosh JR. Structural polarity of kinetochore microtubules in PtK1 cells. J Cell Biol. 89(2):338-45 (1981).

3. Mitchison T, Evans L, Schulze E, Kirschner M. Sites of microtubule assembly and disassembly in the mitotic spindle. Cell. 45(4):515-27 (1986).

4. Rieder CL, Alexander SP. Kinetochores are transported poleward along a single astral microtubule during chromosome attachment to the spindle in newt lung cells. J Cell Biol. 110(1):81-95 (1990).

5. McDonald KL, O'Toole ET, Mastronarde DN, McIntosh JR. Kinetochore microtubules in PTK cells. J Cell Biol. 118(2):369-83 (1992).

6.   Cooke CA, Schaar B, Yen TJ, Earnshaw WC. Localization of CENP-E in the fibrous corona and outer plate of mammalian kinetochores from prometaphase through anaphase. Chromosoma. 106(7):446-55 (1997).

7. VandenBeldt, K.J. et al. Kinetochores use a novel mechanism for coordinating the dynamics of individual microtubules. Curr Biol 16:1217-1223 (2006).

8. O'Toole, E.T., et al. Morphologically distinct microtubule ends in the mitotic centrosome of Caenorhabditis elegans. J Cell Bio 163:451-456 (2003).